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Abstract. Relationships among amino acids determine stability and
function and are also constrained by evolutionary history. We develop
a probabilistic hypergraph model of residue relationships that general-
izes traditional pairwise contact potentials to account for the statistics
of multi-residue interactions. Using this model, we detected non-random
associations in protein families and in the protein database. We also
use this model in optimizing site-directed recombination experiments
to preserve significant interactions and thereby increase the frequency
of generating useful recombinants. We formulate the optimization as a
sequentially-constrained hypergraph partitioning problem; the quality of
recombinant libraries wrt a set of breakpoints is characterized by the to-
tal perturbation to edge weights. We prove this problem to be NP-hard
in general, but develop exact and heuristic polynomial-time algorithms
for a number of important cases. Application to the beta-lactamase fam-
ily demonstrates the utility of our algorithms in planning site-directed
recombination.

1 Introduction

The non-random association of amino acids, as expressed in pairwise potentials,
has been usefully applied in a number of situations. Such pairwise contact poten-
tials [1, 2] play a large role in evaluating quality of models in protein structure
prediction [3, 4, 5, 6]. It has been suggested, however, that “it is unlikely that
purely pairwise potentials are sufficient for structure prediction” [7, 8].

To better model evolutionary relationships that determine protein stability
and functionality, it may be necessary to capture the higher-order interactions
that are ignored in simple pairwise models (Fig. 1(a)). Researchers have begun
to demonstrate the importance of accounting for higher-order terms. A sta-
tistical pseudo-potential based on four-body nearest neighbor interactions (as
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Fig. 1. Hypergraph model of evolutionary interactions, and effects of site-directed
protein recombination. (a) Higher-order evolutionary interactions (here, order-3)
determining protein stability and function are observed in the statistics of “hypercon-
servation” of mutually interacting positions. The left edge is dominated by Ala,Val,Ile
and Val,Leu,Leu interactions, while the right is dominated by Glu,Thr,Arg and
Asp,Ser,Lys ones. The interactions are modeled as edges in a hypergraph with weights
evaluating the degree of hyperconservation of an interaction, both generally in the
protein database and specific to a particular family. (b) Site-directed recombination
mixes and matches sequential fragments of homologous parents to construct a library
of hybrids with the same basic structure but somewhat different sequences and thus
different functions. (c) Site-directed recombination perturbs edges that cross one or
more breakpoints. The difference in edge weights derived for the parents and those
derived for the hybrids indicates the effect of the perturbation on maintenance of
evolutionarily favorable interactions.

determined by Delaunay tessellations) has successfully predicted changes in free
energy caused by hydrophobic core mutations [8]. Similar formulations have been
used to discriminate native from non-native protein conformations [9]. Geomet-
rically less restricted higher-order interactions have also been utilized for recog-
nition of native-like protein structures [10]. Recent work on correlated mutation
analysis has moved from identifying pairwise correlations [11] to determining
clusters or cliques of mutually-dependent residues that identify subclasses within
a protein family and provide mechanistic insights into function [12, 13].

This paper develops a rigorous basis for representing multi-order interactions
within a protein family. We generalize the traditional representations of sequence
information in terms of single-position conservation and structural interactions in
terms of pairwise contacts. Instead, we define a hypergraph model in which edges
represent pairwise and higher-order residue interactions, while edge weights rep-
resent the degree of “hyperconservation” of the interacting residues (Sec. 2). Hy-
perconservation can reveal significant residue interactions both within members
of the family (arising from structural and functional constraints) and generally
common to all proteins (arising from general properties of the amino acids). We
then combine family-specific and database-wide statistics with suitable weight-
ing (Sec. 2.1), ensure non-redundancy of the information in super- and sub-edges
with a multi-order potential score (Sec. 2.2), and derive edge weights by mean po-
tential scores (Sec. 2.3). Application of our approach to beta-lactamases (Sec. 4)
shows that the effect of non-redundant higher-order terms is significant and can
be effectively handled by our model.
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Protein recombination in vitro (Fig. 1(b)) enables the design of protein vari-
ants with favorable properties and novel enzymatic activities, as well as
the exploration of protein sequence-structure-function relationships (see e.g.
[14, 15, 16, 17, 18, 19, 20, 21, 22]). In this approach, libraries of hybrid proteins
are generated either by stochastic enzymatic reactions or intentional selection of
breakpoints. Hybrids with unusual properties can either be identified by large-
scale genetic screening and selection, or many hybrids can be evaluated individ-
ually to determine detailed sequence-function relationships for understanding
and/or rational engineering. We focus here on site-directed recombination, in
which parent genes are recombined at specified breakpoint locations, yielding
hybrids in which different sequence fragments (between the breakpoints) can
come from different parents. Both screening/selection and investigational exper-
iments benefit from recombination that preserves the most essential structural
and functional features while still allowing variation. In order to enhance the suc-
cess of this approach, it is necessary to choose breakpoint locations that optimize
preservation of these features.

