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ABSTRACT

Motivation: Recombination plays an important role in the evolution of

manypathogens,suchasHIVormalaria.Despitesubstantial priorwork,

there is still a pressingneed for efficient andeffectivemethodsof detect-

ing recombination and analyzing recombinant sequences.

Results:WeintroduceRecco,anovel fastmethod that, givenamultiple

sequence alignment, scores the cost of obtaining one of the sequences

from the others by mutation and recombination. The algorithm comes

with an illustrative visualization tool for locating recombination break-

points.Weanalyze thesequencealignmentwith respect toall choicesof

the parameter a weighting recombination cost against mutation cost.

The analysis of the resulting cost curve yields additional information as

to which sequence might be recombinant. On random genealogies

Recco is comparable in its power of detecting recombination with

the algorithmGeneconv (Sawyer, 1989). For specific relevant recomb-

ination scenarios Recco significantly outperforms Geneconv.

Availability: Recco is available at http://bioinf.mpi-inf.mpg.de/recco/

Contact: jmaydt@mpi-inf.mpg.de

1 INTRODUCTION

In comparison with tree-based phylogenetic analysis procedures,

procedures for analyzing recombination are immature. Recent

power studies on recombination detection methods uncovered

that it can be hard even to decide whether there is recombination

in a set of aligned sequences (Posada and Crandall, 2001; Wiuf

et al., 2001). The questions, which sequence is the recombinant

and where there are recombination breakpoints, are even more

challenging.

Methods for analyzing recombination in molecular sequences fall

into at least four categories: (1) recombination detection methods,

(2) methods for deriving bounds on the number of recombination

events (Song and Hein, 2005; Song et al., 2005), (3) network meth-

ods such as SplitsTree (Huson, 1998) and (4) inference methods

based on the coalescent (Kuhner et al., 2000; Fearnhead and

Donnelly, 2001). Each category is appropriate for different problem

settings and can provide independent information on the recomb-

ination signal contained in a dataset. As recombination detection

programs are conceptually closest to our approach, we limit our

comments to this category in the following paragraphs.

In the past 20 years, more than 20 methods have been developed

for detecting the presence of recombination in a sequence dataset.

More details and an evaluation of their accuracy can be found in

recent power studies (Brown et al., 2001; Posada and Crandall,

2001; Wiuf et al., 2001) and in book chapters (Salminen, 2003;

Husmeier and Wright, 2004) dealing with recombination detection.

Links to implementations are on the website of D. Robertson (http://

bioinf.man.ac.uk/~robertson/recombination/).

The earliest methods use statistical tests for checking whether

substitutions in the alignment are non-uniformly distributed, i.e.

whether substitutions are significantly clustered owing to recomb-

ination, back mutation or other effects. Popular methods using

this principle are the maximum x2-test (Smith, 1992; Spencer,

2003) and Geneconv (Sawyer, 1989). Geneconv searches for the

longest conserved fragment between two sequences and determines

whether it is significant. Extensions also allow for including muta-

tions in the fragments. Despite the lack of any explicit model of

evolution, substitution distribution methods are quite competitive

(Posada and Crandall, 2001), with Geneconv performing as one of

the best methods.

Many other methods detect a change of the phylogenetic distance

signal in adjacent areas of the alignment. Some popular methods

are PLATO (Grassly and Holmes, 1997), TOPAL (McGuire and

Wright, 2000), PhyPro (Weiller, 1998) and SimPlot (Lole et al.,
1999). These methods either use a global reference tree or a sliding

window to detect local changes in the topology of the phylogenetic

distance signal. A global reference tree is problematic for strong

recombination signals, as a dominant phylogenetic tree cannot

be identified anymore and artifacts are introduced into the tree

(Schierup and Hein, 2000). A fixed window size determines

the trade-off between localizing the breakpoints accurately and

the ability to correctly infer recombination. Even though all these

approaches use amodel of (tree-like) evolution, they lack amodel for

recombination. Consequently, they only look for indirect evidence

of recombination and thus may falsely detect recombination.

Another group of methods is more closely related to the coales-

cent framework as they infer a restricted version of the evolutionary

history subject to recombination. RecPars (Hein, 1993) allows for a

different tree-like evolutionary history at each position and tries to

heuristically minimize the cost for substitution at each position

under the associated tree as well as the cost for topology changes

along the sequence of trees. Thus, RecPars does away with the

window-size parameter, but adds recombination and mutation

cost parameters. Husmeier and McGuire (2003) translate the idea

of RecPars into a statistical framework and maximize the likelihood

of topology changes and mutations. While being accurate, a major

drawback of this approach is the high computational effort that

makes this method inapplicable for datasets with more than a

few sequences.

