0.1 Introduction

This chapter develops a number of classical comparison-based matching al-
gorithms for the exact matching problem. With suitable extensions, all of
these algorithms can be implemented to run in linear worst case time, and
all achieve this performance by preprocessing pattern P. (Methods that
preprocess T will be considered in Part II of the book.) The original prepro-
cessing methods for these various algorithms are related in spirit, but quite
different in conceptual difficulty. Some of the original preprocessing methods
are quite difficult!. This chapter does not follow the original preprocessing
methods but instead exploits fundamental preprocessing, developed in the
previous chapter, to implement the needed preprocessing for each specific
matching algorithm.

Also, in contrast to previous expositions, we emphasize the Boyer-Moore
method over the Knuth-Morris-Pratt method, since Boyer-Moore is the prac-
tical method of choice for exact matching. Knuth-Morris-Pratt is nonethe-
less completely developed, partly for historical reasons but mostly because
it generalizes to problems such as real-time string matching and matching
against a set of patterns more easily than Boyer-Moore does. These two
topics will be described in this chapter and the next.

0.2 The Boyer-Moore Algorithm

As in the naive algorithm, the Boyer-Moore algorithm successively aligns P
with 7" and then checks whether P matches the opposing characters of T'.
Further, after the check is complete, P is shifted right relative to T just as
in the naive algorithm. However, the Boyer-Moore algorithm contains three
clever ideas not contained in the naive algorithm — the right to left scan, the
bad character shift rule and the good suffix shift rule. Together, these ideas
lead to a method that typically examines fewer than m + n characters (an
expected sublinear-time method), and that (with a certain extension) runs
in linear worst case time. Our discussion of the Boyer-Moore algorithm, and
extensions of it, concentrates on provable aspects of its behavior. Extensive
experimental and practical studies of Boyer-Moore and variants have been
reported in [?, 7, 7, 7, 7].

1Sedgewick [?] writes “Both the Knuth-Morris-Pratt and the Boyer-Moore algorithms
require some complicated preprocessing on the pattern that is difficult to understand and
has limited the extent to which they are used”. In agreement with Sedgewick, I still do
not understand the original Boyer-Moore preprocessing method for the strong good suffix
rule.

0.2.1 Right to left scan

For any alignment of P with T" the Boyer-Moore algorithm checks for an
occurrence of P by scanning characters from right to left rather than from
left to right as in the naive algorithm. For example consider the alignment
of P against T' shown below.

1 2

12345678901234567
T: xpbctbxabpgxctbpq
P: tpabxab

To check whether P occurs in 1" at this position, the Boyer-Moore algo-
rithm starts at the right end of P, first comparing 7'(9) with P(7). Finding
a match, it then compares T'(8) with P(6), etc., moving right to left until
it finds a mismatch when comparing 7'(5) with P(3). At that point P is
shifted right relative to 7' (the amount for the shift will be discussed below)
and the comparisons begin again at the right end of P.

Clearly, if P is shifted right by one place after each mismatch, or after an
occurrence of P is found, then the worst case running time of this approach
is O(nm) just as in the naive algorithm. So at this point it isn’t clear why
comparing characters from right to left is any better than checking from left
to right. But with two additional ideas (the bad character and the good suffix
rules), shifts of more than one position often occur, and in typical situations
large shifts are common. We next examine these two ideas.

0.2.2 Bad character rule

To get the idea of the bad character rule, suppose that the last (rightmost)
character of P is y and the character in T it aligns with is # y. When this
initial mismatch occurs, if we know the rightmost position in P of character
x, we can safely shift P to the right so that the rightmost = in P is below
the mismatched x in T'. Any shorter shift would only result in an immediate
mismatch. So, the longer shift is correct, i.e., it will not shift past any
occurrence of P in T'. Further, if x never occurs in P, then we can shift P
completely past the point of mismatch in 7. In these cases, some characters
of T' will never be examined and the method will actually run in “sub-linear”
time. This observation is formalized below.