The labs of Mayo and Arnold [18, 23] have established criteria for non-
disruption of contacting residue pairs and demonstrated the relationship between
non-disruption and functional hybrids [18]. There is an on-going search for algo-
rithms to select breakpoints for recombination based on non-disruption [23, 24],
although none has yet been experimentally validated. Optimizing multi-order
interactions after recombination (Fig. 1(c)) should help identify the best recom-
binants and thus the best locations for breakpoints. In support of this optimiza-
tion, we develop criteria to evaluate the quality of hybrid libraries by considering
the effects of recombination on edge weights (Sec. 2.4). We then formulate the op-
timal selection of breakpoint locations as a sequentially-constrained hypergraph
partitioning problem (Sec. 3), prove it to be NP-hard in general (Sec. 3.1), de-
velop exact and heuristic algorithms for a number of important cases (Secs. 3.2–
3.5), and demonstrate their practical effectiveness in design of recombination
experiments for members of the beta-lactamase family (Sec. 4).

2 A Hypergraph Model of Evolutionary Interactions

In order to more completely model statistical interactions in a protein, it is nec-
essary to move beyond single-position sequence conservation and pairwise struc-
tural contact. We model a protein and its reference structure with a weighted
hypergraph G=(V, E, w), where vertices V ={v1, v2, · · · , v|V |} represent residue
positions in sequential order on the backbone, edges E ⊆ 2V represent mutually
interacting sets of vertices, and weight function w : E → R represents the rel-
ative significance of edges. We construct an order-c edge e = 〈v1, v2, · · · , vc〉 for
each set of residues (listed in sequential order for convenience) that are in mutual
contact; this construction can readily be extended to capture other forms of inter-
action, e.g. long-range interaction of non-contacting residues due to electrostatics.
Note that subsets of vertices associated with a higher-order edge form lower-order
edges. When we need to specify the exact order c of edges in a hypergraph, we use
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notation Gc =(V, Ec, w). Since lower-order edges can be regarded as a special kind
of higher-order ones, Gc includes “virtual” lower-order edges.

The definition of the edge weight is key to effective use of the hypergraph
model. In the case where the protein is a member of a family with presumed
similar structures, edge weights can be evaluated both from the general database
and specific to the family. There are many observed residue values (across the
family or database) for the vertices of any given edge. We thus build up to an edge
weight by first estimating the probability of the residue values, then decomposing
the probability to ensure non-redundant information among multi-order edges
for the same positions. Finally we determine the effect on the pattern of these
values due to recombination according to a set of chosen breakpoint locations.

2.1 Distribution of Hyperresidues in Database and Family

Let R = 〈r1, r2, · · · , rc〉 be a “hyperresidue,” a c-tuple of amino acid types
(e.g. 〈Ala, Val, Ile〉). Intuitively speaking, the more frequently a particular hy-
perresidue occurs in functional proteins, the more important it is expected to
be for their folding and function. We can estimate the overall probability p of
hyperresidues from their frequencies in the database D of protein sequences and
corresponding structures:

p(R) = (#R in D) / |D| , (1)

where |D| represents the number of tuple instances in the database. When con-
sidering a specific protein family F with a multiple sequence alignment and
shared structure, we can estimate position-specific (i.e., for edge e) probability
of a hyperresidue:

pe(R) = (#R at e in F) / |F| , (2)

where |F| is the number of tuple instances at specific positions in the family
MSA, i.e. the number of sequences in the family MSA.