We present Recco, a fast and simple method for detecting

recombination in a set of sequences and locating putative recomb-

ination breakpoints that is based on cost minimization and dynamic

programming. The basic idea is to construct each sequence in the�To whom correspondence should be addressed.
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alignment (temporarily considered the putative recombinant) in

turn, from the other sequences in the alignment using only the

mutation and recombination operators. The output of Recco

bears some resemblance with SimPlot (Lole et al., 1999) and rep-

resents local sequence similarity of the putative recombinant with

the other sequences. In contrast to SimPlot, there is no need for

a sliding window and hence no limitation of spatial resolution.

The minimum cost solution identifies the best recombination break-

points and also the parental sequences. Recco has only two tunable

parameters, recombination and mutation cost. In practice, we only

need to consider a single parameter a representing the cost of

mutation relative to recombination. We present an approach for

finding the values for a at which the solution changes structurally.

This can be condensed further into a single indicator for the

presence of recombination in the alignment.

The dynamic program we use is based on the work of Kececioglu

and Gusfield (1998). It employs insertion, deletion, recombination

and mutation for producing a single sequence from two other

sequences. Our method is a restricted version of the dynamic pro-

grams introduced in Lajoie and El-Mabrouk (2005) and Spang et al.
(2002). Lajoie and El-Mabrouk use recombination, mutation and

gene conversion in order to explain a single sequence from an

alignment of other sequences. Spang et al. (2002) allow for inser-

tion, deletion, recombination and mutation in order to derive a

single sequence from an alignment of other sequences. Even though

such a more general formulation is usually preferable, our visual-

ization technique introduced in Section 2.3.1 depends on the restric-

tions that we have imposed. More general formulations would

need at least three dimensions for visualization. The parametric

analysis which we describe in Section 2.3.2 is also unique to our

work, but in principle applicable to other methods as well. For

example, RecPars could benefit from this type of analysis.

2 METHODS

In order to illustrate our method, we use the same sequence data throughout

the discussion. The data were generated by the program Seq-Gen (Rambaut

and Grassly, 1997) using the genealogy depicted in Figure 1. First we

eliminate the sequence R2 from the dataset. Then the dataset does not

contain two similar recombinants which simplifies the problem for purposes

of exposition. The general problem is discussed in the results section. Hence,

sequence R1 is the only recombinant and is derived from an ancestor of A1 to

the left and an ancestor of B1 to the right. The breakpoint is located in the

middle of the alignment. The total length of the alignment is 100 nt. We used

the Jukes–Cantor model of nucleotide evolution (Jukes and Cantor 1969)

with an average number of 0.25 substitutions per site from the root to any of

the tips of the genealogy. The full dataset including sequence R2 is analyzed

in the Results section.

2.1 Recombination analysis through

cost minimization

Let A be a multiple sequence alignment withM rows and N columns, with Ai

representing the i-th sequence and Aip denoting the p-th nucleotide of the i-th

sequence. Let S¼ s1, . . . , sN be the sequence of the putative recombinant and

define m(i, p) as the cost of substituting Aip with sp. Recombination cost is

measured by r(i, j, p) and represents the cost of recombining Ai on the left

side of position p with Aj on the right side, hence resulting in the sequence

Ai1, . . . ,Ai,p�1, Ajp, . . . ,AjN. Usually it makes sense to set r(i, i, p)¼ 0 for all

i and p, as this does not represent a visible recombination. Our goal is to find

a sequence of mutation and recombination events that produce S from the

sequences in A. In the formal model we use a decision variable

kp 2 {1, . . . ,M} to determine the sequence of A explaining sp, so that

S is explained by Ak1‚ 1‚ . . .‚AkN ‚N . The most parsimonious solution then

minimizes the following cost function with respect to k ¼ (k1, . . . , kN):

min
k

waðkÞ‚ ð1Þ

where waðkÞ ¼ ð1 � aÞ
XN
p¼2

rðkp�1‚kp‚pÞ þ a
XN
p¼1

mðkp‚pÞ: ð2Þ

A solution k infers a mutation event for each position p where Akp‚p 6¼ sp
and a recombination event for each p where kp�1 6¼ kp. The parameter

a 2 [0,1] weighs mutation against recombination cost and accounts for

the fact that recombination can always be explained by mutation. If a is

close to zero the solution favors mutations. For a ¼ 1 recombination costs

nothing and the optimal solution uses the nucleotide Aip most similar to sp
at each position p. In the following, we use unit cost for recombination

and mutation, i.e. r(i, j, p) ¼ d(i, j) and m(i, p) ¼ d(Aip, sp) where d is the

Kronecker delta function.

