IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.2, NO. 1,

JANUARY-MARCH 2005 1

Optimizing Multiple Seeds
for Protein Homology Search

Daniel G. Brown

Abstract—We present a framework for improving local protein alignment algorithms. Specifically, we discuss how to extend local
protein aligners to use a collection of vector seeds or ungapped alignment seeds to reduce noise hits. We model picking a set of seed
models as an integer programming problem and give algorithms to choose such a set of seeds. While the problem is NP-hard, and
Quasi-NP-hard to approximate to within a logarithmic factor, it can be solved easily in practice. A good set of seeds we have chosen
allows four to five times fewer false positive hits, while preserving essentially identical sensitivity as BLASTP.

Index Terms—Bioinformatics database applications, similarity measures, biology and genetics.

1 INTRODUCTION

PAIRWISE alignment is one of the most important problems
in bioinformatics. Here, we continue an exploration into
the seeding and structure of local pairwise alignments and
show that a recent strategy for seeding nucleotide align-
ments can be expanded to protein alignment. Heuristic
protein sequence aligners, exemplified by BLASTP [1], find
almost all high-scoring alignments. However, the sensitivity
of heuristic aligners to moderate-scoring alignments can
still be poor. In particular, alignments with BLASTP score
between 40 and 60 are commonly missed by BLASTP, even
though many are of truly homologous sequences. We focus
on these alignments and show that a change to the seeding
strategy gives success rates comparable to BLASTP with far
fewer false positive hits.

Specifically, multiple spaced seeds [2] and their relatives,
vector seeds [3], can be used in local protein alignment to
reduce the false positive rate in the seeding step of alignment
by a factor of four. We present a protocol for choosing
multiple vector seeds that allows us to find good seeds that
work well together. Our approach is based on solving a set-
cover integer program whose solution gives optimal thresh-
olds for a collection of seeds. Our IP is prone to overtraining,
so we discuss how to reduce the dependency of the solution
on the set of training alignments, both by increasing the false
positive rate of the seeds found slightly and by making the
program less sensitive to outliers. The problem we are trying
to solve is NP-hard and Quasi-NP-hard to approximate to a
sublogarithmic factor, so we present heuristics for it, though
most instances are of moderate enough size to use integer
programming solvers.

Our successful result here contrasts with our previous
work [3] in which we introduced vector seeds. There, we
found that using only one vector seed would not substan-
tially improve BLASTP’s sensitivity or selectivity. The use

o The author is with the School of Computer Science, University of Waterloo,
200 University Ave., West, Waterloo, ON N2L 3G1, Canada.
E-mail: browndg@uwaterloo.ca.

Manuscript received 1 Nov. 2004; revised 2 Jan. 2005; accepted 11 Jan. 2005;
published online 30 Mar. 2005.

For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBBSI-0183-1104.

1545-5963/05/$20.00 © 2005 IEEE

of multiple seeds is the important change in the present
work. This successful use of multiple seeds is similar to
what has been reported recently for pairwise nucleotide
alignment [4], [5], [6], but the approach we use is different
since protein aligners require extremely high sensitivity. We
note that, independently of our work, the authors of
PatternHunter, the first program to use optimized spaced
seeds, have developed a protein aligner based on seeding
approaches similar to those we discuss here [7]; however,
they have not offered theoretical justification for their
approach, which, in some sense, we provide here.

Our results confirm the themes developed by us and
others since the initial development of spaced seeds. The
first theme is that spaced seeds help in heuristic alignment
because the very surprisingly conserved regions that one
uses as a basis for building an alignment happen more
independently in true alignments than for unspaced seeds.
In protein alignments, there are often many small regions of
high conservation, each of which has a chance to have a hit
to a seed in it. With unspaced seeds, the probability that any
one of these regions is hit is low, but, when a region is hit,
there may be several more hits, which is unhelpful. By
contrast, a spaced seed is likely to hit a given region fewer
times, wasting less runtime, and will also hit at least one
region in more alignments, increasing sensitivity.

The second theme is that the more one understands how
local and global alignments look, the more possible it is to
tailor alignment seeding strategies to a particular applica-
tion, reducing false positives and improving true positives.
Here, by basing our set of seeds on sensitivity to true
alignments, we choose a set of seed models that hit diverse
types of short conserved alignment subregions. Conse-
quently, the probability that one of them hits a given
alignment is high since they complement each other well.

2 BACKGROUND: HEURISTIC ALIGNMENT AND
SPACED SEEDS
Since the development of heuristic sequence aligners [1], the

same approach has been commonly used: identify short,
highly conserved regions and build local alignments

Published by the IEEE CS, Cl, and EMB Societies & the ACM

around these “hits.” This avoids the use of the Smith-
Waterman algorithm [8] for pairwise local alignment, which
has ©(nm) runtimes on input sequences A and B of length n
and m, respectively. (We will use the notation AJi] to
represent the ith character of sequence A.)