Estimation of probabilities from frequencies is valid only if the frequencies are
large. Thus the general probability estimated from the whole database (Eq. 1)
is more robust than the position-specific from a single family (Eq. 2). However,
family-specific information is more valuable as it captures the evolutionarily-
preserved interactions in that family. To combine these two aspects, we adopt
the treatment of sparse data sets proposed by Sippl [25]:

qe(R) = ω1 · p(R) + ω2 · pe(R) , (3)

but employing weights suitable for our problem:

ω1 = 1/(1 + |F|ρ) and ω2 = 1 − ω1 , (4)

where ρ is a user-specified parameter that determines the relative contributions
of database and family. Note that when ρ = 0, qe(R) = p(R) and the family-
specific information is ignored; whereas when ρ = ∞, qe(R) = pe(R) and the
database information is ignored. Using a suitable value of ρ, we will obtain a
probability distribution that is close to the overall database distribution for a
small family but approximates the family distribution for a large one.
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2.2 Multi-order Potential Score for Hyperresidues

Since we have multi-order edges, with lower-order subsets included alongside
their higher-order supersets, we must ensure that these edges are not redundant.
In other words, a higher-order edge should only include information not captured
by its lower-order constituents. The inclusion-exclusion principle ensures non-
redundancy in a probability expansion, as Simons et al. [10] demonstrated in
the case of protein structure prediction. We define an analogous multi-order
potential score for hyperresidues at edges of orders 1, 2, and 3, respectively, as
follows:

φvi (rα) = log qvi(rα) , (5)

φvivj (rαrβ) = log
qvivj (rαrβ)

qvi(rα) · qvj (rβ)
, (6)

φvivjvk
(rαrβrγ) = log

qvivjvk
(rαrβrγ) · qvi(rα) · qvj (rβ) · qvk

(rγ)
qvivj (rαrβ) · qvivk

(rαrγ) · qvjvk
(rβrγ)

. (7)

Here, φvi(rα) captures residue conservation at vi; φvivj (rαrβ) captures pairwise
hyperconservation and is zero if vi and vj are not in contact or their residue
types are completely independent; φvivjvk

(rαrβrγ) captures 3-way hyperconser-
vation and is zero if vi, vj , and vk are not in contact or their residue types are
completely independent. The potential score of higher-order hyperresidues can
be defined similarly. The potential score of a higher-order hyperresidue contains
no information redundant with that of its lower-order constituents.

2.3 Edge Weights

In the hypergraph model, edge weights measure evolutionary optimization of
higher-order interactions. For a protein or a set of proteins S ⊆ F , we can evalu-
ate the significance of an edge as the average potential score of the hyperresidues
appearing at the positions forming the edge:

w(e) =
∑

R

#R at e in S
|S| · φe(R) . (8)

2.4 Edge Weights for Recombination

A particular form of edge weights serves as a guide for breakpoint selection in
site-directed recombination. Suppose a set S ⊆ F of parents is to be recombined
at a set X = {x1, x2, · · · , xn} of breakpoints, where xt = vi indicates that
breakpoint xt is between residues vi and vi+1. We can view recombination as
a two-step process: decomposing followed by recombining. In the decomposing
step, each protein sequence is partitioned into n + 1 intervals according to the
breakpoints, and the hypergraph is partitioned into n + 1 disjoint subgraphs by
removing all edges spanning a breakpoint. The impact of this decomposition can
be individually assessed for each edge, using Eq. 8 for the parents S.
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In the recombining step, edges removed in the decomposing step are recon-
structed with new sets of hyperresidues according to all combinations of parent
fragments. The impact of this reconstruction can also be individually assessed
for each edge, yielding a breakpoint-specific weight:

w(e, X) =
∑

R

#R at e in L
|L| · φe(R) . (9)

In this case, the potential score of hyperresidue R is weighted by the amount of
its representation in the library L. Note that we need not actually enumerate
the set of hybrids (which can be combinatorially large) in order to determine
the weight, as the frequencies of the residues at the positions are sufficient to
compute the frequencies of the hyperresidues.

