ORCHESTRA: Facilitating Collaborative Data Sharing

Todd J. Green Grigoris Karvounarakis Nicholas E. Taylor

Olivier Biton

Zachary G. lves

Val Tannen

Computer and Information Science Department
University of Pennsylvania
{tjgreen,gkarvoun,netaylor,biton,zives,val}Qcis.upenn.edu

Categories and Subject Descriptors

H.2.5 [Database Management|: Heterogeneous Data-
bases; H.3.4 [Information Storage and Retrievall:
Systems and Software—Distributed systems; H.3.5
[Information Storage and Retrieval]: Online In-
formation Services—Data sharing

General Terms

Management, Design, Experimentation

Keywords

Data exchange, data integration, data sharing, reconcilia-
tion, schema mappings

1. INTRODUCTION

One of the most elusive goals of structured data manage-
ment has been sharing among large, heterogeneous popula-
tions: while data integration [4, 10] and exchange [3] are
gradually being adopted by corporations or small confeder-
ations, little progress has been made in integrating broader
communities. Yet the need for large-scale sharing of heter-
ogeneous data is increasing: most of the sciences, partic-
ularly biology and astronomy, have become data-driven as
they have attempted to tackle larger questions. The field of
bioinformatics, in particular, has seen a plethora of different
databases emerge: each is focused on a related but sub-
tly different collection of organisms (e.g., CryptoDB, TIGR,
FlyNome), genes (GenBank, GeneDB), proteins (UniProt,
RCSB Protein Databank), diseases (OMIM, GeneDis), and
so on. Such communities have a pressing need to interlink
their heterogeneous databases in order to facilitate scientific
discovery.

Schemes for data sharing at scale have generally failed
in the past because database approaches tend to impose
strict global constraints: a single global schema, a (per-
haps virtual) globally consistent data instance, and cen-
tral administration. Each of these requirements is a barrier
to participation: global schema design across a community
is arduous and often requires many revisions; global con-
sistency restricts a participant from disagreeing with oth-
ers (if enforced), or may result in inconsistent answers (if
unenforced); central administration impedes responsiveness
to evolving requirements. Even the new approach of peer
data management [9, 7], which supports multiple mediated
schemas and thus distributes some aspects of administration
and eliminates the need for global schema design, still limits
Copyright is held by the author/owner(s).

SIGMOD’07, June 11-14, 2007, Beijing, China.
ACM 978-1-59593-686-8/07/0006.

local autonomy because of strong data consistency require-
ments. To sidestep these limitations, data providers typi-
cally resort to custom, ad hoc tools: scientific data sharing
often consists of large databases placed on FTP sites, which
users download and convert into their local format using
custom Perl scripts. Meanwhile the original data sources
continue to be edited. In some cases the data providers
publish weekly or monthly lists of updates to help others
keep in sync; however, few sites, except direct replicas, ac-
tually exploit these update lists — instead, different copies
of the data are simply allowed to diverge.

Our research goal is to provide a more principled and
general-purpose infrastructure for data sharing with signif-
icant gains in terms of freshness, flexibility, functionality,
and extensibility. Largely guided by the needs of biolo-
gists and other scientific users, but with a goal of addressing
large-scale data sharing in the broader context, we define a
model for a declarative, yet extremely flexible, approach to
data sharing, called the collaborative data sharing system,
or CDSS.

2. COLLABORATIVE DATA SHARING

The CDSS model dramatically reduces the barriers to
sharing by allowing loosely coupled confederations of sites,
each of which maintains a local schema and a fully au-
tonomous, editable local data instance. Sites exchange data
on an as-desired basis: the CDSS uses declarative schema
mappings that specify a local database’s relationship to other
sites, as well as policies about what data the site trusts
(based on its origins and value). The CDSS arbitrates con-
flicts in a custom way for each participant, based on whom
and what it trusts: this allows for “selective disagreement”
and is thus significantly different from prior work with shar-
ing in mind, such as distributed data integration/exchange
and groupware, in that it allows the end user complete con-
trol over the contents of the local data instance.

The different goals of the CDSS model affect even its ba-
sic unit of information transfer. A database is often the
storage system for information about high-level real-world
entities (such as genes, customers or quasars); a single en-
tity may in turn be represented logically as a collection of a
number of tuples in different relations. Transactional atom-
icity guarantees that the information about a particular real-
world entity is internally consistent by ensuring that a set
of updates are applied together (or else none are applied).
To enforce transactional atomicity between different partic-
ipants, the CDSS considers transactions as the basic unit
of operation, and it propagates, translates, and considers

Translated Updates

to Consider , Distributed Update Database— <

Reconciliation
Engine

\
|
|
|
|
Participant Participant |
Participant :
|
Accepted | :
Updates ! |
Updates to | |
Publish :l‘ = =] |
\ Participant Participant |

7

Figure 1: An overview of the architecture of a CDSS. Here the
published transactions are stored in a peer-to-peer distributed
database, though one can also use other methods to store the
published updates.

conflicts among such units. This is in constrast to previous
models of data integration and data exchange which ignore
transactions. Furthermore, we observe that data dependen-
cies between operations in different transactions (e.g., one
transaction modifies a tuple inserted by another antecedent
transaction) induce a dependency graph on the transactions
themselves that must be respected when considering which
transactions to accept or reject.

