Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Column-Oriented
Database Systems

VLDB
2009
Tutorial

Part 1. Stavros Harizopoulos (HP Labs)
—Part 3: Peter Boncz (CWH—

VLDB 2009 Tutorial
Column-Oriented Database Systems

00000
™
0000

green
Line

green
Line

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

What Is a column-store?

row-store column-store

TaaT

+ easy to add/modify a record + only need to read in relevant data

Date |Store |Product Customer Price

—|_ II II II II II

- might read in unnecessary data - tuple writes require multiple accesses

=> suitable for read-mostly, read-intensive, large data repositories

t VLDB 2009 Tutorial Column-Oriented Database Systems 2

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Are these two fundamentally different?

1 The only fundamental difference is the storage layout
1 However: we need to look at the big picture

different storage layouts proposed

row-stores row-stores++ row-stores++ converge?
[e i | 111 [o e i |
=TT
=TT

foday >

column-stores

new applications
new bottleneck in hardware

1 How did we get here, and where we are heading
1 What are the column-specific optimizations? @
1 How do we improve CPU efficiency when operating on C

Part 3
3

t VLDB 2009 Tutorial Column-Oriented Database Systems

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Outline

1 Part 1: Basic concepts — Stavros

Introduction to key features
From DSM to column-stores and performance tradeoffs

Column-store architecture overview
Will rows and columns ever converge?

1 Part 2: Column-oriented execution — Daniel

1 Part 3: MonetDB/X100 and CPU efficiency — Peter

% VLDB 2009 Tutorial Column-Oriented Database Systems

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Telco Data Warehousing example

1 Typical DW installation dimension tables

fact table

or RAM
1 Real-world example = usage]——m

“One Size Fits All? - Part 2: Benchmarking 6666

Results” Stonebraker et al. CIDR 2007 star schema

QUERY 2
SELECT account.account_number,
sum (usage.toll_airtime),

sum (usage.toll_price) Column-store Row-store
FROM usage, toll, source, account

WHERE usage.toll_id = toll.toll_id Query 12.06 300

AND usage.source_id = source.source_id Query 2 2.20 300

AND usage.account_id = account.account_id

AND toll.type_ind in (‘AE’. ‘AA") Query 3 0.09 300

AND usage.toll_price > 0 Query 4 5.24 300

AND source.type != ‘CIBER’ Query 5 2.88 300

AND toll.rating_method = ‘IS’
AND usage.invoice_date = 20051013

GROUP BY account.account_number Why? Three main factors (next slides)

t VLDB 2009 Tutorial Column-Oriented Database Systems 5

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Telco example explained (1/3):

read efficiency
row store

read pages containing entire rows

one row = 212 columns!

IS this typical? (it depends)

What about vertical partitioning?

lalHVaYd
\1UCI

column store

read only columns needed

In this example: 7 columns

caveats:

- “select * ” not any faster

. clever disk prefetching

. clever tuple reconstruction

_ VLDB 2009 Tutorial Column-Oriented Database Systems 6

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Telco example explained (2/3):
compression efficiency
1 Columns compress better than rows

Typical row-store compression ratio 1 : 3
Column-store 1 : 10

1 Why?
Rows contain values from different domains
=> more entropy, difficult to dense-pack

Columns exhibit significantly less entropy

Examples: Male, Female, Female, Female, Male
1998, 1998, 1999, 1999, 1999, 2000

Caveat: CPU cost (use lightweight compression)

% VLDB 2009 Tutorial Column-Oriented Database Systems 7

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Telco example explained (3/3):

sorting & indexing efficiency

1 Compression and dense-packing free up space
Use multiple overlapping column collections
Sorted columns compress better

Range gqueries are faster
Use sparse clustered indexes

What about heavily-indexed row-stores?
(works well for single column access,
cross-column joins become increasingly expensive)

% VLDB 2009 Tutorial Column-Oriented Database Systems

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Additional opportunities for column-stores

1 Block-tuple / vectorized processing

Easier to build block-tuple operators
Amortizes function-call cost, improves CPU cache performance

Easier to apply vectorized primitives
Software-based: bitwise operations
Hardware-based: SIMD m

1 Opportunities with compressed columns

Avoid decompression: operate directly on compressed

Delay decompression (and tuple reconstruction) e
Also known as: late materialization in Part 2

1 Exploit columnar storage in other DBMS components

Physical design (both static and dynamic) See: Database
Cracking, from CWI

$ VLDB 2009 Tutorial Column-Oriented Database Systems 9

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (20C

“Column-Stores vs Row-Stores:
How Different are They

Effect on C-Store performance Realy?” Abadi, Hachem, and

Madden. SIGMOD 2008.