While a selects the global preference for recombination against mutation,

m(i, p) and r(i, j, p) can be adapted to model local changes in recombination

and mutation frequency and lead to a simple strategy for incorporating prior

knowledge on the recombination and mutation process. A mutation hotspot

or variable region p0 might have a lower cost m(i, p0) for substitution than

other positions p. Also, mutation to a rare nucleotide can incur a higher cost

than mutation to a common nucleotide, thereby accommodating nucleotide

composition bias. The recombination cost parameter r(i, j, p) can also vary

among positions and capture the lower cost at recombination hotspots.

However, it is also possible to model much more complex effects, as

r(i, j, p) also depends on the sequence pair (i, j). For example, several

mechanisms proposed for HIV recombination (Negroni and Buc, 2001)

depend on the donor sequence i, on the acceptor sequence j or on the

pair of parental sequences (i, j) that produce the recombinant. Such effects

can easily be accounted for by increasing or decreasing the respective

recombination cost r(i, j, p).

2.2 Formulation as a dynamic program

Despite its expressive power, the proposed optimization problem can

be solved efficiently. As the cost function (1) is separable in kp, we can

minimize it by dynamic programming, see Figure 2 for the corresponding

tableau. To be more specific, define a subproblem of (1) by only considering

the columns 1, . . . , p of the alignment, with the additional constraint that

solutions end using some sequence kp. The minimal cost solution of this

subproblem is the minimal cost for generating S via mutation and recomb-

ination up to and including position p, using all sequences in A and ending

in sequence kp:

f kp‚ p ¼ min
k1‚...‚kp�1

ð1 � aÞ
Xp
q¼2

rðkq�1‚kq‚qÞ þ a
Xp
q¼1

mðkq‚qÞ
( )

ð3Þ

A2 A1 B1 B2R1

2
3
4

8
time

1

R2

0.5

Fig. 1. The genealogy used for generating the example dataset for Figures 3,

4 and 6. R1 and R2 are created by recombining sequence A1 to the left with

sequence B1 to the right. The breakpoint occurs at themiddle of the sequence.

Time is scaled so that there are 0.25 mutations per position from the root to

a tip of the tree, on average.
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This can be rewritten as the following forward recurrence for all

p ¼ 1, . . . ,N as the optimal value of kp does not depend on k1, . . . , kp�2:

f kp‚p ¼ min
kp�1

n
f kp�1‚p�1 þ ð1 � aÞrðkp�1‚kp‚pÞ þ amðkp‚pÞ

o
f j‚ 0 ¼ 0 for all j:

ð4Þ

Each fjp represents the minimal cost for the subproblem restricted to

columns 1, . . . , p. The minimal cost for the complete problem is then

min
j

f jN and the optimal solution can be retrieved by backtracing. The

time complexity is O(NM2) for the forward run as there are N stages

with each stage performing M2 operations. The backtracing step needs

O(NM) operations and O(NM) space as the tableau fjp has to be stored

and each value is accessed exactly once.

Alternatively to the forward recurrence, we can also use the backward

recurrence for p ¼ N � 1, . . . , 0 and describe the minimal cost of a solution

generating S backwards, starting from position N up to and excluding

position p ending in sequence kp. The backward recurrence is

bkp‚p ¼ min
kp+1

n
bkp+1‚p+1 þ ð1� aÞrðkp‚kp+1‚p + 1Þ þamðkp+1‚p + 1Þ

o
bi‚n ¼ 0 for all i:

ð5Þ

2.3 Sensitivity analysis

Usually, we are not only interested in the optimal solution itself, but also in

the sensitivity of the solution with respect to small changes of the involved

variables. Sensitivity is commonly defined in one of two ways: sensitivity

with respect to small changes of the optimal solution or sensitivity with

respect to small changes of input parameters, such as a, m(i, p) and r(i, j, p)

in our case. A sensitivity analysis with respect to the optimal solution,

subsequently called ‘analysis of the solution’, studies the cost surface in

the neighborhood of the optimal solution. The second approach, sub-

sequently called ‘parametric analysis’, quantifies how the optimal solution

depends on a set of parameters. More exactly, it partitions the space of

parameter settings into regions that yield the same optimal solution and

assesses the impact of uncertainty of parameters, e.g. due to measurement

or estimation errors, on the structure of the optimal solution. Both types of

analyses have been applied separately to the problem of sequence alignment;

see e.g. Mevissen and Vingron (1996) and Zimmer and Lengauer (1997).

In the following we use both types of analysis.

2.3.1 Analysis of the solution. In the following we transfer an idea by

Mevissen and Vingron (1996) from traditional sequence alignment to our

problem.

For each position p and each sequence i we compute the minimum cost

cip of a solution that runs through nucleotideAip. In other words, we constrain

k to solutions with kp ¼ i. We can compute the minimal cost of the con-

strained problem by adding the values of the forward and backward tableaus

cip ¼ fip + bip, since fip is the minimum cost of generating the recombinant

up to and including position p ending in sequence i, and bip is the minimum

cost starting from position N up to and excluding position p ending in

sequence i (Fig. 2).