The CDSS consists of a network of collaborators (par-
ticipants or peers at independent sites), each of which has
a local database instance and may be intermittently con-
nected. Each site spends the majority of its time operating
in a locally autonomous mode, with users posing queries and
making modifications directly over a local database instance.
Upon an administrator’s request, the CDSS performs an up-
date exchange; this allows data to flow between participants
in the system.

The two basic operations of update exchange are publi-
cation and reconciliation. When a participant publishes its
new transactions, the CDSS archives them (which is needed
in case participants are only intermittently connected) and
makes them available to the other participants in the sys-
tem. When a peer reconciles, the CDSS translates newly
published transactions into that peer’s schema, and then
chooses a consistent subset of the translated candidate trans-
actions to apply to its local instance, based on a set of user
preferences. Figure 1 shows how these steps fit into the ar-
chitecture of a CDSS. We describe our implementation of
these steps for the Orchestra CDSS in section 3.

Each update exchange operation advances a logical clock:
the overall state of data in the system has changed, and any
future updates should be causally related to the previously
accepted ones. The result of the publish-translate-reconcile
sequence is a new data instance for the requesting peer. In
effect, a public snapshot of this instance, is made visible to
all other participants, while the local version can continue
to be edited in a way that is only visible to the users at that
site.

We observe that three aspects of the CDSS model distin-
guish it from past work. First, any participant may make
updates, including deletions, and this changes how data
must be mapped and propagated in a peer-to-peer environ-
ment. Second, each participant can ignore or even override
updates it gets from elsewhere, using its own local updates.
Finally, the CDSS must translate tuple-level updates while
(1) keeping track of their associated transactions, for pur-
poses of conflict detection and resolution, and (2) tracing
their provenance, for purposes of trust assignment.

3. THE ORCHESTRA CDSS

The Orchestra CDSS [8, 11, 5] has been in development
at the University of Pennsylvania for more than two years.
It supports all of the features of the CDSS model described
in section 2, and has been tested extensively on small- to
medium-sized networks with update-heavy workloads. In
this section we discuss the two key challenges in implement-
ing a CDSS, translation of updates and efficient reconcilia-
tion.

Since the CDSS model relies on propagation of updates
rather than data through the system, there must be a me-
thod to translate updates over one schema to updates over
a different schema. Rules for translating updates (and de-
termining the transactions to which they belong) can be
derived from the mappings between the different schemas,
though they can become somewhat complicated if the map-
pings involve multiple joins. The rules must also maintain
enough provenance or lineage [1, 2, 12] information that (1)
reconciliation can choose between transactions based on user
preferences, and (2) efficient incremental recomputation of
the target data instance and provenance is possible. Our
work in [5, 6] has developed a new formulation of prove-
nance to meet these needs and efficient algorithms to main-
tain incrementally both this provenance information and the
underlying data.

The result of update translation is a set of candidate trans-
actions that (1) may be mutually incompatible, (2) may
not be applicable to the local database instance due to re-
jected or missing antecedent transactions, or (3) may not be
trusted by the local site. The reconciliation algorithm of [11]
combines candidate transactions with the antecedents trans-
actions needed to apply them, in order to produce applicable
transaction groups. If it finds that the candidate transac-
tion depends on an antecedent transaction that has already
been rejected, that candidate transaction must be rejected
as well. Otherwise, it uses user preferences, encoded as trust
conditions to associate numerical priorities with applicable
transaction groups. These trust conditions are based on
predicates over the contents and provenance of updates: in
many cases, a site will assign a value judgment to a modi-
fication based on where it originated or how it was assem-
bled. Based on these priorities, it uses a greedy algorithm to
choose the highest-priority mutually consistent set of trans-
actions to apply; if several inconsistent transactions of the
same priority conflict, they must be deferred until a decision
about them is reached by the site administrator. Transac-
tions that modify data from previously deferred transactions
must also be deferred. At any later point in time, the site
administrator can manually resolve the conflict between de-
ferred transactions by choosing which one to apply. After
this is done, all deferred transactions that transitively de-
pend on the chosen transaction are applied, and all those
that depend on the rejected one are themselves rejected.