50 Average for SSBM queries on C-store

N
()

original
C-store

W
O

Time (sec)

N
O

N
()

0_7 I— I— I— I

VN T e

column-oriented late
enable materialization

join algorithm compression &
operate on compressed

& VLDB 2009 Tutorial Column-Oriented Database Systems 10

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Summary of column-store key features

e P
header/ID elimination
1 Storage layout M

multlple sort orders

avoid decompressmn
1 Execution engine
late materialization

vectorized operations 4&

1 Design tools, optimizer

& VLDB 2009 Tutorial Column-Oriented Database Systems 11

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Outline

1 Part 1: Basic concepts — Stavros
Introduction to key features
:>From DSM to column-stores and performance tradeoffs
Column-store architecture overview
Will rows and columns ever converge?

& VLDB 2009 Tutorial Column-Oriented Database Systems 12

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

From DSM to Column-stores

TOD: Time Oriented Database — Wiederhold et al.

70s -1985: "A Modular, Self-Describing Clinical Databank
System," Computers and Biomedical Research, 1975
More 1970s: Transposed files, Lorie, Batory,

[oo VR

“An overview of cantor: a new system for data analysis”
Karasalo, Svensson, SSDBM 1983

1985: DSM paper “A decomposition storage model”
Copeland and Khoshafian. SIGMOD 1985.

1990s: Commercialization through SybaselQ

Late 90s — 2000s: Focus on main-memory performance
DSM “on steroids” [1997 — now] CWI: MonetDB
Hybrid DSM/NSM [2001 — 2004] Wisconsin: PAX, Fractured Mirrors

Michigan: Data Morphing CMU: Clotho

2005 — : Re-birth of read-optimized DSM as “column-store”
- MIT: C-Store CWI. MonetDB/X100 10+ startups

% VLDB 2009 Tutorial Column-Oriented Database Systems 13

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

(X X J
(X X J
.. “A decomposition storage s
The Orlglnal DSM PapPEer model” Copeland and
Khoshafian. SIGMOD 1985.
Proposed as an alternative to NSM
2 iIndexes: clustered on ID, non-clustered on value
Speeds up gueries projecting few columns
Requires more storage value
SRy ID 0100 0962 1000 ..
— Pl&fGE s & PAGE HEADER | 1]0962]
PAGE HEADER !RHL 0962 || 247658 [3] 38591415523 ¥ sub-relation R1
Jane | 30 | RH2 | 7658 | John : = olele -
45 | R113 | 3889 | im| 20 | R1W4 | -]
552§ S— §2 f | PAGE HEA.DER ‘l Jane | |
. \\ ./ : 2] John]3] Jim |4]Susan sub-relation R2
. . /! | - L[.I.[]
\ \/ I - |
\ /-\ | PAGE HEADER | 1] 30]|2] &
\ W\ I A [3]20{4 52 sub-relation R3
I\ | -
6 | oo |ed 5

& VLDB 2009 Tutorial Column-Oriented Database Systems 14

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Memory wall and PAX

1 90s: Cache-conscious research

“Cache Conscious Algorithms for
from: Relational Query Processing.”

Shatdal, Kant, Naughton. VLDB 1994.
“DBMSs on a modern processor:

“Database Architecture Optimized for and: Where does time go?” Ailamaki,
to: the New Bottleneck: Memory Access.” DeWitt, Hill, Wood. VLDB 1999.
Boncz, Manegold, Kersten. VLDB 1999. PAX PAGE
PAGE HEADER | 0962 7658
1 PAX: Partition Attributes Across 3859 | 5523
Retains NSM 1/O pattern RN

Jane | John| Jim | Susan

Optimizes cache-to-RAM communication

“Weaving Relations for Cache Performance.”
Ailamaki, DeWitt, Hill, Skounakis, VLDB 2001.