Definition For each character z in the alphabet, let R(z) be the position
of rightmost occurrence of character x in P. R(x) is defined to be zero if =
does not occur in P.

It is easy to preprocess P in O(n) time to collect the R(z) values, and
we leave that as an exercise. Note that this preprocessing does not require

0.2. THE BOYER-MOORE ALGORITHM 3

the fundamental preprocessing discussed in Chapter ?? (that will be needed
for the more complex shift rule, the good suffix rule).

We use the R values in the following way, called the bad character shift
rule.

Suppose for a particular alignment of P against T, the rightmost
n —1 characters of P match their counterparts in T', but the next
character to the left, P(7), mismatches with its counterpart, say
in position k of T. The bad character rule says that P should
be shifted right by Max[1,i — R(T(k))] places. That is, if the
rightmost occurrence in P of character T'(k) is in position j <
i (including the possibility that j = 0), then shift P so that
character j of P is below character k of T. Otherwise, shift P
by one position.

The point of this shift rule is to shift P by more than one character
when possible. In the above example, T'(5) = ¢ mismatches with P(3) and
R(t) = 1 so P can be shifted right by two positions. After the shift, the
comparison of P and T begins again at the right end of P.

0.2.2.1 Extended bad character rule

The bad character rule is a useful heuristic for mismatches near the right end
of P, but it has no effect if the mismatching character from 7" occurs in P to
the right of the mismatch point. This may be common when the alphabet
is small and the text contains many similar, but not exact, substrings. That
situation is typical of DNA which has an alphabet of size four, and even
protein, which has an alphabet of size twenty, often contains different regions
of high similarity. In such cases, the following extended bad character rule is
more robust:

When a mismatch occurs at position ¢ of P and the mismatched
character in T is x, then shift P to the right so that the closest
x to the left of position ¢ in P is below the mismatched = in T'.

Since the extended rule gives larger shifts, the only reason to prefer the
simpler rule is the added implementation expense of the extended rule. The
simpler rule uses only O(|X]) space (¥ is the alphabet) for array R, and
one table lookup for each mismatch. As we will see, the extended rule can
be implemented to take only O(n) space and at most one extra step per
character comparison. That amount of added space is not often a critical
issue, but it is an empirical question whether the longer shifts make up
for the added time used by the extended rule. The original Boyer-Moore
algorithm only uses the simpler bad character rule.

0.2.2.2 Implementing the extended bad character rule

We preprocess P so that the extended bad character rule can be implemented
efficiently in both time and space. The preprocessing should discover, for
each position i in P and for each character z in the alphabet, the position of
the closest occurrence of x in P to the left of i. The obvious approach is to
use a two dimensional array of size n by || to store this information. Then,
when a mismatch occurs at position 7 of P and the mismatching character
in T is x, we look up the (i, z) entry in the array. The lookup is fast, but
the size of the array, and the time to build it, may be excessive. A better
compromise, below, is possible.

During preprocessing, scan P from right to left collecting, for each char-
acter = in the alphabet, a list of the positions where x occurs in P. Since
the scan is right to left, each list will be in decreasing order. For example, if
P = abacbabc then the list for character a is 6,3,1. These lists are accumu-
lated in O(n) time and of course take only O(n) space. During the search
stage of the Boyer-Moore algorithm if there is a mismatch at position ¢ of P
and the mismatching character in T is x, scan x’s list from the top until we
reach the first number less than ¢ or discover there is none. If there is none
then there is no occurrence of x before 7, and all of P is shifted past the x
in T. Otherwise, the found entry gives the desired position of z.

After a mismatch at position ¢ of P the time to scan the list is at most
n — ¢, which is roughly the number of characters that matched. So in worst
case, this approach at most doubles the running time of the Boyer-Moore
algorithm. However, in most problem settings the added time will be vastly
less than double. One could also do binary search on the list in circumstances
that warrant it.

