
The Burrows-Wheeler compression algorithm is even better than

what you have thought

Shir Landau∗ Elad Verbin∗

April 8, 2005

Abstract

The best compression algorithm today for English text is based on the Burrows-Wheeler
transform. This algorithm (whose common implementation is bzip2) consists of the following
three essential steps: 1) Obtain the Burrows-Wheeler transform of the text, 2) Convert the
transform into a sequence of integers using the move-to-front algorithm, 3) Encode the integers
using arithmetic code or any order-0 encoding (possibly with run length encoding).

In this paper we achieve a strong bound on the worst-case compression ratio of this algorithm,
that is significantly better than bounds known to date and is obtained via simple analytical
techniques. Specifically, for any input string s, and µ > 1, the length of the compressed string
is bounded by µ · |s|Hk(s) + log(ζ(µ)) · |s|+ gk where Hk is the k-th order empirical entropy, gk

is a constant depending only on k and on the size of the alphabet, and ζ(µ) = 1

1µ + 1

2µ + . . . is
the standard zeta function.

In fact we prove a stronger result: That this bound without the additive term gk holds
when we replace Hk(s) by the sum of the logarithms of the integers obtain by the move-to-front
encoding of the transform. This refined bound is tight and close to the actual compression
achieved in practice. To obtain this result we prove a tight result on the compressibility of
integer sequences, which is of independent interest.

1 Introduction

In 1994, Burrows and Wheeler [4] introduced the Burrows-Wheeler Transform, and two new lossless
text-compression algorithms that are based on this transform. Following [13], we refer to these algo-
rithms as bw0 and bwRL. A well known implementation of these algorithms, known as bzip2 [18],
is among the best compressors for English text, and is definitely the fastest among them. For
example, bzip2 typically shrinks an English to about 20% of its original size while gzip only gets
26% (see Table 1 and also [1] for detailed results). In this paper we refine and tighten the analysis
of bw0. For this purpose we introduce new techniques and statistical measures. We believe these
may be useful in the analysis of other compression algorithms, and in predicting the performance
of these algorithms in practice.

The algorithm bw0 compresses the input text s in three steps.

1. Compute the Burrows-Wheeler Transform, ŝ, of s. We elaborate on this stage shortly.1

∗School of Computer Science, Tel Aviv University, Tel Aviv, Israel. email: {landaush, eladv}@post.tau.ac.il.
1For compatibility with other definitions, we actually need to compute the bwt of s in reversed order, that is from

right to left. This will, of course, not change our results and does not effect the compression ratio significantly (see
[7] for a discussion on this), so we will ignore this point from now on.

1

2. Transform ŝ to a string of integers ṡ = mtf(ŝ) by using the move to front algorithm. This
algorithm maintains the characters of the alphabet in a list and encodes the next character
by its index in the list (see Sec. 2).

3. Encode the string ṡ of integers by using an order-0 encoder, to obtain the final bit stream
bw0(s) = order0(ṡ). An order-0 encoder assigns a unique bit string to each integer in-
dependently of its context, such that we can decode the concatenation of these bit strings.
Common order-0 encoders are Huffman codes or Arithmetic code.

The algorithm bwRL performs an additional run-length encoding procedure between steps 2 and
3. See [4, 13] for more details on bw0 and bwRL.

Next we define the Burrows-Wheeler Transform (bwt). Let n be the length of s. We obtain ŝ
as follows. Add a unique end-of-string symbol ‘$’ to s. Take all cyclic shifts of the string s$ and
place them in an (n + 1) × (n + 1) matrix. Sort the rows of this matrix in lexicographic order (‘$’
is considered smaller than all other characters). The last column of this matrix, with the symbol
‘$’ omitted, is the Burrows-Wheeler Transform, ŝ. See an example in Fig. 1. Although it may not
be obvious at first glance, bwt is an invertible transformation (one also needs to save the location
of the symbol ‘$’ to do this.) Efficient methods exist for computing and inverting ŝ in linear time
(see for example [14]).

The bwt is effective for compression since in ŝ characters with the same context2 are consecutive.
This means that if in the input text a reasonably small context tends to predict the character itself,
then the string ŝ will show local similarity – that is, symbols tend to recur at close vicinity. It
is interesting to note that the Burrows-Wheeler Transform seems related, in some senses, to the
Fourier Transform (intuitively speaking, both transform recurring motifs in the original text to
spikes in the transformed text, and, more interestingly, they work even if the motifs in the text are
only approximately recurring). For a discussion of the similarity of bwt to the Fourier Transform
see [6].