:

:

$ VLDB 2009 Tutorial Column-Oriented Database Systems 15

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

More hybrid NSM/DSM schemes

1 Dynamic PAX: Data Morphing

“Data morphing: an adaptive, cache-conscious
storage technique.” Hankins, Patel, VLDB 2003.

1 Clotho: custom layout using scatter-gather 1/O

“Clotho: Decoupling Memory Page Layout from Storage Organization.”
Shao, Schindler, Schlosser, Ailamaki, and Ganger. VLDB 2004.

1 Fractured mirrors
Smart mirroring with both NSM/DSM copies

}T _T_ _ _32_“:?1)_ EEE?_ “A Case For Fractured
< D> > > Mirrors.” Ramamurthy,

— H H H H E HDDH DeWitt, Su, VLDB 2002.
. oy s \x_____|:|_|:| |:|_|:|___,f="’ \5_____ - -

% VLDB 2009 Tutorial Column-Oriented Database Systems 16

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

MonetDB (more In Part 3)

1 Late 1990s, CWI: Boncz, Manegold, and Kersten

1 Motivation:
Main-memory

Improve computational efficiency by avoiding expression
Interpreter

DSM with virtual IDs natural choice

Developed new guery execution algebra
1 Initial contributions:

Pointed out memory-wall in DBMSs

Cache-conscious projections and joins

$ VLDB 2009 Tutorial Column-Oriented Database Systems 17

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

2005: the (re)birth of column-stores

1 New hardware and application realities
Faster CPUs, larger memories, disk bandwidth limit
Multi-terabyte Data Warehouses

1 New approach: combine several techniques
Read-optimized, fast multi-column access,
disk/CPU efficiency, light-weight compression

1 C-store paper:
First comprehensive design description of a column-store

1 MonetDB/X100
“proper” disk-based column store

1 Explosion of new products

% VLDB 2009 Tutorial Column-Oriented Database Systems 18

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Performance tradeoffs: columns vs. rows

DSM traditionally was not favored by technology trends
How has this changed?

Optimized DSM in “Fractured Mirrors,” 2002

“Apples-to-apples” comparison “Performance Tradeoffs in Read-
Optimized Databases”
Harizopoulos, Liang, Abadi,
Madden, VLDB’'06

Follow-up study <“Read-Optimized Databases, In-
Depth” Holloway, DeWitt, VLDB’08
Main-memory DSM vs. NSM

“DSM vs. NSM: CPU performance tradeoffs in block-oriented
guery processing” Boncz, Zukowski, Nes, DaMoN’'08

-di . _ P,
Flash-disks: a come-back for PAX~ \Query Processing Techniques

“Fast Scans and Joins Using Flash for Solid State Drives”

| Drives” Shah, Harizopoulos, Tsirogiannis, Harizopoulos,
% Wiener, Graefe. DaMoN'08 orened pataba SNAN, Wiener, Graefe,

CININMNNNN

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Fractured mirrors: a closer look

1 Store DSM relations inside a B-tree “A Case For Fractured
_ Mirrors” Ramamurthy,
1 Leaf nodes contain values DeWitt, Su, VLDB 2002.
1 Eliminate IDs, amortize header overhead

1 Custom implementation on Shore

sparse
vonior | | ot — B-tree on ID
1 al /131 >
2 |a2 / Y
3 a3 1 M 3] [4 a5
4 a4
1 |al| a2| a3 4 | ad4| a5
S5 ad
Similar: storage density “Efficient columnar
comparable storage in B-trees” Graefe.

to column stores Sigmod Record 03/2007.