We define a robustness measure rip by rip ¼ min
j6¼i

fcjpg � cip. In words,

rip is the sacrifice in cost that is incurred by forcing a solution that avoids

position p in sequence i in our alignment. If rip is small then the choice of

position p in sequence i does not buy us much in terms of alignment

cost. Larger values of rip indicate more robust sequence positions. The

values cip and rip can be computed in time O(MN) for all combinations

of p and i if the forward and backward tableau fip and bip are given.

Both values, cip and rip, are useful in our scenario. cip is particularly

attractive for visualizing the optimal solution of the dynamic program.

All nucleotides Aip that are part of an optimal solution have the same,

minimal cip. We can visualize these by coloring the background of the

alignment Aip according to the values cip (Fig. 3a). For positions at

which the solution is uncertain or close to a recombination breakpoint,

low values of cip occur for several sequences to indicate the ambiguity.

On the other hand, if we ask how robust the choice of a specific nucleotide

Aip is, we can rely on the values of rip. Regions that are uncertain are

characterized by a lower robustness of the optimal solution (Fig. 3b).

2.3.2 Parametric analysis. Even though the analysis of the previous

section analyzes the cost surface of solutions close to the minimum solution

and also results in an appealing visual representation, it cannot capture the

uncertainty caused by varying the input parameters. In particular, for many

pathogens we do not have reliable estimates of the recombination rate and

cannot set the parameter a appropriately. But even if we know the recomb-

ination rate and the appropriate setting of a, it is still informative to find the

region of a for which the optimal solution does not change structurally. In the

following we study howfa(k) changes as a is varied, both for a fixed solution

k and for k subject to optimization.

If k is fixed, fa(k) is linear in a and has the derivative

@waðkÞ
@a

¼ � RþM‚

where

R ¼
XN
p¼2

rðkp�1‚kp‚pÞ and M ¼
XN
p¼1

mðkp‚pÞ: ð6Þ

R and M are the total cost of recombination and mutation not weighted

by (1 � a) or a. If k is also subject to optimization, the minimal cost is a

piecewise-linear concave function gðaÞ ¼ min
k

waðkÞ. Each linear piece

corresponds to a fixed set of minimum cost solutions. This set can be

retrieved by the dynamic program and only changes at the edges of the

piecewise-linear cost function. Hence, it is simple to retrieve all minimum

cost solutions for a 2 [0,1], given the parametric cost curve g.

In order to compute the parametric cost curve g, we use the algorithm of

Eisner and Severance (1976). In order to apply this algorithm, we need a

method for computing the optimal cost and the derivative at a given point a.

In our case it is simple to compute the minimal cost with the dynamic

program. To get the derivative, we extended the backtrace algorithm to

compute R and M.

The result of the parametric optimization for our example dataset is shown

in Figure 4, where each sequence of the alignment was taken as the putative

recombinant, in turn. Each linear piece of a cost curve is defined by some

A1 =

A2 =

A3=

S =

A

A

A

G

A

A

A

AG

G G

G

G

G

G

G

0 1 0 0

0 0 1 0

1 1 0 1

,1

,1

i

i

f

b
( , ,2)r i j

mutation cost
( ,1)m i

cost so far recombination
spot/cost

A1 =

A2 =

A3=

S =

A

A

A

G

A

A

A

AG

G G

G

G

G

G

G

A

A

A

G

A

A

A

AG

G G

G

G

G

G

G

0 1 0 0

0 0 1 0

1 1 0 1

0 1 0 0

0 0 1 0

1 1 0 1

,1

,1

i

i

f

b
( , ,2)r i j

mutation cost
( ,1)m i

cost so far recombination
spot/cost

Fig. 2. The structure of the dynamic program tableau. The circles represent

the values fip and bip of the tableau. The diamonds and the boxes specify the

place at which recombination and mutation occur, respectively. Inside the

boxes, the mutation cost relative to the putative recombinant S is given. The

vertical double lines separate the stages of the dynamic program and also

visualize the correspondence of the actual sequence Aip to the values fip and

bip. An example solution k¼ (2,2,1,1) explaining the putative recombinant S
by A1 and A2 is marked with a thick grey line and involves one recombination

and no mutation event.
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values of R and M and has the functional form (1 � a)R + aM. Hence,

we can read-off the values of R and M as the abscissa for a ¼ 0 and a ¼ 1,

respectively. For example, the first linear piece of each cost curve intersects

the origin and corresponds to a solution with R ¼ 0, that means without

recombination. All other solutions contain at least one recombination. The

unweighted cost for recombinations R is increasing with increasing a,

as mutation cost grows relative to recombination cost. The transition

from a solution containing only mutations to a solution with at least one

recombination is of particular interest. If the transition happens at a small

value of a, recombinations are introduced, even though their weighted cost

(1� a)r(i, j, p) is high relative to the cost of mutations. To be more specific,

if recombinations and mutations have unit cost, each recombination reduces

the number of mutations in the solution by (1 � a)/a. For instance, for

sequence R1 in Figure 4, we have a ¼ 0.077 and the sole recombination in

the solution associated with a 2 [0.077, 0.5] removes about 0.923/0.077 �
12 mutations. Hence, a small a value is indicative for a true recombinant

and can be used for filtering interesting sequences from the dataset. In the

following section we use a similar property in an automated method for

detecting recombinant sequences.