The combined effect of the two-step recombination process on an individual
edge, the edge perturbation, is then defined as the change in edge weight:

∆w(e, X) = w(e) − w(e, X) . (10)

If all vertices of e are in one fragment, we have w(e) = w(e, X) and ∆w(e, X) = 0.
The edge perturbation thus integrates essential information from the database,
family, parent sequences, and breakpoint locations.

3 Optimization of Breakpoint Locations

Given parent sequences, a set of breakpoints determines a hybrid library. The
quality of this hybrid library can be measured by the total perturbation to all
edges due to the breakpoints. The hypothesis is that the lower the perturbation,
the higher the representation of folded and functional hybrids in the library. We
formulate the breakpoint selection problem as follows.

Problem 1. c-RECOMB. Given Gc = (V, Ec, w) and a positive integer n, choose
a set of breakpoints X = {x1, x2, · · · , xn} minimizing

∑
e∈Ec

∆w(e, X).
Recall from Sec. 2 that Gc represents a hypergraph with edge order uniformly c
(where edges with order less than c are also represented as order-c edges).

This hypergraph partitioning problem is significantly more specific than gen-
eral hypergraph partitioning, so it is interesting to consider its algorithmic dif-
ficulty. As as we will see in Sec. 3.1, c-RECOMB is NP-hard for c = 4 (and
thus also for c > 4), although we provide polynomial-time solutions for c = 2 in
Sec. 3.2 and c = 3 in Sec. 3.4.

A special case of c-RECOMB provides an efficient heuristic approach to min-
imize the overall perturbation. By minimizing the total weight of all edges
EX removed in the decomposing step, fewer interactions need to be recovered
in the recombining step.

Problem 2. c-DECOMP. Given Gc = (V, Ec, w) and a positive integer n, choose
a set of breakpoints X = {x1, x2, · · · , xn} minimizing

∑
e∈EX

w(e).
c-DECOMP could also be useful in identifying modular units in protein struc-
tures, in which case there is no recombining step.



Hypergraph Model of Multi-residue Interactions in Proteins 21

3.1 NP-Hardness of 4-RECOMB

4-RECOMB is combinatorial in the set X of breakpoints and the possible con-
figurations they can take relative to each edge. The number of possible libraries
could be huge even with a small number of breakpoints (e.g. choosing 7 break-
points from 262 positions for beta-lactamase results in on the order of 1013 possi-
ble configurations). The choices made for breakpoints are reflected in whether or
not there is a breakpoint between each pair of sequentially-ordered vertices of an
edge, and thus in the perturbation to the edge. We first give a decision version of
4-RECOMB as follows and then prove that it is NP-hard. Thus the related opti-
mization problem is also NP-hard. Our reduction employs general hypergraphs;
analysis in the geometrically-restricted case remains interesting future work.

Problem 3. 4-RECOMB-DEC. Given G4 = (V, E4, w), a positive integer n, and
an integer W , does there exist a set of breakpoints X = {x1, x2, · · · , xn} such
that

∑
e∈E4

∆w(e, X) ≤ W .

Theorem 3.1. 4-RECOMB-DEC is NP-hard.