& VLDB 2009 Tutorial Column-Oriented Database Systems 20

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Fractured mirrors: performance

From PAX paper:

HSM/PAX/DEM Bapsed Time

Bl -
—a— HSM

| —m—pax
—e— [SM

olapsed time (seconds)
B2 &

sk
=

time

/'regular DSM

=

1 2 3 4 5 i
number of attributes in query

| =t

T

1 Chunk-based tuple merging 160

1 Read in segments of M pages
1 Merge segments in memory
1 Becomes CPU-bound after 5 pages

&» VLDB 2009 Tutorial

120

Seconds

140 :—I— Page-at-a-time
@ Chunk-Merge

100 -
80
60 -
40 ~

column? ¢
y 4

* column?
PR

| [[T 1
columns projected:

1 2 3 4 5

Lineitem (TPCH) 1GB

+4—NSM optimized

DSM

1 2 3 4 6 8 10 12 14
No. of Attributes

Column-Oriented Database Systems 21

Re-use permitted when acknowledging the original © Stavros Harizopoul =~ ~°*** ==~ = 7777

“Performance Tradeoffs in Read- csso
Column-scanner Optimized Databases” EE:'
imp|ementation Harizopoulos, Liang, Abadi, °
Madden, VLDB’06
F'ow scanner column scanner
! Gl
Joe 45
u SELECT name, age ﬁ
ﬁ WHERE age > 40

Direct I/O
=m
prefetch ~100ms

1 Joe 45 worth of data predicaa"[gp#!f{@
2 Sue 37 R

& VLDB 2009 Tutorial Column-Oriented Database Systems

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Scan performance

1

$ VLDB 2009 Tutorial

Large prefetch hides disk seeks in columns
Column-CPU efficiency with lower selectivit?
Row-CPU suffers from memory stalls
Memory stalls disappear in narrow tuples

____ not shown,
details in the paper

Compression: similar to narrow

60 - i
G503—0—0—0—0—0 ~—e
(b}
L 40 -
g —e+— Row
= 30 - —+—Column
3 ---¢---Row CPU
@ 20 - ---a---Column CPU
4y}
m10' ______ .‘,‘a“‘
Q-'-"':t:::::::: ------------- * & e e
DY Sl &
0 L)]) L) L] L)) L)
4 20 36 52 68 84 100 116 132 148

Selected bytes per tuple

23

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Time (s)

Even more results

- Same engine as before
- Additional findings

Bytes Returne d

s32:
“Read-Optimized Databases, In- °co
Depth” Holloway, DeWitt, VLDB’08 °
narrow & compressed tuple: //'
CPU-bound! i
= C-25% //
217 a-C-10% i
--R-50% e
7

Time (s)

10

1 2 3 4 5 6 7 8 9 10
Columns Returned

Non-selective queries, narrow tuples, favor well-compressed rows

Materialized views are a win

Scan times determine early materialized joins _

&» VLDB 2009 Tutorial

Column-Oriented Database Systems 24

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009) PRPPY
0000
[X K
o000
Speedup of columns over rows :e
“Performance Tradeoffs in Read-

Optimized Databases”
Harizopoulos, Liang, Abadi,
144 Madden, VLDB’06

K byte

+++

IS

(cpdb) :

w
(@))

cycles per d
&

O

12 16 20 24 28 32 36
tuple width

1 Rows favored by narrow tuples and low cpdb
1 Disk-bound workloads have higher cpdb

oo

& VLDB 2009 Tutorial Column-Oriented Database Systems 25

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Varying prefetch size

no competin
disk tr%ffic J

N
(@)
|

Column 2

w
o
|

Column 8

Column 16
Column 48 (x 128KB)

Row (any prefetch size)

time (sec)
S

=
()

4 8 12 16 20 24 28 32
selected bytes per tuple

1 No prefetching hurts columns in single scans

} VLDB 2009 Tutorial Column-Oriented Database Systems 26

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Varying prefetch size

with competing disk traffic

40 1 —A— Column, 48 40 1
’J 30 - —o— Row, 48 30 -
)
O 20 - 20 -
g 10 ~ 10 - —a— Column, 8
—o— Row, 8
O | | | | O | | |
4 12 20 28 4 12 20 28

selected bytes per tuple

1 No prefetching hurts columns in single scans

1 Under competing traffic, columns outperform rows for
_any prefetch size

VLDB 2009 Tutorial Column-Oriented Database Systems 27

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009) |

“DSM vs. NSM: CPU performance trade

CPU Performance offs in block-oriented query processing”
Boncz, Zukowski, Nes, DaMoN’08