2.4 Recombination detection

The previous section introduced sensitivity analysis as a means of invest-

igating a sequence dataset manually and pointing out single recombination

events. In the following, we focus on extending this type of analysis

quantitatively, such that it can also be used in an automated procedure

discerning recombinant from non-recombinant datasets. This does not only

yield P-values for the presence of recombination, but also forms the basis

for the power study in Section 3. A quick overview of the features we

introduce in the following sections is given in Figure 5.

Given the segments of a cost curve ordered by increasing a, let Ri and

Mi, i ¼ 1, . . . ,K be the unweighted cost of recombination and mutation for

the i-th linear segment. The first feature that we introduce is the amount of

mutation cost saved per unit of recombination cost. More exactly, Ri+1 � Ri

is the additional amount of recombination cost incurred by solution i + 1, and

Mi � Mi+1 is the amount of mutation cost saved. The quotient Savingsi ¼
(Mi � Mi+1)/(Ri+1 � Ri) quantifies the additional amount of mutation cost

saved by each additional unit of recombination cost, where Savingsi is

decreasing with increasing i. Consequently, we define our first feature to be

MaxSavings ¼ max
i

Mi � Miþ1

Riþ1 � Ri

� �
¼ M1 � M2

R2 � R1

¼ Savings1 ð7Þ

Other features do not perform as well for recombination detection or are

equivalent to MaxSavings. One example is FirstAlpha, the smallest a-value

for which a recombination is introduced. Using simple geometric arguments

it can be shown that (1� FirstAlpha)/FirstAlpha¼ Savings1. This is a strictly

monotonic transformation as FirstAlpha 2 [0,1], and thus a P-value based

on FirstAlpha is exactly the same as one based on MaxSavings. Therefore,

we do not consider the feature FirstAlpha in our analysis. Another feature

that is related but not equivalent to MaxSavings is FirstAngle, the angle

in radians between the first and second linear segment of a cost curve (Fig. 5).

A large angle points to a significant decrease of mutation cost and an increase

of recombination cost. The last feature we propose is MaxCost, the max-

imum that the cost curve attains. This feature measures how hard it is to

derive the putative recombinant from the other sequences in the alignment.

The value of MaxCost depends mostly on the time when the sequence

(a)

(b)

Fig. 3. Result of the forward–backward algorithm for explaining sequence R1. We used unit cost for recombination and mutation and set parameter a to 0.2.

Thus, each recombination involves the same cost as four mutations. The background color represents the value of (a) the cost measure cip and (b) the robustness

measure rip. Red represents low cost and high robustness, while blue corresponds to the opposite. A white foreground color highlights mutations with respect to

R1. The optimal solution in (a) is a path from left to right using only cost-optimal nucleotides, and switches from sequenceA1 to sequence B1 at about themiddle

of the alignment. The true breakpoint in the middle of the alignment is marked by a dotted vertical line.
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Figure 3. As a changes from 0 to 1, the cost for mutation weighted by a

increases and the cost for recombination weighted by (1� a) decreases. The

cost curve of R1 shows the highest benefit from recombination. The first

recombination is introduced into the solution at a ¼ 0.077. This solution

remains optimal up to a¼ 0.5. Other sequences, such as B1, B2 or A2 do not

show a high preference for recombination.
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diverged from the other sequences in the dataset. A sequence that diverged

early in history tends to have a higher value of MaxCost than a sequence that

diverged only recently.

In general we cannot rely on absolute feature values in identifying

recombination. The features depend on parameters of the dataset, such as

sequence diversity or sequence length. Hence, we use a permutation test to

obtain P-values instead of absolute feature values for each sequence. The P-

value is computed by comparing the observed feature value with the feature

value expected under the null-hypothesis that no recombination occurred.

More exactly, we permute the columns of an alignment 100 times in order to

generate independent samples of datasets with the same sequence diversity,

but without a recombination signal. In the following, a sequence with a

P-value � 0.05 is assumed to be recombinant. As the number of sequences

is usually small, we do not consider any correction for multiple testing.

The P-values suggest whether a certain sequence is recombinant or not.