0.2.3 The (strong) good suffix rule

The bad character rule by itself is reputed to be highly effective in practice,
particularly for English text [?], but it is less effective for small alphabets and
it does not lead to a linear worst-case running time. For that, we introduce
another rule called the strong good suffix rule. The original preprocessing
method [?], for the strong good suffix rule is generally considered quite dif-
ficult and somewhat mysterious (although a weaker version of it is easy to
understand). In fact, the preprocessing for the strong rule was given incor-
rectly in [?] and corrected, without much explanation in [?]. Code based on
[?] is given without real explanation in the text by Baase [?], but there are
no published sources that try to fully explain the method?. Pascal code for

2A recent plea appeared on the internet newsgroup comp.theory:

I am looking for an elegant (easily understandable) proof of correctness for
a part of the Boyer-Moore string matching algorithm. The difficult-to-prove

0.2. THE BOYER-MOORE ALGORITHM 5

strong preprocessing, based on an outline by Richard Cole[?], is shown in
Exercise 7?7 at the end of this chapter.

In contrast, the fundamental preprocessing of P discussed in Chapter 77?7
makes the needed preprocessing very simple. That is the approach we take
here. The strong good suffix rule is:

Suppose for a given alignment of P and T, a substring ¢ of T’
matches a suffix of P, but a mismatch occurs at the next compar-
ison to the left. Then find, if it exists, the rightmost copy t' of ¢
in P such that ¢’ is not a suffix of P and the character to the left
of t' in P differs from the character to the left of t in P. Shift
P to the right so that substring ¢’ in P is below substring ¢ in T'
(see Figure ?7). If ¢’ does not exist, then shift the left end of P
past the left end of ¢ in T" by the least amount so that a prefix of
the shifted pattern matches a suffix of ¢ in 7. If no such shift is
possible, then shift P n places to the right.

If an occurrence of P is found, then shift P by the least amount
so that a proper prefix of the shifted P matches a suffix of the
occurrence of P in T. If no such shift is possible, then shift P by
n places, i.e., shifting P past ¢ in 7.

Figure 1: Good suffix shift rule, where character x of T" mismatches with
character y of P. Characters y and z of P are guaranteed to be distinct by
the good suffix rule, so z has a chance of matching x.

For a specific example consider the alignment of P and T given below.

0 1
123456789012345678
T: prstabstubabvgxrst
*
P: qcabdabdab
1234567890

part here is the algorithm that computes the dd2 (good-suffix) table. I didn’t
find much of an understandable proof yet, so I'd much appreciate any help!

When the mismatch occurs at position 8 of P and position 10 of T', t = ab
and t occurs in P starting at position 3. Hence P is shifted right by siz
places resulting in the following alignment.

0 1

123456789012345678
T: prstabstubabvgxrst
P: qcabdabdab

Note that the extended bad character rule would only have shifted P by
only one place in this example.

Theorem 0.2.1 The use of the good suffix rule never shifts P past an oc-
currence in T'.

Proof Suppose the right end of P is aligned with character k of T" before
the shift, and suppose that the good suffix rule shifts P so its right end aligns
with character ¥ > k. Any occurrence of P ending at a position [strictly
between k and &’ would immediately violate the selection rule for k’, since
it would imply either that a closer copy of ¢ occurs in P, or that a longer
prefix of P matches a suffix of ¢t. O

The original published Boyer-Moore algorithm [?] uses a simpler, weaker,
version of the good suffix rule. That version just requires that the shifted
P agree with the ¢ and does not specify that the next characters to the left
of those occurrences of ¢ be different. An explicit statement of the weaker
rule can be obtained by deleting the italics phrase in the first paragraph of
the statement of the strong good suffix rule. In the previous example, the
weaker shift rule shifts P by three places rather than six. When we need to
distinguish the two rules, we will call the simpler rule the weak good suffix
rule, and the rule stated above the strong good suffix rule. For the purpose
of proving that the search part of Boyer-Moore runs in linear worst case
time, the weak rule is not sufficient, and in this book the strong version is
assumed unless stated otherwise.