Therefore, if s is say a text in English, we would expect ŝ to be a string with symbols recurring at
close vicinity. As a result ṡ = mtf(ŝ) is an integer string which we expect to be composed mainly
of small numbers. (Note that by “integer string” we mean a string over an integer alphabet).
Furthermore, the frequencies of the integers in ṡ are skewed, and therefore it now makes sense to
run an order-0 encoder on ṡ. This, of course, is an intuitive explanation as to why bw0 “should”
work on typical inputs. As we discuss next, our work is in a worst-case setting, which means that
we will give upper bounds that hold for any input. These upper bounds will be relative to statistics
which measure how “well-behaved” our input string is. Part of the question which we try to address
is which statistics actually capture the compressibility of the input text.

1.1 History and Motivation

It is well known that the zeroth order empirical entropy of a string s, H0(s), is a lower bound on
the possible bits-per-character ratio of any order-0 compressor. Similarly, the k-th order empirical
entropy of the string s, Hk(s) (defined in Sec. 2) gives a lower bound on the possible bits-per-
character ratio of any encoder that is allowed to use only the k-character context of character x
in order to encode it. For this reason compression algorithms are traditionally measured against
Hk(s), for various values of k.

2The context of length k of a character is the string of length k that precedes it.

2

Figure 1: The Burrows-Wheeler transform for the string s = mississippi. The matrix on the right
has the rows sorted in lexicographic order. ŝ is the last column of the matrix, i.e. ipssmpissii, and
we need to store the index of the character ‘$’, i.e. 6, to be able to get the original string

In 1999, Manzini [13] presented the first worst-case upper bounds for the compression of bwt-
based algorithms. He bounded the bit-length of the compressed text bw0(s) by the expression

8 · nHk(s) + 0.08 · n + g′k. (1)

Here k ≥ 0 is any number, and g′k = hk(2h log h+9) is a constant that depends only on k and on the
alphabet size. Manzini also bounded the bit-length of bwRL(s) by the expression 5 · nH∗

k(s) + g′′k .
g′′k is some other constant that depends only on k and on the alphabet size, and H∗

k , which we will
not define, is a statistic larger than Hk (see [13]).

In 2004, Ferragina, Giancarlo, Manzini and Sciortino [7] introduced a bwt-based compression
booster. In their paper, they show how the compression booster can produce two different algo-
rithms achieving 1 · nHk(s) + 1 · n + g′′k and 2.5 · nH∗

k(s) + g′′k , respectively. The upper bounds of
these algorithms are theoretically superior to those in [13]. However, when we implemented their
algorithms, we got the results summarized in table 1. These empirical results show a discrepancy
between the theoretical bounds and the actual compression ratios. This was the starting point of
our research. We looked for tight bounds on the length of the compressed text, possibly in terms
of statistics of the text that might be more appropriate than Hk.

1.2 Our Results

We tighten the analysis of bw0 and give a tradeoff result that shows that for any constant µ > 1
and for any k, the length of the compressed text is upper-bounded by the expression

µ · nHk(s) + (log ζ(µ) + Corder0) · n + gk. (2)

Here Corder0 is a small constant, defined in Sec. 3, and gk = µ2k log h+µhk ·h log h. In particular,
for µ = 1.5 we obtain the bound 1.5 · nHk(s) + 1.5 · n + 1.5gk. Our proof is simpler than that of
Manzini in [13].

3

File Name size gzip bzip2 bw0 Booster(HC) Booster(RHC)

alice29.txt 152089 54181 43196 48915 74576 79946
asyoulik.txt 125179 48819 39569 44961 59924 61757

cp.html 24603 7965 7632 8726 16342 16342
fields.c 11150 3122 3039 3435 10235 10028

grammar.lsp 3721 1232 1283 1409 2297 2297
lcet10.txt 426754 144562 107648 127745 166043 177682

plrabn12.txt 481861 194551 145545 168311 172471 183855
xargs.1 4227 1748 1762 1841 2726 2726

Table 1: Results (in bytes) of running various compressors on the non-binary files from the Can-
terbury Corpus [1]. The gzip results are taken from [1]. bw0 is our implementation (in C++)
of the bw0 algorithm (using Huffman encoding) as the order-0 compressor. Booster(HC) and
Booster(RHC) are our implementation of the compression booster of [7]. [7] gives two suggested
methods to implement it: One using the algorithm HC, and one using the algorithm RHC (the
interested reader is referred to [7]).

