
VLDB 2009 Tutorial
Column-Oriented Database Systems

1

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Column-Oriented
Database Systems

Part 1: Stavros Harizopoulos (HP Labs)

Part 2: Daniel Abadi (Yale)
Part 3: Peter Boncz (CWI)

VLDB
2009

Tutorial

green
Line

green
Line

VLDB 2009 Tutorial Column-Oriented Database Systems 2

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

What is a column-store?

VLDB 2009 Tutorial Column-Oriented Database Systems 2

row-store column-store

Date CustomerProductStore

+ easy to add/modify a record

- might read in unnecessary data

+ only need to read in relevant data

- tuple writes require multiple accesses

=> suitable for read-mostly, read-intensive, large data repositories

Date Store Product Customer Price Price

VLDB 2009 Tutorial Column-Oriented Database Systems 3

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Are these two fundamentally different?

l The only fundamental difference is the storage layout
l However: we need to look at the big picture

VLDB 2009 Tutorial Column-Oriented Database Systems 3

‘70s ‘80s ‘90s ‘00s today

row-stores row-stores++ row-stores++

different storage layouts proposed

new applications
new bottleneck in hardware

column-stores

converge?

l How did we get here, and where we are heading
l What are the column-specific optimizations?
l How do we improve CPU efficiency when operating on Cs

Part 2

Part 1

Part 3

VLDB 2009 Tutorial Column-Oriented Database Systems 4

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Outline

l Part 1: Basic concepts — Stavros
l Introduction to key features
l From DSM to column-stores and performance tradeoffs
l Column-store architecture overview
l Will rows and columns ever converge?

l Part 2: Column-oriented execution — Daniel

l Part 3: MonetDB/X100 and CPU efficiency — Peter

VLDB 2009 Tutorial Column-Oriented Database Systems 4

VLDB 2009 Tutorial Column-Oriented Database Systems 5

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Telco Data Warehousing example

l Typical DW installation

l Real-world example

VLDB 2009 Tutorial Column-Oriented Database Systems 5

usage source

toll

account

star schema

fact table

dimension tables

or RAM

QUERY 2
SELECT account.account_number,
sum (usage.toll_airtime),
sum (usage.toll_price)
FROM usage, toll, source, account
WHERE usage.toll_id = toll.toll_id
AND usage.source_id = source.source_id
AND usage.account_id = account.account_id
AND toll.type_ind in (‘AE’. ‘AA’)
AND usage.toll_price > 0
AND source.type != ‘CIBER’
AND toll.rating_method = ‘IS’
AND usage.invoice_date = 20051013
GROUP BY account.account_number

Column-store Row-store
Query 1 2.06 300
Query 2 2.20 300
Query 3 0.09 300
Query 4 5.24 300
Query 5 2.88 300

Why? Three main factors (next slides)

“One Size Fits All? - Part 2: Benchmarking
Results” Stonebraker et al. CIDR 2007

VLDB 2009 Tutorial Column-Oriented Database Systems 6

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Telco example explained (1/3):
read efficiency

read pages containing entire rows

one row = 212 columns!

is this typical? (it depends)

VLDB 2009 Tutorial Column-Oriented Database Systems 6

row store column store

read only columns needed

in this example: 7 columns

caveats:
• “select * ” not any faster
• clever disk prefetching
• clever tuple reconstruction What about vertical partitioning?

(it does not work with ad-hoc
queries)

VLDB 2009 Tutorial Column-Oriented Database Systems 7

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Telco example explained (2/3):
compression efficiency
l Columns compress better than rows

l Typical row-store compression ratio 1 : 3
l Column-store 1 : 10

l Why?
l Rows contain values from different domains

=> more entropy, difficult to dense-pack
l Columns exhibit significantly less entropy
l Examples:

l Caveat: CPU cost (use lightweight compression)

VLDB 2009 Tutorial Column-Oriented Database Systems 7

Male, Female, Female, Female, Male
1998, 1998, 1999, 1999, 1999, 2000

VLDB 2009 Tutorial Column-Oriented Database Systems 8

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Telco example explained (3/3):
sorting & indexing efficiency
l Compression and dense-packing free up space

l Use multiple overlapping column collections
l Sorted columns compress better
l Range queries are faster
l Use sparse clustered indexes