Proof. We reduce from 3SAT. Let φ = C1 ∧ C2 ∧ · · · ∧ Ck be a boolean formula
in 3-CNF with k clauses. We shall construct a hypergraph G4 = (V, E4, w) such
that φ is satisfiable iff there is a 4-RECOMB-DEC solution for G4 with n = 3k
breakpoints and W = −|E4|. (See Fig. 2.). For clause Ci = (li,1 ∨ li,2 ∨ li,3) in
φ, add to V four vertices in sequential order vi,1, vi,2, vi,3, and vi,4. Elongate
V with 3k trivial vertices (v′j in Fig. 2), where we can put trivial breakpoints
that cause no perturbation. Let us define predicate b(i, s, X) = vi,s ∈ X for
s ∈ {1, 2, 3}, indicating whether or not there is a breakpoint between vi,s and
vi,s+1. We also use indicator function I to convert a boolean value to 0 or 1.
We construct E4 with three kinds of edges: (1) For the 4-tuple of vertices for
clause Ci, add an edge e = 〈vi,1, vi,2, vi,3, vi,4〉 with ∆w(e, X) = −I{b(i, 1, X) ∨
b(i, 2, X)∨b(i, 3, X)}. (2) If two literals li,s and lj,t are identical, add an edge e =
〈vi,s, vi,s+1, vj,t, vj,t+1〉 with ∆w(e, X) = −I{b(i, s, X) = b(j, t, X)}. (3) If two
literals li,s and lj,t are complementary, add an edge e = 〈vi,s, vi,s+1, vj,t, vj,t+1〉
with ∆w(e, X) = −I{b(i, s, X) 
= b(j, t, X)}.

There are 7k vertices and at most k+3
(
k
2

)
= O(k2) edges, so the construction

takes polynomial time. It is also a reduction. First, if φ has a satisfying assign-
ment, choose breakpoints X = {vi,s|li,s is TRUE} plus additional breakpoints
between the trivial vertices to reach 3k total. Since each clause is satisfied, one
of its literals is true, so there is a breakpoint in the corresponding edge e and its
perturbation is −1. Since literals must be used consistently, type 2 and 3 edges
also have −1 perturbation. Thus 4-RECOMB-DEC is satisfied with n = 3k and
W = −|E4|. Conversely, if there is a 4-RECOMB-DEC solution with breakpoints
X , then assign truth values to variables such that li,s = b(i, s, X) for s ∈ {1, 2, 3}
and i ∈ {1, 2, · · · , k}. Since perturbation to type 1 edges is −1, there must be
at least one breakpoint in each clause vertex tuple, and thus a true literal in
the clause. Since perturbation to type 2 and 3 edges is −1, literals are used
consistently.
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Fig. 2. Construction of hypergraph G4 = (V, E4, w) from an instance of 3SAT φ =
(z1∨z̄2∨z3)∧(z2∨z3∨z̄4). Type 1 edges e1 and e2 ensure the satisfaction of clauses (−1
perturbation iff there is a breakpoint iff the literal is true and the clause is satisfied),
while type 3 edge e3 and type 2 edge e4 ensure the consistent use of literals (−1
perturbation iff the breakpoints are identical or complementary iff the variable has a
single value).

We note that 4-RECOMB-DEC is in NP, since given a set of breakpoints
X for parents S we can compute ∆w(e, X) for all edges in polynomial time
(O(S4E)), and then must simply sum and compare to a provided threshold.

3.2 Dynamic Programming Framework

Despite the NP-hardness of the general sequentially-constrained hypergraph par-
titioning problem c-RECOMB, the structure of the problem (i.e. the sequential
constraint) leads to efficient solutions for some important cases. Suppose we
are adding breakpoints one by one from left to right (N- to C-terminal) in the
sequence. Then the additional perturbation to an edge e caused by adding break-
point xt given previous breakpoints Xt−1 = {x1, x2, · · · , xt−1} can be written:

∆∆w(e, Xt−1, xt) = ∆w(e, Xt) − ∆w(e, Xt−1) , (11)

where X0 = ∅ and the additional perturbation caused by the first breakpoint
is ∆∆w(e, X0, x1) = ∆w(e, X1). Reusing notation, we indicate the total ad-
ditional perturbation to all edges as ∆∆w(E, Xt−1, xt). Now, if the value of
∆∆w(E, Xt−1, xt) can be determined by the positions of xt−1 and xt, inde-
pendent of previous breakpoints, then we can adopt the dynamic programming
approach shown below. When the additional perturbation depends only on xt−1
and xt, we write it as ∆∆w(E, xt−1, xt) to indicate the restricted dependence.