The technique which we use to obtain this bound is even more interesting than the bound itself.
We define a new natural statistic of a text which we call the “Local Entropy” (le). This statistic
was implicitly considered by Bentley et al. [3] as well as by Manzini [13]. Using two observations
on the behavior of le we bypass some of the technical hurdles in the analysis of [13].

Our analysis actually proves a considerably stronger result: That the size of the compressed
text is bounded by

µ · nle(ŝ) + (log ζ(µ) + Corder0) · n (3)

Empirically, this seems to give estimations which are quite close to the actual compression, as seen
in Table 2.

File Name size H0(ṡ) LE(ŝ) (3) (2) (1)
(bits) (bits) (bits) (bits) (bits) (bits)

alice29.txt 1216712 386367 144247 396813 766940 2328219
asyoulik.txt 1001432 357203 140928 367874 683171 2141646

cp.html 196824 67010 26358 69857.6 105033.2 295714
fields.c 89200 24763 8855 25713 43379 119210

grammar.lsp 29768 9767 3807 10234 16054 45134
lcet10.txt 3414032 805841 357527 1021440 1967240 5867291

plrabn12.txt 3854888 1337475 528855 1391310 2464440 8198976
xargs.1 33816 13417 5571 13858 22317 64673

Table 2: Results of computing various statistics on the non-binary files from the Canterbury Cor-
pus [1]. H0(ṡ) gives the result of the algorithm bw0 assuming an optimal order-0 compressor.
The difference between this and the column marked (3) shows that our bound (3) is quite tight in
practice. The final three columns show the bounds given by the equations (3), (2), (1). It should
be noted that in order to get the bound of (3) we needed to minimize the expression in (3) over µ.
To get the bound of (2) and (1) we needed to calculate their value for all k and pick the best one.

In order to get our upper bounds we needed to solve a problem on compressing integer strings

4

in which the integers are typically small. From these results it also follows that no algorithm can
have a worst-case performance better than that in Eq. (3) (up to the constant Corder0). The result
on compression of integer sequences is of independent interest. This is shown in Sec. 3

1.3 Related Work

A series of recent results on compression present Compressed Text Indexes. A compressed text index
is a scheme that given a (typically large) text builds a representation of it. This representation
allows very fast pattern matching queries and decompression of parts of the original text. In
particular, the entire original text can be read back from its representation, thus eliminating the
need to save the original text. The representation’s size is typically much smaller than that of the
original text. A Compressed Text Index is therefore simultaneously both a compression algorithm
and an indexing data structure. Early progress on Compressed Text Indexes was made by Manzini
and Ferragina in [15]. A recent result by Grossi, Gupta and Vitter [10] presents a Compressed
Text Index that comes within additive lower-order terms of the order-k entropy of the input text.
This result makes heavy use of data structures for indexable dictionaries by Raman, Raman, and
Rao [17]. For more on Compressed Text Indexing, see [11, 15, 8].

We leave open the question of how our techniques can be applied to the subject of Compressed
Text Indexing.

2 Preliminaries

Throughout the paper we assume 0 log 0 = 0, as customary. We will be careful with this when
needed, for example in the proof of Thm. 3.2. All logarithms are in base 2 unless otherwise stated.
We usually refer to a string s, which is a sequence of length |s| = n whose elements are from the
alphabet Σ. The alphabet Σ = {σ0, . . . , σh−1} is of size |Σ| = h. However, sometimes (mainly in
Sec. 3) s will be a string over the alphabet [h] = {0, . . . , h−1}. This will be clear from the context.
When we consider a compression algorithm A, we refer to |A(s)| as the size in bits of the encoding
A(s). The function ζ(µ) is the usual zeta function, ζ(µ) = 1

1µ + 1
2µ + . . ., which we will need only

in the range µ ∈ {x|x > 1}. ζh(µ) is this sum limited to the first h terms: ζh(µ) = 1
1µ + . . . + 1

hµ .
The following definitions are taken from [13]. Let s be a string of length n and let ni denote

the number of occurrences of the symbol σi in s. The zeroth order empirical entropy of the string
s is defined as

H0(s) =
h−1∑

i=0

ni

n
log

n

ni
.

For any length-k word w ∈ Σk let ws denote the string consisting of the concatenation of the single
characters following each occurrence of w in s. The value

Hk(s) =
1

n

∑

w∈Σk

|ws|H0(ws)

is called the k-th order empirical entropy of the string s. In [13] these terms, as well as bwt, are
discussed in more depth.