VLDB 2009 Tutorial Column-Oriented Database Systems 8

What about heavily-indexed row-stores?
(works well for single column access,
cross-column joins become increasingly expensive)

VLDB 2009 Tutorial Column-Oriented Database Systems 9

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Additional opportunities for column-stores

l Block-tuple / vectorized processing
l Easier to build block-tuple operators

l Amortizes function-call cost, improves CPU cache performance

l Easier to apply vectorized primitives
l Software-based: bitwise operations
l Hardware-based: SIMD

l Opportunities with compressed columns
l Avoid decompression: operate directly on compressed
l Delay decompression (and tuple reconstruction)

l Also known as: late materialization

l Exploit columnar storage in other DBMS components
l Physical design (both static and dynamic)

VLDB 2009 Tutorial Column-Oriented Database Systems 9

Part 3

more
in Part 2

See: Database
Cracking, from CWI

VLDB 2009 Tutorial Column-Oriented Database Systems 10

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Effect on C-Store performance

VLDB 2009 Tutorial Column-Oriented Database Systems 10

“Column-Stores vs Row-Stores:
How Different are They
Really?” Abadi, Hachem, and
Madden. SIGMOD 2008.

T
im

e
(s

ec
)

Average for SSBM queries on C-store

enable
late

materializationenable
compression &

operate on compressed

original
C-store

column-oriented
join algorithm

VLDB 2009 Tutorial Column-Oriented Database Systems 11

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Summary of column-store key features

l Storage layout

l Execution engine

l Design tools, optimizer

VLDB 2009 Tutorial Column-Oriented Database Systems 11

columnar storage

header/ID elimination

compression

multiple sort orders

column operators

avoid decompression

late materialization

vectorized operations Part 3

Part 2

Part 2

Part 1

Part 1

Part 2

Part 3

VLDB 2009 Tutorial Column-Oriented Database Systems 12

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Outline

l Part 1: Basic concepts — Stavros
l Introduction to key features
l From DSM to column-stores and performance tradeoffs
l Column-store architecture overview
l Will rows and columns ever converge?

l Part 2: Column-oriented execution — Daniel

l Part 3: MonetDB/X100 and CPU efficiency — Peter

VLDB 2009 Tutorial Column-Oriented Database Systems 12

VLDB 2009 Tutorial Column-Oriented Database Systems 13

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

From DSM to Column-stores

70s -1985:

1985: DSM paper

1990s: Commercialization through SybaseIQ
Late 90s – 2000s: Focus on main-memory performance

l DSM “on steroids” [1997 – now]
l Hybrid DSM/NSM [2001 – 2004]

2005 – : Re-birth of read-optimized DSM as “column-store”

VLDB 2009 Tutorial Column-Oriented Database Systems 13

“A decomposition storage model”
Copeland and Khoshafian. SIGMOD 1985.

CWI: MonetDB

Wisconsin: PAX, Fractured Mirrors

Michigan: Data Morphing CMU: Clotho

MIT: C-Store CWI: MonetDB/X100 10+ startups

TOD: Time Oriented Database – Wiederhold et al.
"A Modular, Self-Describing Clinical Databank
System," Computers and Biomedical Research, 1975
More 1970s: Transposed files, Lorie, Batory,
Svensson.
“An overview of cantor: a new system for data analysis”
Karasalo, Svensson, SSDBM 1983

VLDB 2009 Tutorial Column-Oriented Database Systems 14

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

The original DSM paper

l Proposed as an alternative to NSM
l 2 indexes: clustered on ID, non-clustered on value
l Speeds up queries projecting few columns
l Requires more storage

VLDB 2009 Tutorial Column-Oriented Database Systems 14

“A decomposition storage
model” Copeland and
Khoshafian. SIGMOD 1985.

1 2 3 4 ..
ID

value
0100 0962 1000 ..