Let d[t, τ ] be the minimum perturbation caused by t breakpoints with the
rightmost at position τ . If, for simplicity, we regard the right end of the sequence
as a trivial breakpoint that causes no perturbation, then d[n + 1, |V |] is the
minimum perturbation caused by n breakpoints plus this trivial one, i.e. the
objective function for Problem 1. We can compute d recursively:

d[t, τ ] =

{
∆w(E, {τ}), if t = 1 ;
min

λ≤τ−δ
{d[t − 1, λ] + ∆∆w(E, λ, τ)}, if t ≥ 2 . (12)

where δ is a user-specified minimum sequential distance between breakpoints.
The recurrence can be efficiently computed bottom-up in a dynamic program-
ming style, due to its optimal substructure. In the following, we instantiate this
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Fig. 3. All breakpoint configurations that cause additional perturbation to an edge as
breakpoints in a c-RECOMB problem are added one by one from left to right in the
sequence. The dynamic programming formulation requires that we be able to distin-
guish the configurations from each other and from configurations with no additional
perturbation. For an order-2 edge 〈vi, vj〉, there is additional perturbation if and only
if the current breakpoint (red) is added between vi and vj and the previous breakpoint
(green) is to the left of vi. Similarly, the configurations on an order-3 edge 〈vi, vj , vk〉 can
be distinguished by the positions of the current breakpoint (red) and the preceding one
(green) with respect to the intervals [vi, vj ] and [vj , vk]. However, for an order-4 edge,
configurations 6 and 7 are ambiguous with respect to the intervals of 〈vi, vj , vk, vl〉.
We cannot be certain about the existence of a potential breakpoint between vi and vj

(blue) without potentially looking back at all previous breakpoints (green ellipses).

dynamic programming formulation with different forms of ∆∆w for different
cases of c-RECOMB and c-DECOMP. Due to space limitations, time complex-
ity analyses are omitted.

The special case of 2-DECOMP (disruption of pairwise interactions) has been
previously solved as a shortest path problem [24]. A complexity analysis account-
ing for both the edge weight calculation and dynamic programming shows that
the total time is O(S2E + V E + nV 2).

The instantiation for 2-RECOMB is as follows. Each order-2 edge 〈vi, vj〉
has two states: either there is breakpoint between vi and vj or not (Fig. 3).
The state of e is changed by adding breakpoint xt iff xt−1 < vi < xt < vj .
Thus the additional perturbation caused by adding xt can be determined by
the positions of xt−1 and xt, and is independent of previous breakpoints. Our
dynamic programming framework Eq. 12 is therefore applicable to 2-RECOMB;
the time complexity is O(S2E + V E + nV 2).

3.3 Reduction from c-DECOMP to 2-DECOMP

A significant property of our multi-order potential score (Sec. 2.2) is that the
score of a higher-order edge captures only higher-order hyperconservation and
contains no information about its lower-order constituents. Thus in the decom-
position phase, a higher-order edge is broken if there is a breakpoint anywhere in
the set of residue positions it spans. The lack of breakpoints between any adjacent
pair of its vertices will be captured by the weight of the appropriate lower-order
constituent edge. By this reasoning, we can reduce the c-DECOMP problem to
the 2-DECOMP problem: given hypergraph Gc = (Vc, Ec, wc), construct graph
G2 = (V2, E2, w2) such that V2 = Vc and each edge ec = 〈v1, v2, · · · , vc〉 ∈ Ec is
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mapped to an edge e2 = 〈v1, vc〉 ∈ E2 connecting the first and last vertex of ec,
putting weight wc(ec) on w2(e2). There is a breakpoint decomposing ec in Gc iff
there is one decomposing e2 in G2. G2 can be constructed in O(V +E) time, and
optimal solutions for c-DECOMP on Gc correspond to optimal solutions for 2-
DECOMP on G2. Under this reduction (which adds only O(E) computation), the
total time complexity for c-DECOMP is O(SE+V E+nV 2). Thus protein modules
can be computed under c-DECOMP in polynomial time for any order of edge.

3.4 Dynamic Programming for 3-RECOMB

We have seen that the c-RECOMB problem is NP-hard when c≥4 (Sec. 3.1) and
solvable in polynomial time when c=2 (Sec. 3.2). In this section, we instantiate
our dynamic programming framework to give a polynomial-time solution when
c=3.