Our analysis does not use the definitions of Hk and bwt directly. Instead, it uses the fact,
observed by Manzini in [13], that Hk(s) can be put in terms of the H0 of parts of ŝ. More
specifically:

5

Proposition 2.1 ([13]) There is a string ˜̂s that is equal to ŝ except that k characters are missing,
and there is a partition of ˜̂s, ˜̂s = s1 . . . st, with t ≤ hk, such that:

|s|Hk(s) =
t∑

i=1

|si|H0(si) (4)

Now let us define the move to front (mtf) transformation, which was introduced in [3]. mtf

encodes the symbol σi with an integer equal to the number of distinct symbols encountered since
the previous occurrence of σi. More precisely, the encoding maintains a list of the symbols ordered
by recency of occurrence. When the next symbol arrives, the encoder outputs its current rank and
moves it to the front of the list. Therefore, a string over the alphabet Σ is transformed to a string
over [h] (note that the length of the string does not change). To completely determine the encoding
we must specify the status of the recency list at the beginning of the procedure. We denote by
mtfπ the algorithm in which the initial status of the recency list is given by the permutation π
defined over Σ.

mtf has the property that if the input string has high local similarity, that is if symbols tend
to recur at close vicinity, then the output string will consist mainly of small integers. This is
formalized by the concept of the Local Entropy (le) statistic, which we define next. le was used
implicity in [3, 13]. We use some properties of le to get our results in Sec. 4. le is defined as
follows:

leπ(s) =
n∑

i=1

log(mtfπ(s)[i] + 1)

That is, le is the sum of the logarithms of the move-to-front values plus 1. For example, for
the string “aa” the mtf value of the second a is 0. That is the reason that we add the +1
in the logarithm – so that a repeating symbol will contribute 0 to the sum. Let us now define
leW (s) = maxπleπ(s). This is the “worst-case” local entropy.3 Analogously, mtfW is a mtf in
which the initial recency list is a π that maximizes leπ(s). We will sometimes write just le instead
of leW or leπ when the initial permutation of the recency list is not significant. At times, this
notation suffices because the difference between leπ1

(s) and leπ2
(s) is always O(h log h). Similarly,

we may write mtf instead of mtfW or mtfπ.
The intuition behind le is that after running bwt and then mtf we get a string mtf(ŝ). This

string consists of n numbers. Naively, we would expect to compress this string of integers using a
number of bits close to the sum of their logarithms. Obviously, this doesn’t really work since we
have to distinguish where one number ends and another starts. This intuition, however, gives us
the statistic le which turns out to be very useful. For the sake of formality we define the statistic
l̂e(s) = le(ŝ).

The statistics H0(s) and Hk(s) are normalized in the sense that they represent the bits-per-
character rate attainable for compressing s. However, for our purposes it is most convenient to
work with un-normalized statistics. Thus we define our new statistic le to be un-normalized. We
define the statistics n ·H0 and n ·Hk to be the un-normalized counterparts of the original statistics,
i.e. (n · H0)(s) = n · H0(s).

Let f : Σ∗ → R
+ be an (un-normalized) statistic on strings, for example f can be n · Hk, le.

Then a compression algorithm A is called (µ, C)-f -competitive if for every string s it holds that

|A(s)| ≤ µf(s) + Cn + o(n), where o(n) denotes a function g(n) such that limn→∞
g(n)

n
= 0.

3
leW is defined to make the presentation more elegant later on, but one could use leπ(s) with π a constant

permutation, and the analysis will work much the same.

6

We will often use the following inequality, derived from Jensen’s inequality:

Lemma 2.2 For any k ≥ 1, x1, . . . , xk > 0 and y1, . . . , yk > 0 it holds that:

k∑

i=1

yi log xi ≤
(

k∑

i=1

yi

)
· log

∑k
i=1 xiyi∑k
i=1 yi

(5)

This inequality roughly means that a sum of logarithms is maximized when all of the logarithms
are equal. For integers yi this is a version of the inequality of the means.

3 Optimal Results on Compression vs. SL

In this section we look at a string s of length n over the alphabet [h]. Let us define the sum of
logarithms statistic: sl(s) =

∑n
i=1 log(s[i] + 1). We will show that in a strong sense the best sl-

competitive compression algorithm is an order-0 compressor. At the end of the section we will show
how to get analogous results regarding le-competitive and l̂e-competitive compression algorithms.