VLDB 2009 Tutorial Column-Oriented Database Systems 15

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Memory wall and PAX

l 90s: Cache-conscious research

l PAX: Partition Attributes Across
l Retains NSM I/O pattern
l Optimizes cache-to-RAM communication

VLDB 2009 Tutorial Column-Oriented Database Systems 15

“DBMSs on a modern processor:
Where does time go?” Ailamaki,
DeWitt, Hill, Wood. VLDB 1999.

“Weaving Relations for Cache Performance.”
Ailamaki, DeWitt, Hill, Skounakis, VLDB 2001.

“Cache Conscious Algorithms for
Relational Query Processing.”
Shatdal, Kant, Naughton. VLDB 1994.

from:

“Database Architecture Optimized for
the New Bottleneck: Memory Access.”
Boncz, Manegold, Kersten. VLDB 1999.

to:
and:

VLDB 2009 Tutorial Column-Oriented Database Systems 16

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

More hybrid NSM/DSM schemes

l Dynamic PAX: Data Morphing

l Clotho: custom layout using scatter-gather I/O

l Fractured mirrors
l Smart mirroring with both NSM/DSM copies

VLDB 2009 Tutorial Column-Oriented Database Systems 16

“Data morphing: an adaptive, cache-conscious
storage technique.” Hankins, Patel, VLDB 2003.

“Clotho: Decoupling Memory Page Layout from Storage Organization.”
Shao, Schindler, Schlosser, Ailamaki, and Ganger. VLDB 2004.

“A Case For Fractured
Mirrors.” Ramamurthy,
DeWitt, Su, VLDB 2002.

VLDB 2009 Tutorial Column-Oriented Database Systems 17

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

MonetDB (more in Part 3)

l Late 1990s, CWI: Boncz, Manegold, and Kersten
l Motivation:

l Main-memory
l Improve computational efficiency by avoiding expression

interpreter
l DSM with virtual IDs natural choice
l Developed new query execution algebra

l Initial contributions:
l Pointed out memory-wall in DBMSs
l Cache-conscious projections and joins
l …

VLDB 2009 Tutorial Column-Oriented Database Systems 17

VLDB 2009 Tutorial Column-Oriented Database Systems 18

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

2005: the (re)birth of column-stores

l New hardware and application realities
l Faster CPUs, larger memories, disk bandwidth limit
l Multi-terabyte Data Warehouses

l New approach: combine several techniques
l Read-optimized, fast multi-column access,

disk/CPU efficiency, light-weight compression

l C-store paper:
l First comprehensive design description of a column-store

l MonetDB/X100
l “proper” disk-based column store

l Explosion of new products
VLDB 2009 Tutorial Column-Oriented Database Systems 18

VLDB 2009 Tutorial Column-Oriented Database Systems 19

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Performance tradeoffs: columns vs. rows
DSM traditionally was not favored by technology trends
How has this changed?

l Optimized DSM in “Fractured Mirrors,” 2002
l “Apples-to-apples” comparison

l Follow-up study

l Main-memory DSM vs. NSM

l Flash-disks: a come-back for PAX?

VLDB 2009 Tutorial Column-Oriented Database Systems 19

“Performance Tradeoffs in Read-
Optimized Databases”
Harizopoulos, Liang, Abadi,
Madden, VLDB’06

“Read-Optimized Databases, In-
Depth” Holloway, DeWitt, VLDB’08

“Query Processing Techniques
for Solid State Drives”
Tsirogiannis, Harizopoulos,
Shah, Wiener, Graefe,
SIGMOD’09

“Fast Scans and Joins Using Flash
Drives” Shah, Harizopoulos,
Wiener, Graefe. DaMoN’08

“ DSM vs. NSM: CPU performance tradeoffs in block-oriented
query processing” Boncz, Zukowski, Nes, DaMoN’08

VLDB 2009 Tutorial Column-Oriented Database Systems 20

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Fractured mirrors: a closer look

l Store DSM relations inside a B-tree
l Leaf nodes contain values
l Eliminate IDs, amortize header overhead
l Custom implementation on Shore

VLDB 2009 Tutorial Column-Oriented Database Systems 20

3

sparse
B-tree on ID

1 a1

“Efficient columnar
storage in B-trees” Graefe.
Sigmod Record 03/2007.