4. DEMONSTRATION

In the demonstration, we will show each step of the collab-
orative data sharing process using a bioinformatics schema
that has been simplified to highlight key aspects of our sys-
tem. Figure 2 shows the CDSS we will use. In this CDSS,
four participants (the Universities of Alaska, Beijing, Crete,
and Dresden) share information about reference sequences
for various proteins in several organisms. Alaska and Bei-

Participant A M Participant C

D A T ———— A
L L 20 |
w1 | orsc |

\ J Meon \ i),
DMC“’D

f \ f é"z'z'""""""i \
i OPSp i

§ y, \),
Participant B Participant D

Figure 2: A CDSS for four bioinformatics sources. Participants
A and B share a common schema, as do participants C and D,
so mappings Ma.,p and Mo, p are identity mappings. The
mapping M4_,c translates the three tables of schema ¥; into
the single table of Y2, and Mc_, 4 does the inverse.

jing assign a unique ID to each organism and protein and use
those to give the reference sequences, giving a schema X, =
{O(org, 0id), P(prot, pid), S(oid, pid, seq)}, while Crete and
Dresden do not assign IDs, giving a second schema Yy =
{OPS(org,prot,seq)}. Mappings Ma.p and Mc..p are
identity mappings. Ma_.c joins the three tables of ¥; into
the single table of Y2, while Mc_, 4 does the inverse and
splits the single table of 32 into the three tables of ;.
Alaska, Beijing and Dresden each trust all other partici-
pants equally, but Crete trusts only Beijing and Dresden
(but prefers Beijing to Dresden in the event of a conflict).

Using a Java-based GUI (shown in Figure 3), we will show
the current state of each peer, the mappings between peers,
and the updates (original and translated) that are applied
while reconciling. The user will be able to perform updates
to the local instance at each peer, to reconcile, and to re-
solve conflicts manually. The demonstration will show the
following cases:

e Updates made by Alaska get translated into Dresden’s
schema and applied, and vice versa.

e Beijing and Dresden publish conflicting updates, and
Crete therefore rejects Dresden’s. Dresden then pub-
lishes more updates which depend on its earlier ones,
which Crete must also reject.

e Alaska publishes an insertion of several data points in
the same transaction. Beijing publishes a modification
of one of them. Crete then reconciles, and ends up
accepting both the transaction from Beijing and the
antecedent from Alaska, even though Crete does not
trust Alaska.

e Beijing and Alaska publish conflicting updates. Dres-
den reconciles and defers both of them, since user inter-
vention is needed to determine which to accept. Crete
reconciles and publishes a modification of Beijing’s up-
date. Dresden reconciles again and defers Crete’s up-
date. Dresden then resolves the conflict in favor of
Dresden, and accepts Crete’s transaction automati-
cally.

e Beijing publishes a number of updates and then goes
offline. Alaska can reconcile and still retrieve Beijing’s
updates from the CDSS.

These scenarios will allow the user to see the Orchestra sys-
tem in action, and to understand how it solves some of

]
i - [O]X]

Fle Repository Windows Reconciiation
Orchestra peers network
Graph tools

-

Peer properties
Peer infos
Id: Alaska
Alaska peer

Schema infos

1d: Proteins

3 relations

kssigns a unigue ID to each orga
nism and protein and uses those
to give the reference sequences

Figure 3: The mapping viewer of the Java-based GUI.

the many interesting problems that can arise in the CDSS
model. We will also discuss how Orchestra is being used as
the core engine in the development of global-scale bioinfor-
matics data sharing systems such as SHARQ' and pPOD?.

S. ACKNOWLEDGMENTS

This work has been funded in part by NSF grants IIS-
0477972, 0513778, and 0415810, and DARPA grant HR0011-
06-1-0016. The authors would like to thank Sarah Cohen-
Boulakia and the members of the SHARQ project for as-
sistance with the biological datasets, and the members of
the Penn Database Group and the anonymous reviewers for
their feedback and suggestions.

6. REFERENCES

[1] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A
characterization of data provenance. In ICDT, volume 1973 of
Lecture Notes in Computer Science, 2001.

[2] Y. Cui. Lineage Tracing in Data Warehouses. PhD thesis,
Stanford University, 2001.

[3] R. Fagin, P. Kolaitis, R. J. Miller, , and L. Popa. Data
exchange: Semantics and query answering. Theoretical
Computer Science, 336, 2005.

[4] H. Garcia-Molina, Y. Papakonstantinou, D. Quass,

A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom. The
TSIMMIS project: Integration of heterogeneous information
sources. Journal of Intelligent Information Systems, 8(2),
March 1997.

[5] T.J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen.
Update exchange with mappings and provenance. Submitted
for publication, 2007.

[6] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In PODS, 2007.

[7] A.Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema
mediation in peer data management systems. In JCDE, March
2003.

[8] Z. Ives, N. Khandelwal, A. Kapur, and M. Cakir. ORCHESTRA:
Rapid, collaborative sharing of dynamic data. In CIDR,
January 2005.

[9] A. Kementsietsidis, M. Arenas, and R. J. Miller. Mapping data
in peer-to-peer systems: Semantics and algorithmic issues. In
SIGMOD, June 2003.

[10] A.Y. Levy, A. Rajaraman, and J. J. Ordille. Querying
heterogeneous information sources using source descriptions. In
VLDB, 1996.

[11] N. E. Taylor and Z. G. Ives. Reconciling while tolerating
disagreement in collaborative data sharing. In SIGMOD, 2006.

[12] J. Widom. Trio: A system for integrated management of data,
accuracy, and lineage. In CIDR, 2005.

http://db.cis.upenn.edu/research/SHARQ. html
“http://phylodata.org