They do not imply that the whole dataset contains a significant amount of

recombination. In order to test the latter hypothesis we have to condense the

P-values or feature values for the whole dataset into a single P-value, while

controlling the level of false positives. A simple choice is to use the smallest

P-value over all sequences in the alignment and to apply a Bonferroni cor-

rection for multiple testing. This is very conservative and frequently reduces

power. Alternatively, we can compute the minimum, or the most extreme,

feature value over all sequences of a dataset and repeat this step for every

permutation. The resulting P-value for the whole dataset still controls the

false positive rate nicely and performs better than the Bonferroni correction.

Again, a significance cutoff of 0.05 is used to indentify recombination.

2.5 Detection of the breakpoint

The backtrace contains information on the recombination breakpoints of

a solution k. However, the inferred breakpoints depend on the selected

sequence S and on a. In the following, we present a method that assigns

P-values to each position without depending on S or a.

We address the dependence on a first. The method is based on a recomb-

ination profile pj, j ¼ 1, . . . ,N, that stores how much mutation cost can

be saved per unit of recombination cost if we introduce a recombination

at position j in the solution explaining a specific sequence S. More exactly,

for each linear piece i ¼ 1, . . . ,K of the parametric cost curve we denote

the set of breakpoints that occur in any optimal solution of i as Bi. Then

pj ¼ max
i¼2‚...‚K

f0g [ fSavingsi�1 j j 2 Big, where Savingsi�1 is the savings

value for solution i. pj thus stores the maximum Savings value that any

breakpoint at position j can achieve. To obtain P-values for each break-

point position, we use a similar approach as in Section 2.4: by computing

recombination profiles for column permutations of the original alignment,

we can estimate the distribution of pjs for each position j. The result is a

P-value for recombination at each position and for each sequence in the

alignment.

To detect breakpoints without referring to a specific sequence S, we
compute the maximum of pj over all sequences in the alignment for each

position j (Fig. 6). Computing P-values for the aggregated recombination

profile is then analogous to the procedure for a single sequence. Figure 6

shows that a fixed Savings value is more significant for a position close

to the boundary than for a position in the middle of the alignment. This is

due to the fact that recombinations close to the boundary of the alignment

exchange fewer nucleotides and thus cannot achieve high values of Savings.

Detecting the breakpoint position entails a multiple testing problem.

Each position has an expected false detection rate of 5% and even our

short example alignment could result in five falsely detected breakpoints,

on average. Therefore, we would have to adjust for multiple testing,

e.g. using the Bonferroni or false discovery rate method (Benjamini and

Hochberg, 1995). In order to do so, we would have to perform, say, 10 000

permutations per dataset in order to obtain accurate P-values after adjust-
ment. This is computationally forbidding in the context of a power study.

Thus, for this validation we only consider the basic methodology without

adjustment for multiple testing.

3 RESULTS

Validation is difficult for recombination detection programs and

even harder for programs finding the recombinant sequences.

One reason is that real datasets either show a recombination signal

that is easy to detect, or there is still uncertainty about whether

recombination actually took place, see e.g. Posada (2002). In

comparison, synthetic datasets have many advantages, such as an

unlimited amount of datasets and total control over the simulated

recombination scenario. Synthetic datasets are usually generated by

one of two approaches. The first is to randomly draw an ancestral

recombination graph given several population genetic parameters

(Griffiths and Marjoram, 1997) and then simulate sequences along

the resulting genealogy. Alternatively, we can specify a fixed genea-

logy for simulating sequences. The first approach works well for

comparing methods regarding their power of detecting recombina-

tion. The second approach allows studying the power of identifying

recombinant sequences or recombination breakpoints as both are

known. In the following we use both kinds of synthetic datasets in

order to compare our method with existing recombination detection

programs.

3.1 Random genealogies

In analogy to the study of Posada and Crandall (2001), we used the

coalescent to generate 1000 sequence datasets for different para-

meter combinations. For all simulations we chose the effective

population size Ne ¼ 1000, the sequence length of N ¼ 1000 nt,

a sample size of M ¼ 10 sequences and the Jukes–Cantor sub-

stitution model. We let the scaled recombination rate r and

the scaled mutation rate � vary such that r 2 {0, 1, 4, 16} and

� 2 {10, 30, 50, 100, 200}. For diploid populations the coalescent

defines � ¼ 4NemN and r ¼ 4NerN, where m is the mutation rate

per generation and loci, and r is the recombination rate per

generation and loci. Thus, our simulations correspond to r 2
{0, 2.5 · 10�7, 1 · 10�6, 4 · 10�6} and m 2 {2.5 · 10�6,

7.5 · 10�6, 1.25 · 10�5, 2.5 · 10�5, 5 · 10�5}. To obtain a

measure of the false detection rate, we also simulated data without

recombination and different mutation rates and rate variations

among sites. Rate variation was modeled using the gamma

distribution with shape parameter g. The gamma distribution was

approximated with eight rate categories (Yang, 1996). The simu-

lations without recombination used the same values for � and g 2
{0.01, 0.5, 2, 1}. A higher value of g represents a lower amount
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Fig. 6. The recombination profile for our example dataset is shown by white

circles. The background visualizes the P-value of a Savings value for each

position, computed from 104 permutations. The (true) breakpoint in the

middle of the alignment is highly significant.