1 Benefit in on-the-fly conversion between NSM and DSM
1 DSM: sequential access (block fits in L2), random in L1
1 NSM: random access, SIMD for grouped Aggregation

DSM input NSM input
11_ T T DSM F]t (IA)I T 1 T T |+ T IDéMIhtI(DI) T 1
----------- NSM ht (B) i NSM->DSM, DSM ht (E) s+~
" DSM->NSM, NSM ht (C) P ¥ NSM ht (F) #
- NSM->DSM, NSM ht (G) /
g R 1 [o NSM->DSM->NSM, NSM ht (H) # [
8 L 7‘-’ e - &
E L ;e S-=HKe i *-—*:* F .
1 UO I I I I I I I I I I I I I | I | I I | I | I I I | I
1 32 1K 32K 1™ 1 32 1K 32K ™

Figure

=

9]

: TPC-H Q1, with a varying number of keys and different data organizations (ht — hash table)

Aggregation keys (log scale)

Aggregation keys (log scale)

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

New storage technology: Flash SSDs

1 Performance characteristics
very fast random reads, slow random writes
fast sequential reads and writes
1 Price per bit (capacity follows)
cheaper than RAM, order of magnitude more expensive than Disk

1 Flash Translation Layer introduces unpredictability
avoid random writes!

1 Form factors not ideal yet
SSD (. small reads still suffer from SATA overhead/OS limitations)
PCl card (z. high price, limited expandability)

1 Boost Sequential I/O in a simple package
Flash RAID: very tight bandwidth/cm? packing (4GB/sec inside the box)

1 Column Store Updates
useful for delta structures and logs

1 Random I/O on flash fixes unclustered index access
still suboptimal if 1/0O block size > record size
therefore column stores profit mush less than horizontal stores

1 Random I/O useful to exploit secondary, tertiary table orderings
the larger the data, the deeper clustering one can exploit

% VLDB 2009 Tutorial Column-Oriented Database Systems 29

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Even faster column scans on flash SSDs

- 30K Read IOps, 3K Write lops
1 New-generation SSDs 250MB/s Read BW, 200MB/s Write

1 Very fast random reads, slower random writes
1 Fast sequential RW, comparable to HDD arrays

1 No expensive seeks across columns
1 FlashScan and Flashjoin: PAX on SSDs, inside Postgres

160 |
= “Query Processing Techniques for

Solid State Drives” Tsirogiannis,
e Harizopoulos, Shah, Wiener, Graefe,
~B-FlashScan 100% SEL SIGMOD’'09

=&—FlashScan 0.01% SEL
i R, mini-pages with no

& = - qualified attributes are
not accessed

140 | *

120
100

Time (sec)
(0 2]
L}

0% 20% 40% &60% BO0% 100%
Projectivity

$ VLDB 2009 Tutorial Column-Oriented Database Systems 30

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

olapsed time (seconds)

Column-scan performance over time

regular DSM (2001)

t VLDB 2009 Tutorial

column-store (2006)

e S ’ ..to 1.2x slower
10| —W—PAX &0 - 2
A ﬂ
Il from 7x slower Fo e —
| 2 40 | -
20 E 1 _~" —s«—Column
J o - ---s--+Row CPU
10 4 _g @ 20 - P -« «a-+ Column CPU
—t— o -~ N
o R 2 PP e PP PTLLA LRI RUSPREL L
1 2 3 4 5 & 7 gyfanee®’” 000000 —
number of attributes in query 4 20 3B 52 68 B4 100 118 132 148
Selected bytes per fuple
Lineitem (TPCH) 1GB to 2X Slower
180 +—A— NSM m
160 | 5 . o ..10 same
140 4 Page-at-a-time |
o 120 % Chunk-Merge 140 | # —I
=
5 123 1 120
8 i
D g0 oo ~+-NSMScan (all SEL)
40 + 9 80 ~B-FlashScan 100% SEL
20 - 2 —+~FlashScan 0.01% SEL
'] 1 T T T T T T T T 1 I g BD
1 2 3 4 6 8 10 12 14 and 3x faster! E e
No. of Attributes k — k
optimized DSM (2002) SSD Postgres/PAX (2009)