The problem we deal with in this section is related to the problem of universal encoding of
integers. In the problem of universal encoding of integers [5, 3] the goal is to find a prefix-free
encoding for integers, U : Z

+ → {0, 1}∗, such that for every x ≥ 0, |U(x)| ≤ µ log(x + 1) + C.
A particularly nice solution for this is the Fibonacci Encoding [2, 9], for which µ = logφ 2, C =

1 + logφ

√
5 ' 2.6723. An additional solution for this problem was proposed by Elias [5]. This is

an optimal solution, in the sense described in [12]. For more information on universal encoding of
integers see the (somewhat outdated) survey paper [12].

It can be seen that a universal encoding scheme with parameters µ, C easily gives a (µ, C)-sl-
competitive compressor. However, in this section we get a better competitive ratio, which cannot
be achieved by using the above method. This is possible because we deal with a relaxed version
of the problem: Our goal is to encode a string which is actually a long sequence of integers taken
from a fixed alphabet. We are also allowed to incur an o(n) additive term.

Throughout the paper we refer to an algorithm order0. By this we mean any order-0 algorithm,
which is assumed to be a (1, Corder0)-n · H0-competitive algorithm. For example, CHuffman = 1
and CArithmetic ≈ 10−2 [19, 16].

3.1 An optimal (µ,C)-SL-competitive algorithm

We show, using a technique based on Lemma 2.2, that the algorithm order0 is (µ, log ζ(µ) +
Corder0)-sl-competitive for any µ > 1. In fact, we prove a somewhat stronger theorem:

Theorem 3.1 For any constant µ > 0 it holds that the algorithm order0 is (µ, log ζh(µ) +
Corder0)-sl-competitive.

Proof. Let s be a string of length n over alphabet [h]. We need to prove that for any constant
µ > 0:

nH0(s) ≤ µsl(s) + n log ζh(µ) (6)

7

From the definition of H0 it follows that nH0(s) =
∑h−1

i=0 ni log
n
ni

, and from the definition of sl we

get that sl(s) =
∑n

j=1 log(s[j] + 1) =
∑h−1

i=0 ni log(i + 1). So, (6) is equivalent to:

h−1∑

i=0

ni log
n

ni
≤ µ

h−1∑

i=0

ni log(i + 1) + n log ζh(µ) (7)

Pushing the µ into the logarithm and moving terms around we get that (7) is equivalent to:

h−1∑

i=0

ni log
n

ni(i + 1)µ
≤ n log ζh(µ) (8)

Defining pi = ni

n
and dividing the two sides of the inequality by n we get that (8) is equivalent to:

h−1∑

i=0

pi log
1

pi(i + 1)µ
≤ log ζh(µ)

Using Lemma 2.2,

h−1∑

i=0

pi log
1

pi(i + 1)µ
=

∑

0≤i≤h−1
pi 6=0

pi log
1

pi(i + 1)µ
≤ log

∑

0≤i≤h−1
pi 6=0

pi
1

pi(i + 1)µ

 =

= log

∑

0≤i≤h−1
pi 6=0

1

(i + 1)µ

 ≤ log ζh(µ)

2

In particular we get:

Corollary 3.2 For any constant µ > 1 it holds that the algorithm order0 is (µ, log ζ(µ) +
Corder0)-sl-competitive.

3.2 A lower bound for SL-Competitive compression

In Sec. 3.1 we have seen that for any µ > 0 there exists a (µ, log ζh(µ) + Corder0)-sl-competitive
algorithm. In this section we show that this is a tight bound in a strong sense. That is, besides
proving that no algorithms achieves a better competitive ratio, we prove that this holds separately
for any values of µ and h. Note however, that the lower bounds that we get in this section do not
include the constant Corder0.

Theorem 3.3 Let µ > 0 be some constant. Then there is no constant C < log ζh(µ) such that
there exists a (µ, C)-sl-competitive algorithm

The proof of this theorem is deferred to Appendix A.

By setting a large enough alphabet size in the proof of Thm. 3.3, we get the following corollaries:

Corollary 3.4 Let µ > 1 be some constant. Then there is no constant C < log ζ(µ) such that
there exists a (µ, C)-sl-competitive algorithm

Corollary 3.5 There is no (1, C)-sl-competitive algorithm, for any C ∈ R

8

3.3 Analogous Results vs. L̂E

By performing the inverse transformations mtf−1
π and bwt−1 on both the term sl and the term

order0 in Thms. 3.1 and 3.3 we get analogous results vs. l̂e:

Corollary 3.6 For any constant µ > 0 it holds that the algorithm bw0 is (µ, log ζh(µ)+Corder0)-
l̂e-competitive.