An order-3 edge has four possible states, according to whether or not there is
at least one breakpoint between each pair of its vertices listed in sequential order.
As Fig. 3 illustrates, given only xt−1 and xt, all breakpoint configurations that
cause additional perturbation can be uniquely determined, and the additional
perturbation can be computed as in Eq. 11. This edge perturbation calculation
meets the restriction required for our dynamic programming framework, and
Eq. 12 and be used to optimize 3-RECOMB in O(S3E + V E + nV 2) time.

3.5 Stochastic Dynamic Programming for 4-RECOMB

Tetrahedra are natural building blocks of 3D structures, and Delaunay tetra-
hedra in the protein core have been shown to capture interactions important
for protein folding [8]. Our results below show significant information in general
order-4 hyperconservation. In order to solve 4-RECOMB problems, we develop
here a heuristic approach based on stochastic dynamic programming. Unlike 2-
RECOMB and 3-RECOMB, the additional perturbation of a breakpoint cannot
always be determined by reference just to the current and previous breakpoint
locations. As Fig. 3 shows, given xt−1 and xt, there is ambiguity only between
configurations 6 and 7.

We can still employ the dynamic programming framework if we move from a
deterministic version, in which both the additional perturbation and next state
are known, to a stochastic version, in which they are predicted as expected
values. In the ambiguous case of configurations 6 and 7 with t ≥ 2, let us assume
that breakpoints before xt−1 are uniformly distributed in the sequence. Then the
probability of finding no breakpoint between vi and vj , i.e. being in configuration
6 rather than 7, is

p = (1 − vj − vi

xt−1
)t−2 , (13)

since vj−vi

xt−1
is the probability of a breakpoint being located between vi and vj and

t − 2 is the number of breakpoints before position xt−1. Thus for the ambiguous
cases, the expected additional perturbation to e caused by adding xt is

∆∆w(e, xt−1, xt, t) = p · ∆∆w6(e, xt−1, xt) + (1 − p) · ∆∆w7(e, xt−1, xt) , (14)
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where the subscript indicates the configuration. Note that, unlike our previous
formulations, the additional perturbation depends on the number of previous
breakpoints. Thus the time complexity of this stochastic dynamic programming
is increased to O(S4E + nV E + nV 2). This stochastic dynamic programming
technique can also be applied to c > 4 c-RECOMB problems, but the effective-
ness of the approximation is expected to decrease with an increasing number of
ambiguous states.

4 Results and Discussion

We demonstrate our hypergraph model and recombination planning algorithms
in analysis of the beta-lactamase protein family, since previous site-directed re-
combination experiments have employed beta-lactamase parents TEM-1 and
PSE-4 [23]. We identified 123 beta-lactamases for F , including TEM-1 and
PSE-4, with no more than 80% sequence identity, and constructed a multiple
sequence alignment with at most 20% gaps in any sequence. PDB file 1BTL was
used as the representative family structure. Vertices were considered as located
at the average position of non-hydrogen side-chain atoms, and edges formed for
sets of vertices whose positions were within 8 Å of each other.

For the database D, we started with a subset of sequences culled from the
protein data bank according to structure quality (R-factor less than 0.25) and
mutual sequence identity (at most 60%) by PISCES [26]. To minimize the effect
of structural errors on statistical results, chains with nonconsecutive residue
numbers, gaps (Cα-Cαdistance greater than 4.2 Å between consecutive residues),
or incorrect atom composition of residues were excluded [9]. This left 687 chains.
Contact maps were constructed as with the family.

We first considered the information content in higher-order interactions. Fig. 4
shows the distributions of hyperresidue potential scores in both the database and
family, for increasing hyperresidue order. By the non-redundant decomposition,
a higher-order potential score would be 0 if the lower-order terms were inde-
pendent. Non-zero φ(R) scores represent positive and negative correlation. The
figure shows that there is clearly information in the sets of higher-order terms.
Note that the family distributions are biased (µ not at zero), presumably because
many sets of amino acid types are not observed in the MSA. Family distributions
are also more informative than database ones (larger σ for all orders). Dicysteine
pairs are expected to be particularly informative (i.e. cysteines in disulfides are
not independent), as reflected in the clear outliers marked in the c = 2 database
histogram; there are no disulfides in the beta-lactamase family.