Similar: storage density
comparable
to column stores

“A Case For Fractured
Mirrors” Ramamurthy,
DeWitt, Su, VLDB 2002.

11

22

33

TIDTID

a1a1

a2a2

a3a3

Column
Data

Column
Data

Tuple
Header
Tuple

Header

44 a4a4

55 a5a5

2 a2 3 a3 4 a4 5 a5

1 a1 a3a2 4 a4 a5

VLDB 2009 Tutorial Column-Oriented Database Systems 21

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Fractured mirrors: performance

l Chunk-based tuple merging
l Read in segments of M pages
l Merge segments in memory
l Becomes CPU-bound after 5 pages

VLDB 2009 Tutorial Column-Oriented Database Systems 21

From PAX paper:

optimized
DSM

columns projected:
1 2 3 4 5

time
row

column?

column?

regular DSM

VLDB 2009 Tutorial Column-Oriented Database Systems 22

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Column-scanner
implementation

VLDB 2009 Tutorial Column-Oriented Database Systems 22

1 Joe 45
2 Sue 37
… … …

Joe
Sue

45
37
…

…
prefetch ~100ms

worth of data

S
apply
predicate(s)

Joe 45
… …

S

#POS 45
#POS …

S

Joe 45
… …

apply
predicate #1

SELECT name, age
WHERE age > 40

Direct I/O

row scanner column scanner

“Performance Tradeoffs in Read-
Optimized Databases”
Harizopoulos, Liang, Abadi,
Madden, VLDB’06

VLDB 2009 Tutorial Column-Oriented Database Systems 23

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Scan performance

l Large prefetch hides disk seeks in columns
l Column-CPU efficiency with lower selectivity
l Row-CPU suffers from memory stalls
l Memory stalls disappear in narrow tuples
l Compression: similar to narrow

VLDB 2009 Tutorial Column-Oriented Database Systems 23

not shown,
details in the paper

VLDB 2009 Tutorial Column-Oriented Database Systems 24

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Even more results

Non-selective queries, narrow tuples, favor well-compressed rows
Materialized views are a win
Scan times determine early materialized joins

VLDB 2009 Tutorial Column-Oriented Database Systems 24

“Read-Optimized Databases, In-
Depth” Holloway, DeWitt, VLDB’08

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10
T
im

e
 (
s
)

Columns Returned

C-25%

C-10%

R-50%

Column-joins are
covered in part 2!

• Same engine as before
• Additional findings

wide attributes:
same as before

narrow & compressed tuple:
CPU-bound!

VLDB 2009 Tutorial Column-Oriented Database Systems 25

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Speedup of columns over rows

l Rows favored by narrow tuples and low cpdb
l Disk-bound workloads have higher cpdb

VLDB 2009 Tutorial Column-Oriented Database Systems 25

tuple width

cy
cl

es
 p

er
 d

is
k

by
te

(cpdb)

8 12 16 20 24 28 32 36
9

18

36

72

144

_ + ++=

+++

“Performance Tradeoffs in Read-
Optimized Databases”
Harizopoulos, Liang, Abadi,
Madden, VLDB’06

VLDB 2009 Tutorial Column-Oriented Database Systems 26

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Varying prefetch size

l No prefetching hurts columns in single scans

VLDB 2009 Tutorial Column-Oriented Database Systems 26

0

10

20

30

40

4 8 12 16 20 24 28 32

tim
e

(s
ec

)

selected bytes per tuple

Row (any prefetch size)

Column 48 (x 128KB)
Column 16

Column 8

Column 2

no competing
disk traffic

VLDB 2009 Tutorial Column-Oriented Database Systems 27

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Varying prefetch size

l No prefetching hurts columns in single scans
l Under competing traffic, columns outperform rows for

any prefetch size
VLDB 2009 Tutorial Column-Oriented Database Systems 27

with competing disk traffic

0

10

20

30

40

4 12 20 28

Column, 48
Row, 48

0

10

20

30

40

4 12 20 28

Column, 8
Row, 8

selected bytes per tuple

tim
e

(s
ec

)

VLDB 2009 Tutorial Column-Oriented Database Systems 28

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

CPU Performance

l Benefit in on-the-fly conversion between NSM and DSM
l DSM: sequential access (block fits in L2), random in L1
l NSM: random access, SIMD for grouped Aggregation