Corollary 3.7 Let µ > 0 be some constant. Then there is no constant C < log ζh(µ) such that
there exists a (µ, C)-l̂e-competitive algorithm

Proof Sketch. The only complication is that in order to refer to the inverse transformations
mtf−1

π and bwt−1 we need to note that both mtfπ and bwt are indeed invertible and have
inverting procedures. For bwt to be invertible one needs to consider it without omitting the end-
of-string symbol. This, however, poses no obstacle as it cannot change the compressibility of the
sequence by more than log n = o(n) bits, for keeping the position of the end-of-string symbol. 2

Further analogous statements about le as well as le can be derived similarly from the results
of this Section.

4 The Entropy Hierarchy

In this section we will show that the statistics Hk and l̂e conveniently form a hierarchy, which
allows us to percolate upper bounds down and lower bounds up. Specifically, we will show that for
each k

l̂e(s) ≤ nHk(s) + O(1)

So the hierarchy is as follows:

l̂e(s) ≤ . . . ≤ nH2(s) + O(1) ≤ nH1(s) + O(1) ≤ nH0(s) + O(1) (9)

Thus any (µ, C)-l̂e-competitive algorithm is also (µ, C)-n ·Hk-competitive. To get this we need
to prove two properties of leW : that it is at most nH0 + O(1), and that it is convex (in a sense
which we will define).

4.1 Some properties of LE

Define mtfignorefirst(s) to be a string which is identical to mtfπ(s) except that we omit the
characters representing the first occurrence of each symbol (so mtfignorefirst(s) is of length less than
n). Note that in this case when we perform the move-to-front transformation the initial status of the
mtf recency list is not significant. Similarly, define leignorefirst(s) =

∑
i log(mtfignorefirst(s)[i]+1).

The following is a theorem from Bentley et al. [3]:

Theorem 4.1 ([3]) leignorefirst(s) ≤ n · H0(s).

The proof of Thm. 4.1 can be found in Appendix B. Let us show a corollary of this Theorem:

Lemma 4.2 leW (s) ≤ n · H0(s) + h log h.

9

Proof. leW (s) is equal to leignorefirst(s) plus the contribution of the first occurrence of each
symbol. The number of such contributions is at most h, and each such contribution is bounded by
log h, and so we get leW (s) ≤ leignorefirst(s) + h log h ≤ n · H0(s) + h log h, as needed. 2

In addition, we need the following lemma about leW , whose proof we omit:

Lemma 4.3 For a string s of length n and a string s′ that we get by deleting exactly one character
from s it holds that leW (s) ≤ leW (s′) + 2 log h.

Now let’s prove that leW is a convex statistic:

Lemma 4.4 (LEW is a convex statistic) For s = s1 . . . st it holds that leW (s) ≤∑i leW (si)

Proof. The intuition is that the mtfπ encoding has a locality property such that if you stop it
in the middle and start again from this point using a different recency list then you make little
profit if any. Here is the formal proof of the Lemma: From the definition of leW we get that
leW (s) =

∑n
j=1 log(mtfπ1

(s)[j] + 1) for a worst-case permutation π1. Let us look at the recency
list πi that we use when we begin the leW (s) run on sub-string si. Each of the summands of∑

i leW (si) is calculated with a worst-case permutation, which must be at least as bad as πi, and
thus we are finished. 2

4.2 The Hierarchy Result

Theorem 4.5 For any k ≥ 0 and any string s,

|s|Hk(s) ≥ leW (ŝ) − 2k log h − hk · h log h

Proof. Recall Proposition 2.1: There must be a string ˜̂s that is equal to ŝ except that k characters
are missing. and there is a partition of ˜̂s, ˜̂s = s1 . . . st, such that t ≤ hk and

|s|Hk(s) =
t∑

i=1

|si|H0(si) (10)

Observe that using the convexity of leW (Lemma 4.4) and using the relation of leW to nH0

(Lemma 4.2) we have

leW (˜̂s) ≤
t∑

i=1

|si|H0(si) + th log h (11)

Using Lemma 4.3 we get

leW (ŝ) − 2k log h ≤ leW (˜̂s) (12)

From (10), (11) and (12) we get

leW (ŝ) − 2k log h − th log h ≤ |s|Hk(s)

And using t ≤ hk we are finished. 2

10

5 Conclusions and Open Problems

Using Corollary 3.2 and Thm. 3.1 together with Thm. 4.5 gives:

Corollary 5.1 For any k ≥ 0 and for any constant µ > 1 it holds that the algorithm bw0 is
(µ, log ζ(µ) + Corder0)-n · Hk-competitive

Corollary 5.2 For any k ≥ 0 and for any constant µ > 0 it holds that the algorithm bw0 is
(µ, log ζh(µ) + Corder0)-n · Hk-competitive (on strings from an alphabet of size h).