J.Maydt and T.Lengauer

1068



of rate variation, and g ¼ 1 denotes no rate variation at all.

All simulations were carried out using treevolve (Grassly et al.,
1999). Treevolve did not terminate for recombination rates r � 32,

thus we could not cover the whole range of parameters as in Posada

and Crandall (2001). Moreover, treevolve generated datasets that

are different from the ones used in the original study. For compar-

ison, we report the results on our datasets for Geneconv (Sawyer,

1989), one of the best performing methods in the original study.

The parameters of Geneconv were set as in the original study, i.e.

using global permutation values and a gscale value of 0. A gscale

value of 0 does not allow for mismatches in the conserved fragments

between sequences and performed best for detecting recombination

in random genealogies.

The probability of detecting recombination for Geneconv and

the MaxSavings feature of Recco is depicted in Figure 7. The

other features we have proposed did not perform well in this

scenario and failed to detect recombination in many cases. Gene-

conv has a higher probability of detecting recombination than

MaxSavings, but does not control the false positive rate of 5%

for high mutation rates. Our permutation-based approach controls

the false detection rate always to a level below 5%. In order to

compare the two methods, we have adjusted theMaxSavings feature

such as to classify a dataset as recombinant if the P-values do

not exceed 0.12. This setting increases the false detection rate

to a level slightly below that of Geneconv, but also increases the

power to a comparable level. Thus, our method performs as well as

Geneconv in this scenario. However, we have reasons to believe

that the power of Recco is reduced by a simple limitation: if two

recombinants are similar, they are explained by mutation instead

of recombination. This is investigated in more detail in the next

subsection.

3.2 Fixed recombination scenarios

Fixed recombination scenarios can be used for studying the power

of identifying the recombinant or the recombination breakpoint, as

the recombination scenario is known in detail. We use a total of

four recombination scenarios. (S1) and (S2) are generated using the

genealogy in Figure 1, but (S1) does not contain sequence R2.

(S3) and (S4) were originally introduced in Holland et al. (2002)
and are given in Figure 8. As all scenarios only contain recent

fa
ls

e
de

te
ct

io
n

ra
te

0.00

0.05

0.10

0.15

0.
00

5
0.

05 0.5
2 10 ∞

θ = 10

0.
00

5
0.

05 0.5
2 10 ∞

θ = 30

0.
00

5
0.

05 0.5
2 10 ∞

θ = 50

0.
00

5
0.

05 0.5
2 10 ∞

θ = 100

0.
00

5
0.

05 0.5
2 10 ∞

θ = 200
MaxSavings
MaxSavings 0.12
Geneconv

ρ

po
w

er

0.00

0.25

0.50

0.75

1.00

0 1 4 16

θ = 10

0 1 4 16

θ = 30

0 1 4 16

θ = 50

0 1 4 16

θ = 100

0 1 4 16

θ = 200
MaxSavings
MaxSavings 0.12
Geneconv

rate variation parameter γ

Fig. 7. The probability of detecting recombination for different parameter settings and methods. The top row shows the power of detecting recombination as

themutation rate � and recombination rate r are varied. The bottom row shows the false detection rate for different settings of rate variation g andmutation rate �.

MaxSavings 0.12 is the same method as MaxSavings, but classifies datasets with a P-value < 0.12 as recombinant. It has a similar or lower false detection rate

than Geneconv and a comparable power to detect recombination.

2 3 4 5 6 7 81 R1 R3R2

1 R1 2 R2 3 4 R3 5 6 7 8

(S3)

(S4)

2 3 4 5 6 7 81 R1 R3R22 3 4 5 6 7 81 2 3 4 5 6 7 81 R1 R3R2R1 R3R2

1 R1 2 R2 3 4 R3 5 6 7 81 R1 2 R2 3 4 R3 5 6 7 8

(S3)

(S4)

Fig. 8. The genealogies used to simulate data for scenarios (S3) and (S4).

Recombinations are marked with dotted lines and always occur in the middle

of the sequence. More details on the parameters can be found in Table 1.
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recombinations, the recombination signal has a very simple

structure and should be fairly easy to detect. For each scenario

we simulated 1000 alignments using Seq-Gen (Rambaut and

Grassly, 1997). We then applied Recco and computed the P-values
for recombination per dataset, per sequence and for each position.