0.2.4 Preprocessing for the good suffix rule
We now formalize the preprocessing needed for the Boyer-Moore algorithm.

Definition For each i, L(i) is the largest position less than n such that
string P[i..n] matches a suffix of P[1..L(7)]. L(7) is defined to be zero if
there is no position satisfying the conditions. For each i, L'(7) is the largest
position less than n such that string P[i..n] matches a suffix of P[1..L'(i)],
and such that the character preceding that suffix is not equal to P(i — 1).
L'(i) is defined to be zero if there is no position satisfying the conditions.

0.2. THE BOYER-MOORE ALGORITHM 7

For example, if P = cabdabdab, then L(8) =6 and L'(8) = 3.

L(7) gives the right end position of the rightmost copy of P[i..n| that is
not a suffix of P, whereas L'(i) gives the right end position of the rightmost
copy of P[i..n| that is not a suffix of P, with the stronger, added condition
that its preceding character is unequal to P(i — 1). So, in the strong-shift
version of the Boyer-Moore algorithm, if character i — 1 of P is involved in a
mismatch and L'(7) > 0, then P is shifted right by n — L’(i) positions. The
result is that if the right end of P was aligned with position k of T" before
the shift, then position L'(7) is now aligned with position k.

During the preprocessing stage of the Boyer-Moore algorithm L'(7) (and
L(i), if desired) will be computed for each position ¢ in P. This is done in
O(n) time via the following definition and theorem.

Definition For string P, N;(P) is the length of the longest suffiz of the
substring P[1..j] which is also a suffiz of the full string P.
For example, if P = cabdabdab, then N3(P) = 2, and Ng(P) = 5.

Recall that Z;(.5) is the length of the longest substring of S that starts at
1 and matches a prefix of S. Clearly, IV is the reverse of Z, i.e., if P" denotes
the string obtained by reversing P, then N;(P) = Z,_;1(P"). Hence the
N;(P) values can be obtained in O(n) time by using Algorithm Z on P’.
The following is then immediate.

Theorem 0.2.2 L(i) is the largest index j less than n such that Nj(P) >
|P[i..n]| (which is n — i+ 1). L'(i) is the largest index j less than n such
that N;(P) = |Pli.n]| = (n —i+1).

Given Theorem ??, it follows immediately that all the L'(i) values can be
accumulated in linear time from the N values using the following algorithm.

for i :=1ton do L'(i) :==0;
for j:=1ton—1do

begin
i:=n—N;(P)+1;
L'(i) = J;

end;

The L(i) values (if desired) can be obtained by adding the following lines
to the above pseudocode.

L(2) :=L'(2);
for ¢ := 3 to n do L(i) := max[L(i — 1), L'(3)];

Theorem 0.2.3 The above method correctly computes the L values.

Proof L(i) marks the right end-position of the rightmost substring
of P that matches Pli..n] and is not a suffix of P[l..n]. Therefore, that
substring begins at position L(i) —n + 4, which we will denote by j. We will
prove that L(i) = max[L(i — 1), L'(7)] by considering what character j — 1
is. First, if j = 1 then character j — 1 doesn’t exist, so L(i — 1) = 0 and
L'(i) = 1. So suppose that j > 1. If character j — 1 equals character i — 1
then L(i) = L(i — 1). If character j — 1 does not equal character i — 1 then
L(i) = L'(i). Thus, in all cases, L(i) must either be L'(i) or L(i — 1).

On the other hand, L(i) must certainly be greater than or equal to both
L'(i) and L(i — 1). In summary, L(i) must either be L'(i) or L(i — 1) and
yet it must be greater or equal to both of them, hence L(i) must be the
maximum of L'(i) and L(i — 1). O

Final preprocessing detail

The preprocessing stage must also prepare for the case when L'(i) = 0 or
when an occurrence of P is found. The following definition and theorem
accomplish that.

Definition Let I'(i) denote the length of the largest suffix of P[i..n| that
is also a prefix of P, if one exists. If none exists, then let (i) be zero.