We have also shown that our analysis vs. l̂e is tight. That is, we may get better results vs.
n · Hk, but we cannot get better worst-case results vs. l̂e, neither with this nor with any other
algorithm (this statement is valid, of course, up to the constant Corder0, and notwithstanding
getting better lower-order terms in the upper bound).

We leave the following idea for further research: In this paper we prove that the algorithm bw0

is roughly (µ, log ζ(µ))-l̂e-competitive. In work-in-progress, We also know how to show that bw0 is
quite far from being (1, 0)-Hk-competitive. On the other hand, using the compression booster, [7]
achieve results close to being (1, 0)-Hk-competitive, but we conjecture that they are very far from
being (µ, log ζ(µ))-l̂e-competitive. So, a natural question to ask is whether there is an algorithm
that in a deep way achieves both ratios. Of course, the algorithm that just performs both algorithms
and selects the best compression achieves both ratios, but we would like an algorithm that gets this
because of a deep reason which makes it sidestep the natural inefficiencies of both algorithms. We
think that an “ultimative” algorithm such as this will beat all bwt-based algorithms known so far.

6 Acknowledgments

We would like to thank Nir Markus for writing the bw0 and compression booster computer
programs with Shir Landau, as this gave us motivation to begin our research. We would like to
thank Gadi Landau for referring us to [7]. Elad Verbin would like to thank Adi Avidor for some
lovely Friday discussions.

References

[1] The canterbury corpus. http://corpus.canterbury.ac.nz.

[2] Alberto Apostolico and Aviezri S. Fraenkel. Robust transmission of unbounded strings using
fibonacci representations. IEEE Transactions on Information Theory, 33(2):238–245, 1987.

[3] Jon Louis Bentley, Daniel D. Sleator, Robert E. Tarjan, and Victor K. Wei. A locally adaptive
data compression scheme. Communications of the ACM, 29(4):320–330, 1986.

[4] M. Burrows and D. J. Wheeler. A block sorting lossless data compression algorithm. Technical
Report 124, Digital Equipment Corporation, Palo Alto, California, 1994.

[5] P. Elias. Universal codeword sets and representation of the integers. IEEE Trans. on Infor-
mation Theory, 21(2):194–203, 1975.

11

[6] Peter Fenwick. Reflections on the burrows wheeler transform. Technical Report 172, Depart-
ment of Computer Science, The University of Auckland, Auckland, New Zealand, 2004.

[7] P. Ferragina, R. Giancarlo, G. Manzini, and M. Sciortino. Boosting textual compression in
optimal linear time. Journal of the ACM, to appear.

[8] P. Ferragina, G. Manzini, V. Mākinen, and G. Navarro. An alphabet friendly fm-index. In
Proc. 11th Symposium on String Processing and Information Retrieval (SPIRE ’04), pages
150–160, 2004.

[9] Aviezri S. Fraenkel and Shmuel T. Klein. Robust universal complete codes for transmission
and compression. Discrete Applied Mathematics, 64(1):31–55, 1996.

[10] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed text
indexes. In SODA ’03: Proceedings of the fourteenth annual ACM-SIAM symposium on Dis-
crete algorithms, pages 841–850, 2003.

[11] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. When indexing equals compression:
experiments with compressing suffix arrays and applications. In SODA ’04: Proceedings of the
fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages 636–645, 2004.

[12] Debra A. Lelewer and Daniel S. Hirschberg. Data compression. ACM Computing Surveys,
19(3):261–296, 1987.

[13] G. Manzini. An analysis of the burrows-wheeler transform. Journal of the ACM, 48(3):407–430,
2001.

[14] G. Manzini and P. Ferragina. Engineering a lightweight suffix array construction algorithm.
Algorithmica, 40:33–50, 2004.

[15] G. Manzini and P. Ferragina. On compressing and indexing data. Journal of the ACM,
accepted for publication.

[16] Alistair Moffat, Radford M. Neal, and Ian H. Witten. Arithmetic coding revisited. ACM
Trans. Inf. Syst., 16(3):256–294, 1998.

[17] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets. In SODA ’02: Proceedings of the thirteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 233–242, 2002.

[18] Julian Seward. bzip2, a program and library for data compression. http://www.bzip.org/.

[19] Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding for data compression.
Communications of the ACM, 30(6):520–540, 1987.