We observed that in this scenario Geneconv performed much better

using a gscale value of 1, i.e. allowing for mismatches in the con-

served fragments. Thus, we only report the results using a gscale

value of 1 for Geneconv. The result for recombination detection

and the parameters used in the simulation are given in Table 1. The

most predictive feature for recombination detection in most scen-

arios was MaxSavings. MaxSavings performed slightly worse than

Geneconv only for its worst-case scenario (S2), where the recom-

binants are very similar. As (S1) and (S2) use a very short sequence

length, we repeated this experiment with a sequence length of

1000 nt and one-tenth of the mutation rate. The results did not

differ qualitatively and MaxSavings still performed best for scen-

arios (S2), (S3) and (S4). Recco was also quite fast: a full analysis

with 100 column permutations of a dataset from scenario (S3) took

�44 s on an AMD Opteron 2.4 GHz. This included computing

the parametric cost curve 101 times for each of the 11 sequences

with 1000 nt, constructing breakpoint profiles and summarizing

the results as P-values.
Finding the recombinant sequence is more difficult (Fig. 9), par-

ticularly because it is very hard to discriminate between the true

recombinant and sequences involved in the recombination. This is

an intrinsic problem. As expected, the recombinant sequences had

the highest probability of being detected as recombinant for (S1),

(S3) and (S4). For (S2) the parental sequences A1 and B1 are the

only sequences that are detected as recombinant. R1 and R2 are

masked as they are very similar to each other. Consequently, the

evidence for recombination is derived from sequences A1 and B1,

and not from R1 for scenario (S2). Another interesting aspect is

that the features MaxCost and FirstAngle performed quite well,

despite their failure to detect recombination for random genealo-

gies. Particularly FirstAngle seems to discriminate better between

true recombinant and parental sequences. MaxCost is almost as

good as MaxSavings here, and achieved a false detection rate

<2.5% in all datasets of Subsection 3.1 (data not shown).

To evaluate breakpoint detection performance, we computed the

probability of detecting a recombination breakpoint at each position

for Geneconv and for the MaxSavings feature of Recco. A break-

point for Geneconv was defined as the start or end position of a

gene conversion fragment with a significant P-value. The result

for detecting recombination breakpoints in scenarios (S1), (S2)

and (S3) is given in Figure 10. (S4) shows a very similar behavior
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FirstAngle has a lower chance to classify parental sequences involved in recombination as recombinants.

Table 1. The power to detect recombination for fixed recombination

scenarios

Sequence

length (nt)

Tree

height

Mutation

model

ts/tv

ratio

Geneconv Max-

Savings

First-

Angle

Max-

Cost

(S1) 100 0.25 JC — 0.518 0.467 0.012 0.106

(S2) 100 0.25 JC — 0.472 0.875 0.042 0.572

(S3) 1000 0.15 K2P 2 1.000 1.000 0.303 0.933

(S4) 1000 0.15 K2P 2 1.000 1.000 0.950 0.988

Tree height is given in mutations per site from the root to any tip. The mutation model is

either JC (Jukes and Cantor, 1969), or K2P (Kimura, 1980). ts/tv ratio is the transition to

transversion ratio.
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to (S3). As a side effect of our breakpoint definition for Geneconv

there is a high chance of identifying the first or last positions of an

alignment as a breakpoint. This should be ignored. Geneconv has a

smaller false detection rate than the MaxSavings feature of Recco,

but fails to detect the true breakpoint in many cases. The scenarios

(S1) and (S2) have a low diversity and are very difficult for

Geneconv. Recco is more suitable for these datasets and may assign

a highly significant P-value to breakpoints even after correcting for

multiple testing (Fig. 6). However, Recco’s false detection rate is

too high for long sequences if multiple testing is not accounted for.

4 CONCLUSION

We have introduced the new fast method Recco for analyzing

sequences subject to recombination. The MaxSavings feature of

Recco performs as well as or better than many other methods for

recombination detection. While the underlying dynamic program

is quite simple, the output of Recco is enhanced considerably by

succeeding sensitivity analysis. Sensitivity analysis on the solution

provides an intuitive visualization of the solution and alternative

recombination hypotheses. We have also introduced a sensitivity

analysis on the input parameter a, which controls the ambiguity

between mutation and recombination. We believe that this type of

analysis can be of benefit in other approaches to recombination

detection as well, e.g. RecPars (Hein, 1993). A major limitation

of our approach is that two similar recombinant sequences mask

each other and are not detected as recombinant. We believe that

resolving this issue will lead to an algorithm that is even more

powerful. A manual work-around is to iteratively remove the closest

sequence to the sequence under investigation until it is detected as

recombinant.
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