A limited amount of data is currently available for evaluating the experimen-
tal effectiveness of a recombination plan. Here, we use the beta-lactamase hybrid
library of [23]. For each hybrid in the library, we computed both the total poten-
tial score and the mutation level. The total potential score is the sum, over all
edges up to order-4, of the edge potential (Eq. 5– 7) for the residues in the hybrid
sequence. The mutation level is the number of residues in the hybrid that differ
from the closest parent. While hybrids with small mutation levels are expected
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Fig. 4. Multi-order potential scores, derived from the database (top) and the beta-
lactamase family (bottom). For each order c of hyperresidues, the distribution of po-
tential scores is shown (pooled over all edges for the family version).
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Fig. 5. Potential score φ(E) (sum over all interactions up to order-4) vs. mutation level
m (# residues different from the closest parent) for all hybrids in a beta-lactamase li-
brary. Blue dots indicate hybrids, and red circles those determined to be functional [23].

to be functional, our potential yields high scores for the functional hybrids at
high mutation levels (Fig. 5).

Next we applied our dynamic programming algorithms to optimize 7-break
point sets for different beta-lactamase parents (Fig. 6), using minimum effective
fragment length δ = 10, database/family weight ρ = 0.01, and maximum order
of edges c = 3. We found the results to be insensitive to ρ, beyond very small
values placing all the emphasis on the database (data not shown). In the 1-parent
case, the plan amounts to decomposing the protein (PDB file 1BTL as represen-
tative family structure) into modules preserving multi-order interactions. The
2-parent and 12-parent cases illustrated here would be useful in site-directed re-
combination experiments. We note that some locations can “float” due to parent
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Fig. 6. Beta-lactamase breakpoint optimization. (Left) Optimized breakpoint locations
when planning with 1, 2, or 12 parents. The sequence is labeled with residue index, with
helices in red and β-sheets in blue. (Right) 3D structure fragments (PDB id: 1BTL)
according to optimized breakpoint locations for the 1-parent case.
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Fig. 7. Distribution of differences in edge perturbations between the two ambiguous
configurations (6 and 7) in 4-RECOMB for the beta-lactamases TEM-1 and PSE-4.
Differences (ε) are expressed in standard deviations units.

sequence identity (e.g. in positions 17–20 with 2 parents). These all represent vi-
able experiment plans, optimizing multi-order interactions according to sequence
characteristics of different parents.

Finally, we considered the error that could be caused by the stochastic approx-
imation in solving 4-RECOMB. Fig. 7 shows the distribution, over all
order-4 edges, of differences in perturbations between the ambiguous states. The
differences are expressed in terms of perturbation standard deviations
ε = |∆∆w6−∆∆w7|

(std(∆∆w6)+std(∆∆w7))/2 . Edges with identical residues at vi or vj are ex-
cluded, since the perturbation is necessarily the same. Even so, in a majority
of cases the heuristic would lead to no or very small error. Thus the stochas-
tic dynamic programming will provide a near optimal solution, which makes it
reasonable to include 4-way interactions in practice.

5 Conclusion

We have developed a general hypergraph model of multi-order residue interac-
tions in proteins, along with algorithms that optimize site-directed recombina-
tion experiments under the model. The model has a number of other potential
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applications for which multi-order interactions are significant, after suitable pa-
rameterization, including prediction of ∆G◦ of unfolding, ∆∆G◦ of mutagenesis,
and modularity of protein structures. The algorithms likewise can be employed
using potentials that incorporate additional information (e.g. weighted for active
sites). Interesting future work includes selection of parent sequences, separation
of stability-critical and functionality-critical multi-residue interactions, interpre-
tation of experimental data, and feedback of experimental results to subsequent
rounds of planning.
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