A Proof of Thm. 3.3

Let us prove Thm. 3.3:

Proof. The proof will be similar to the upper bound proof of Thm. 3.1, and will essentially prove
that the upper bound is tight, via a counting argument that will work for any algorithm. In order

12

to get an information-theoretic lower bound, we need to develop the proper counting framework.
Our biggest technical difficulty will be to deal with the fact that a string must have an integral
number of occurrences of each symbol (the upper bounds work in any case, but to get the lower
bounds we have to work harder). We will first ignore this difficulty, and then explain how to deal
with it.

First let us fix the parameter µ to be some value in (0,∞). Now pick some constant ε > 0
and suppose in contradiction that there is a compression algorithm A which is (µ, log ζh(µ) − ε)-
sl-competitive. Let αi = n · 1

ζh(µ)·(i+1)µ for i ∈ [h]. Assume for now that αi are integers. Let

S(n) be the set of strings where integer i appears αi times. Let L(n) =
∑h−1

i=0 log(i + 1) · αi and
N(n) = n!

α0!·...·αh−1! . Note that for each s ∈ S(n), |s| = n, sl(s) = L(n) and that card(S(n)) = N(n).

Using Stirling’s approximation n! = (1 + o(1))
√

2πn
(

n
e

)n
and taking n large enough so that

(1/2)
√

2πn
(n

e

)n

≤ n! ≤ (3/2)
√

2πn
(n

e

)n

we get:

log N(n) ≥ log
(1/2)

√
2πn (n/e)n

(3/2)h
∏h−1

i=0

√
2παi (αi/e)

αi
=

= log
(1/2)

√
2πn

(3/2)h
∏h−1

i=0

√
2παi

+ n log n −
h−1∑

i=0

αi log αi ≥

≥ −O(1) − h log(2πn) +
h−1∑

i=0

αi log(n/αi) ≥

≥ −O(log n) +
h−1∑

i=0

αi log(n/αi) (13)

Using standard information-theoretic arguments, our algorithm A must compress at least one
of the strings in S(n) to at least log N(n) bits. So, from our assumption that A is (µ, log ζh(µ)− ε)-
sl-competitive we get

log N(n) ≤ µL(n) + n(log ζh(µ) − ε + o(1))

Which gives
log N(n) − µL(n) ≤ n(log ζh(µ) − ε + o(1)) (14)

13

On the other hand,

log N(n) − µL(n) = log N(n) − µ
h−1∑

i=0

log(i + 1) · αi ≥

≥ −O(log n) +
h−1∑

i=0

αi log(n/αi) − µ
h−1∑

i=0

log(i + 1) · αi =

= −O(log n) +

h−1∑

i=0

αi log
n

αi(i + 1)µ
=

= −O(log n) +
h−1∑

i=0

αi log ζh(µ) =

= −O(log n) + n log ζh(µ) (15)

From inequalities (14) and (15) we get

−O(log n) + n log ζh(µ) ≤ n(log ζh(µ) − ε + o(1))

Which for large enough values of n gives a contradiction.
Now let us see how to handle the fact that the αi’s must be integers. Define for i ∈ {1, . . . h−1},

α′
i =

⌊
n · 1

ζh(µ)·(i+1)µ

⌋
, and push the excess into α′

0: α′
0 = n−∑h−1

i=0 α′
i. By rounding in this specific

way we have actually decreased the sum of logarithms, so sl(s) ≤ L(n). Inequality (13) still holds
because the rounding makes αi and α′

i differ by at most ±h, which contributes only an additional
−O(log n) factor to (13). 2

B Proof of Thm. 4.1

Let us prove Thm. 4.1:

Proof. Let us look separately at the contributions of the h different symbols to A := leignorefirst(s).
For a symbol σ ∈ Σ denote by nσ the number of its occurrences in s, and let us look at its
contribution to leignorefirst(s):

4

Aσ =
∑

i:s[i]=σ

log(mtfignorefirst(s)[i] + 1)

It is easy to see that

∑

i:s[i]=σ

(mtfignorefirst(s)[i] + 1) ≤ n

and using Lemma 2.2 we get

Aσ ≤ nσ log

∑
i:s[i]=σ(mtfignorefirst(s)[i] + 1)

nσ
≤ nσ log

n

nσ

4Note that for the sake of convenience, in the following equations we are disregarding the fact that some elements of
mtfignorefirst(s) are in a shifted position relative to the characters of s that they represent because the representations
of the first appearances of symbols are omitted.

14

So,

A =
∑

σ

Aσ ≤
∑

σ

nσ log
n

nσ
= nH0(s)

as needed. 2

15