0% 20% 40% 60% 80% 100%

Column-Oriented Datab:

Projectivity

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Outline

1 Part 1: Basic concepts — Stavros
Introduction to key features
From DSM to column-stores and performance tradeoffs

»>Column-store architecture overview

Will rows and columns ever converge?

& VLDB 2009 Tutorial Column-Oriented Database Systems 32

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Architecture of a column-store

- storage layout I
read-optimized: dense-packed, compressed

organize in extends, batch updates
multiple sort orders

_ sparse indexes 4 engine N
block-tuple operators

new access methods
a system-level N optimized relational operators

system-wide column support

loading / updates

scaling through multiple nodes
U transactions / redundancy -

% VLDB 2009 Tutorial Column-Oriented Database Systems 33

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Ahadi Peter Roncz (2009)

“C-Store: A Column-Oriented
DBMS.” Stonebraker et al.
C StOre VLDB 2005.

1 Compress columns

1 No alignment

1 Big disk blocks

1 Only materialized views (perhaps many)
1 Focus on Sorting not indexing

1 Data ordered on anything, not just time
1 Automatic physical DBMS design

1 Optimize for grid computing

1 Innovative redundancy

1 Xacts — but no need for Mohan

1 Column optimizer and executor

? VLDB 2009 Tutorial Column-Oriented Database Systems

34

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

C-Store: only materialized views (MVs)

1 Projection (MV) is some number of columns from a fact table

1 Plus columns in a dimension table — with a 1-n join between
Fact and Dimension table

1 Stored in order of a storage key(s)

1 Several may be stored!

1 With a permutation, if necessary, to map between them
1 Table (as the user specified it and sees it) is not stored!

1 No secondary indexes (they are a one column sorted MV plus
a permutation, if you really want one)

C N
User view Possible set of MVs .
EMP (name, age, salary, dept) MV-1 (name, dept, floor) in floor order
Dept (dname, floor) MV-2 (salary, age) in age order
MV-3 (dname, salary, name) in salary order

% VLDB 2009 Tutorial Column-Oriented Database Systems 35

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Continuous Load and Query (Vertica)

Hybrid Storage Architecture

> Write Optimized
Store (WOS)

> Read Optimized
Store (ROS)

' S
T:_ICklg e On disk
oa -
TUPLE MOVER Sorted / Compressed
—> A Asynchronous * Segmented :
Data Transfer » Large data loaded direct

S Memory based
SUnsorted / Uncompressed
§ Segmented

SLow latency / Small quick (ABC|A)
Inserts

’ VLDB 2009 Tutorial Column-Oriented Database Systems 36

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Loading Data (Vertica)

> INSERT, UPDATE, DELETE
> Bulk and Trickle Loads

Write-Optimized

A\

Store (WOS)

 > In-memory
SCOPY

Automatic v
SCOPY DIRECT Tuple Mover
> User loads data into logical Tables

> Vertica loads atomically into
storage

Read-Optimized
Store (ROS)

On-disk

’ VLDB 2009 Tutorial Column-Oriented Database Systems 37

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Applications for column-stores

Data Warehousing
High end (clustering)
Mid end/Mass Market
Personal Analytics
Data Mining
E.g. Proximity
Google BigTable
RDF
Semantic web data management
Information retrieval
Terabyte TREC
Scientific datasets
SciDB initiative
SLOAN Digital Sky Survey on MonetDB

$ VLDB 2009 Tutorial Column-Oriented Database Systems

38

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

List of column-store systems

Cantor (history)

Sybase 1Q

SenSage (former Addamark Technologies)
Kdb

1010data

MonetDB

C-Store/Vertica
X100/VectorWise

KickFire

SAP Business Accelerator
Infobright

ParAccel

Exasol

& VLDB 2009 Tutorial Column-Oriented Database Systems 39

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Outline

1 Part 1: Basic concepts — Stavros
Introduction to key features
From DSM to column-stores and performance tradeoffs
Column-store architecture overview

>Will rows and columns ever converge?