VLDB 2009 Tutorial Column-Oriented Database Systems 28

“ DSM vs. NSM: CPU performance trade
offs in block-oriented query processing”
Boncz, Zukowski, Nes, DaMoN’08

VLDB 2009 Tutorial Column-Oriented Database Systems 29

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

VLDB 2009 Tutorial Column-Oriented Database Systems 29

New storage technology: Flash SSDs
l Performance characteristics

l very fast random reads, slow random writes
l fast sequential reads and writes

l Price per bit (capacity follows)
l cheaper than RAM, order of magnitude more expensive than Disk

l Flash Translation Layer introduces unpredictability
l avoid random writes!

l Form factors not ideal yet
l SSD (Ł small reads still suffer from SATA overhead/OS limitations)
l PCI card (Ł high price, limited expandability)

l Boost Sequential I/O in a simple package
l Flash RAID: very tight bandwidth/cm3 packing (4GB/sec inside the box)

l Column Store Updates
l useful for delta structures and logs

l Random I/O on flash fixes unclustered index access
l still suboptimal if I/O block size > record size
l therefore column stores profit mush less than horizontal stores

l Random I/O useful to exploit secondary, tertiary table orderings
l the larger the data, the deeper clustering one can exploit

VLDB 2009 Tutorial Column-Oriented Database Systems 30

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Even faster column scans on flash SSDs

l New-generation SSDs
l Very fast random reads, slower random writes
l Fast sequential RW, comparable to HDD arrays

l No expensive seeks across columns
l FlashScan and Flashjoin: PAX on SSDs, inside Postgres

VLDB 2009 Tutorial Column-Oriented Database Systems 30

“Query Processing Techniques for
Solid State Drives” Tsirogiannis,
Harizopoulos, Shah, Wiener, Graefe,
SIGMOD’09

mini-pages with no
qualified attributes are
not accessed

30K Read IOps, 3K Write Iops
250MB/s Read BW, 200MB/s Write

VLDB 2009 Tutorial Column-Oriented Database Systems 31

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Column-scan performance over time

VLDB 2009 Tutorial Column-Oriented Database Systems 31

from 7x slower

..to 1.2x slower

..to same

and 3x faster!

regular DSM (2001)

optimized DSM (2002)

column-store (2006)

SSD Postgres/PAX (2009)

..to 2x slower

VLDB 2009 Tutorial Column-Oriented Database Systems 32

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Outline

l Part 1: Basic concepts — Stavros
l Introduction to key features
l From DSM to column-stores and performance tradeoffs
l Column-store architecture overview
l Will rows and columns ever converge?

l Part 2: Column-oriented execution — Daniel

l Part 3: MonetDB/X100 and CPU efficiency — Peter

VLDB 2009 Tutorial Column-Oriented Database Systems 32

VLDB 2009 Tutorial Column-Oriented Database Systems 33

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Architecture of a column-store
storage layout

l read-optimized: dense-packed, compressed
l organize in extends, batch updates
l multiple sort orders
l sparse indexes

VLDB 2009 Tutorial Column-Oriented Database Systems 33

engine
l block-tuple operators
l new access methods
l optimized relational operatorssystem-level

l system-wide column support
l loading / updates
l scaling through multiple nodes
l transactions / redundancy

VLDB 2009 Tutorial Column-Oriented Database Systems 34

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

C-Store

l Compress columns
l No alignment
l Big disk blocks
l Only materialized views (perhaps many)
l Focus on Sorting not indexing
l Data ordered on anything, not just time
l Automatic physical DBMS design
l Optimize for grid computing
l Innovative redundancy
l Xacts – but no need for Mohan
l Column optimizer and executor

VLDB 2009 Tutorial Column-Oriented Database Systems 34

“C-Store: A Column-Oriented
DBMS.” Stonebraker et al.
VLDB 2005.