Theorem 0.2.4 ['(i) equals the largest j < |Pli..n]|, which is n—i+1, such
that N;(P) = j.

We leave the proof, as well as the problem of how to accumulate the I’ ()
values in linear time, as a simple exercise.

0.2.5 The good suffix rule in the search stage of Boyer-Moore

Having computed L'(7) and I'(i) for each position i in P, these preprocessed
values are used during the search stage of the algorithm to achieve larger
shifts. If, during the search stage, a mismatch occurs at position ¢ — 1 of
P and L'(i) > 0, then the good suffix rule shifts P by n — L’(i) places to
the right, so that the L’(i)-length prefix of the shifted P aligns with the
L'(i)-length suffix of the unshifted P. In the case that L'(i) = 0, the good
suffix rule shifts P by n — I’(¢) places. When an occurrence of P is found,

0.2. THE BOYER-MOORE ALGORITHM 9

then the rule shifts P by n —1’(2) places. Note that the rules work correctly
even when ['(i) = 0.

One special case remains. When the first comparison is a mismatch, i.e.,
P(n) mismatches, then P should be shifted one place to the right.

0.2.6 The complete Boyer-Moore algorithm

We have argued that neither the good suffix rule nor the bad character rule
shift P so far as to miss any occurrence of P. So the Boyer-Moore algorithm
shifts by the largest amount given by either of the rules. We can now present
the complete algorithm.

{Preprocessing stage}
Given the pattern P,
Compute L'() and I’ (i) for each position i of P,
and compute R(x) for each character x € X.
{Search stage}

k:=mn;
while £ < m do
begin
1:=mn;
h:=k;
while ¢ > 0 and P(i) = T'(h) do
begin
i:=1—1
h:=h—-1;
end;
if © = 0 then
begin
report an occurrence of P in T ending at position k.
k:=k+n—-1(2);
end
else
shift P (increase k) by the maximum amount determined by the
(extended) bad character rule and the good suffix rule.
end;

Note that although we have always talked about “shifting P”, and given
rules to determine by how much P should be “shifted”, there is no shifting
in the actual implementation. Rather, the index k is increased to the point
where the right end of P would be “shifted”. Hence, each act of shifting P
takes constant time.

We will later show, in Section 77 that by using the good suffix rule alone,
the Boyer-Moore method has a worst-case running time of O(m) provided

10

that the pattern does not appear in the text. This was first proved by
Knuth, Morris and Pratt [?], and an alternate proof was given by Guibas
and Odlyzko [?]. Both of these proofs were quite difficult and established
worst case time bounds no better than 5m comparisons. Later, Richard Cole
gave a much simpler proof [?] establishing a bound of 4m comparisons and
also gave a difficult proof establishing a tight bound of 3m comparisons. We
will present Cole’s proof of 4m comparisons in Section 77.

When the pattern does appear in the text then the original Boyer-Moore
method runs in ©(nm) worst-case time. However, several simple modifica-
tions to the method correct this problem, yielding an O(m) time bound in all
cases. The first of these modifications was due to Galil [?]. After discussing
Cole’s proof, in Section 77, for the case that P doesn’t occur in T', we use a
variant of Galil’s idea to achieve the linear time bound in all cases.

At the other extreme, if we only use the bad character shift rule, then
the worst case running time is O(nm), but assuming randomly generated
strings, the expected running time is sublinear. Moreover, in typical string
matching applications involving natural language text, a sublinear running
time is almost always observed in practice. We won’t discuss random string
analysis in this book but refer the reader to [?].

Although Cole’s proof for the linear worst case is vastly simpler than
earlier proofs, and is important in order to complete the full story of Boyer-
Moore, it is not trivial. However, a fairly simple extension of the Boyer-
Moore algorithm, due to Apostolico and Giancarlo [?], gives a “Boyer-Moore
like” algorithm which allows a fairly direct proof of a 2m worst case bound
on the number of comparisons. The Apostolico-Giancarlo variant of Boyer-
Moore is discussed in Section ?7.