& VLDB 2009 Tutorial Column-Oriented Database Systems 40

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Simulate a Column-Store inside a Row-Store

Date Store |Product Customer |Price

Option A:
Vertical Partitioning

Product Customer Price

’ VLDB 2009 Tutorial Column-Oriented Database Systems

Option B:
Index Every Column

Date Index

Store Index

41

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Simulate a Column-Store inside a Row-Store

Date Store |Product Customer Price

Option A:
Vertical Partitioning

Date Store Product Customer Price

Value StartPos Lenith

;

Can explicitly run-
length encode date

“Teaching an Old Elephant New Tricks.”
Bruno, CIDR 2009.

’ VLDB 2009 Tutorial Column-Oriented Database Systems

Option B:
Index Every Column

Date Index

Store Index

42

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Experiments

1 Star Schema Benchmark (SSBM) Adjoined Dimension Column Index (ADC Index)
to Improve Star Schema Query Performance”.

O’Neil et. al. ICDE 2008.

1 Implemented by professional DBA

1 Original row-store plus 2 column-store
simulations on same row-store product

250.0
“Column-Stores vs Row-Stores:
200.0 How Different are They Really?”
‘g Abadi, Hachem, and Madden.
§ 150.0 - SIGMOD 2008.
&
o 100.0 -
£
I~
50.0 -
0.0 Vertically Partitioned | R ith All
Normal Row-Store ertically Partitione ow-Store Wit
Row-Store Indexes
M Average 25.7 79.9 221.2

& VLDB 2009 Tutorial Column-Oriented Database Systems 43

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

What's Going On? Vertical Partitions :
1 Vertical partitions in row-stores:

Work well when workload is known

..and queries access disjoint sets of columns

See automated physical design

1

1 Do not work well as full-columns)

TuplelD overhead significant -

Excessive joins

Queries touch 3-4 foreign keys in fact table,
1-2 numeric columns

“Column-Stores vs. Row-Stores: Complete fact table takes up ~4 GB

How Different Are They Really?” (compressed)
Abadi, Madden, and Hachem. Vertically partitioned tables take up 0.7-1.1
SIGMOD 2008. GB (compressed)

% VLDB 2009 Tutorial Column-Oriented Database Systems 44

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

What's Going On? All Indexes Case

1 Tuple construction

Common type of query:. SELECT store_name, SUM(revenue)
FROM Facts, Stores

WHERE fact.store _id = stores.store_id
AND stores.country = “Canada”
GROUP BY store_name

Result of lower part of query plan is a set of TIDs that passed
all predicates

Need to extract SELECT attributes at these TIDs
BUT: index maps value to TID
You really want to map TID to value (i.e., a vertical partition)

Tuple construction is SLOW

% VLDB 2009 Tutorial Column-Oriented Database Systems 45

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

So....

1 All indexes approach is a poor way to simulate a column-store

1 Problems with vertical partitioning are NOT fundamental
Store tuple header in a separate partition
Allow virtual TIDs
Combine clustered indexes, vertical partitioning

1 SO0 can row-stores simulate column-stores?
Might be possible, BUT:
Need better support for vertical partitioning at the storage layer
Need support for column-specific optimizations at the executer level
Full integration: buffer pool, transaction manager, ..

When will this happen? See Part 2. Part 3
Most promising features = soon for most promising
features

..unless new technology / new objectives change the game
(SSDs, Massively Parallel Platforms, Energy-efficiency)

? VLDB 2009 Tutorial Column-Oriented Database Systems 46

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

End of Part 1

1 Basic concepts — Stavros
Introduction to key features
From DSM to column-stores and performance tradeoffs

Column-store architecture overview
Will rows and columns ever converge?

. cof . I .)
S 100 and.C e

& VLDB 2009 Tutorial Column-Oriented Database Systems 47

green
Line

green
Line