VLDB 2009 Tutorial Column-Oriented Database Systems 35

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

C-Store: only materialized views (MVs)

l Projection (MV) is some number of columns from a fact table
l Plus columns in a dimension table – with a 1-n join between

Fact and Dimension table
l Stored in order of a storage key(s)
l Several may be stored!
l With a permutation, if necessary, to map between them
l Table (as the user specified it and sees it) is not stored!
l No secondary indexes (they are a one column sorted MV plus

a permutation, if you really want one)

VLDB 2009 Tutorial Column-Oriented Database Systems 35

User view :
EMP (name, age, salary, dept)
Dept (dname, floor)

Possible set of MVs :
MV-1 (name, dept, floor) in floor order
MV-2 (salary, age) in age order
MV-3 (dname, salary, name) in salary order

VLDB 2009 Tutorial Column-Oriented Database Systems 36

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Asynchronous
Data Transfer

TUPLE MOVER

> Read Optimized
Store (ROS)

• On disk
• Sorted / Compressed
• Segmented
• Large data loaded direct

Continuous Load and Query (Vertica)

Hybrid Storage Architecture

(A B C | A)

A B C

Trickle
Load

> Write Optimized
Store (WOS)

§Memory based

§Unsorted / Uncompressed

§Segmented

§Low latency / Small quick
inserts

A B C

VLDB 2009 Tutorial Column-Oriented Database Systems 36

VLDB 2009 Tutorial Column-Oriented Database Systems 37

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Loading Data (Vertica)

Write-Optimized
Store (WOS)
In-memory

Read-Optimized
Store (ROS)

On-disk

Automatic
Tuple Mover

> INSERT, UPDATE, DELETE

> Bulk and Trickle Loads

§COPY

§COPY DIRECT

> User loads data into logical Tables

> Vertica loads atomically into
storage

VLDB 2009 Tutorial Column-Oriented Database Systems 38

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Applications for column-stores
l Data Warehousing

l High end (clustering)
l Mid end/Mass Market
l Personal Analytics

l Data Mining
l E.g. Proximity

l Google BigTable
l RDF

l Semantic web data management
l Information retrieval

l Terabyte TREC

l Scientific datasets
l SciDB initiative
l SLOAN Digital Sky Survey on MonetDB

VLDB 2009 Tutorial Column-Oriented Database Systems 38

VLDB 2009 Tutorial Column-Oriented Database Systems 39

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

List of column-store systems

l Cantor (history)
l Sybase IQ
l SenSage (former Addamark Technologies)
l Kdb
l 1010data
l MonetDB
l C-Store/Vertica
l X100/VectorWise
l KickFire
l SAP Business Accelerator
l Infobright
l ParAccel
l Exasol

VLDB 2009 Tutorial Column-Oriented Database Systems 39

VLDB 2009 Tutorial Column-Oriented Database Systems 40

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Outline

l Part 1: Basic concepts — Stavros
l Introduction to key features
l From DSM to column-stores and performance tradeoffs
l Column-store architecture overview
l Will rows and columns ever converge?

l Part 2: Column-oriented execution — Daniel

l Part 3: MonetDB/X100 and CPU efficiency — Peter

VLDB 2009 Tutorial Column-Oriented Database Systems 40

VLDB 2009 Tutorial Column-Oriented Database Systems 41

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

VLDB 2009 Tutorial Column-Oriented Database Systems 41

Simulate a Column-Store inside a Row-Store

Date Store Product Customer Price

01/01

01/01

01/01

1

2

3

1

2

3

1

2

3

Option A:
Vertical Partitioning

…

Option B:
Index Every Column

Date Index

Store Index

1

2

3

1

2

3

01/01

01/01

01/01

BOS

NYC

BOS

Table

Chair

Bed

Mesa

Lutz

Mudd

$20

$13

$79

BOS

NYC

BOS

Table

Chair

Bed

Mesa

Lutz

Mudd

$20

$13

$79

TID Value

Store
TID Value

Product
TID Value

Customer
TID Value

Price
TID Value

Date

VLDB 2009 Tutorial Column-Oriented Database Systems 42

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

VLDB 2009 Tutorial Column-Oriented Database Systems 42

Simulate a Column-Store inside a Row-Store

Date Store Product Customer Price

1

2

3

1

2

3

Option A:
Vertical Partitioning

…

Option B:
Index Every Column

Date Index

Store Index

1

2

3

1

2

3

01/01

01/01

01/01

BOS

NYC

BOS

Table

Chair

Bed

Mesa

Lutz

Mudd

$20

$13

$79

BOS

NYC

BOS

Table

Chair

Bed

Mesa

Lutz

Mudd

$20

$13

$79

TID Value

Store
TID Value

Product
TID Value

Customer
TID Value

Price

01/01 1 3

StartPosValue

Date
Length

Can explicitly run-
length encode date

“Teaching an Old Elephant New Tricks.”
Bruno, CIDR 2009.

VLDB 2009 Tutorial Column-Oriented Database Systems 43

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

VLDB 2009 Tutorial Column-Oriented Database Systems 43

Experiments

0.0

50.0

100.0

150.0

200.0

250.0

T
im
e
 (
se
c
o
n
d
s)

Average 25.7 79.9 221.2

Normal Row-Store
Vertically Partitioned

Row-Store

Row-Store With All

Indexes

“Column-Stores vs Row-Stores:
How Different are They Really?”
Abadi, Hachem, and Madden.
SIGMOD 2008.

l Star Schema Benchmark (SSBM)

l Implemented by professional DBA
l Original row-store plus 2 column-store

simulations on same row-store product

Adjoined Dimension Column Index (ADC Index)
to Improve Star Schema Query Performance”.
O’Neil et. al. ICDE 2008.

VLDB 2009 Tutorial Column-Oriented Database Systems 44

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

What’s Going On? Vertical Partitions

l Vertical partitions in row-stores:
l Work well when workload is known
l ..and queries access disjoint sets of columns
l See automated physical design

l Do not work well as full-columns
l TupleID overhead significant
l Excessive joins

VLDB 2009 Tutorial Column-Oriented Database Systems 44

“Column-Stores vs. Row-Stores:
How Different Are They Really?”
Abadi, Madden, and Hachem.
SIGMOD 2008.

Queries touch 3-4 foreign keys in fact table,
1-2 numeric columns

Complete fact table takes up ~4 GB
(compressed)

Vertically partitioned tables take up 0.7-1.1
GB (compressed)

11

22

33

TID Column
Data

Tuple
Header

VLDB 2009 Tutorial Column-Oriented Database Systems 45

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

VLDB 2009 Tutorial Column-Oriented Database Systems 45

What’s Going On? All Indexes Case

l Tuple construction
l Common type of query:

l Result of lower part of query plan is a set of TIDs that passed
all predicates

l Need to extract SELECT attributes at these TIDs
l BUT: index maps value to TID
l You really want to map TID to value (i.e., a vertical partition)

à Tuple construction is SLOW

SELECT store_name, SUM(revenue)
FROM Facts, Stores
WHERE fact.store_id = stores.store_id

AND stores.country = “Canada”
GROUP BY store_name

VLDB 2009 Tutorial Column-Oriented Database Systems 46

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

VLDB 2009 Tutorial Column-Oriented Database Systems 46

So….

l All indexes approach is a poor way to simulate a column-store
l Problems with vertical partitioning are NOT fundamental

l Store tuple header in a separate partition
l Allow virtual TIDs
l Combine clustered indexes, vertical partitioning

l So can row-stores simulate column-stores?
l Might be possible, BUT:

l Need better support for vertical partitioning at the storage layer
l Need support for column-specific optimizations at the executer level
l Full integration: buffer pool, transaction manager, ..

l When will this happen?
l Most promising features = soon

l ..unless new technology / new objectives change the game
(SSDs, Massively Parallel Platforms, Energy-efficiency)

See Part 2, Part 3
for most promising

features

VLDB 2009 Tutorial Column-Oriented Database Systems 47

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

End of Part 1

l Basic concepts — Stavros
l Introduction to key features
l From DSM to column-stores and performance tradeoffs
l Column-store architecture overview
l Will rows and columns ever converge?

l Part 2: Column-oriented execution — Daniel

l Part 3: MonetDB/X100 and CPU efficiency — Peter

VLDB 2009 Tutorial Column-Oriented Database Systems 47

green
Line

green
Line