Instead, assuming random sequences, the expected
runtime of this heuristic search method is h(n,m) + a(n,m),
where h(n,m) is the amount of time needed to find hits in the
two sequences and a(n,m) is the expected time needed to
compute the alignments from the hits. Most heuristic aligners
have h(n,m) = O(n + m + nm/k), while a(n, m) = ©(nm/k)
for some large constant k. There are many assumptions in
these formulas. First, even when we align sequences with true
homologies, most hits are between unrelated positions, so the
estimation of the runtime need not consider whether the
sequences are related. Further, this simplification assumes
that each hit found in the first phase results in a constant
amount of work being done in the second phase to identify
thatitis false (or that true hits are rare). It is the speedup factor
of k that is important here; assuming m and n are large, the
overall runtime is much faster.

Most heuristic aligners look at the scores of matching
characters in short regions and use high-scoring short
regions as hits. For example, BLASTP [1] hits are three
consecutive positions in the two sequences where the total
score, according to a BLOSUM or PAM scoring matrix, of
aligning the three letters in one sequence to the three letters
of the other sequence is at least +13. Finding such hits can
be done easily, for example, by making a hash table of one
sequence and searching positions of the hash table for the
other sequence, in time proportional to the length of the
sequences and the number of hits found. BLASTP uses
more complicated data structures for this process, but the
principle is similar.

2.1 Seeding Models

To generalize BLASTP’s hits, we defined vector seeds [3], [9].
A vector seed is a pair (v,T). Vector v = (vy,...,v;) is a
vector of position multipliers and 7" is a threshold. Given
two sequences A and B, let s, ; be the score in our scoring
matrix of aligning the A[i] to B[j]. If we consider position ¢
in A and jin B, we then get an hit to the vector seed at those
positions when v - (s; j, Sit1,j41s- - -5 Sith—1,j4k-1) = 1. In this
framework, BLASTP’s seed is ((1, 1, 1), 13).

Vector seeds generalize the earlier idea of spaced seeds
[2] for nucleotide alignments, where both scores and the
vector are 0/1 vectors and where T, the threshold, equals
the number of 1s in v. A spaced seed requires an exact
match in the positions where the vector is 1 and the places
where the vector is 0 are “don’t care” positions. In our
original work with vector seeds [3], the freedom to allow
positions of v to have values beside 0 and 1 was not
extremely useful, so the vector seeds we discuss here all
have binary vectors wv.

Spaced seeds have the same expected number of junk
hits as unspaced seeds. For unrelated noise DNA se-
quences, this is nm4~", where w is the number of ones in
the seed (its support). Their advantage comes because more
distinct internal subregions of a given alignment will match
a spaced seed than the unspaced seed; this happens because
the hits are more independent of each other. The probability

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.2, NO. 1,

JANUARY-MARCH 2005

that an alignment of length 64 with 70 percent conservation
matches a good spaced seed of support 11 can be greater
than 45 percent because there are likely to be more
subregions that match the spaced seed than the unspaced
seed; by contrast, the default BLASTN seed, which is
11 consecutive required matches, hits only 30 percent of
alignments.

Spaced seeds have three advantages over unspaced
seeds. First, their hits are more independent, which means
that it is more likely that a given alignment has at least one
hit to a seed; fewer alignments have many. Second, the seed
model can be tailored to a particular application: If there is
structure or periodicity to alignments, this can be reflected
in the design of the seeds chosen. For example, in searching
for homologous codons, they can be tailored to the three-
periodic structure of such alignments [10], [11]. Finally, the
use of multiple seeds allows us to boost sensitivity well
above what is achievable with a single seed, which, for
nucleotide alignment, can give near 100 percent sensitivity
in reasonable runtime [4].

Keich et al. [12] have given an algorithm for a simple
model of alignments to compute the probability that an
alignment hits a seed; this has been extended by both
Buhler et al. [10] and Brejova et al. [11] to more complex
sequence models. Choi et al. [13] have also shown
experimental results for spaced seeds with high sensitivity
across a wide range of homologies. Kucherov et al. [14]
show how to adapt spaced seeds to the interesting case of
alignments where no subregion of the alignment has a
higher score than the entire alignment.

2.2 Some Newer Seeding Models

Another seeding model, which has recently arisen [7], [15]
is of ungapped alignment seeds. These were developed by
Brown and Hudek [15] to anchor global alignments of
ambiguous DNA sequences and, independently, by Kisman
et al. [7] in their heuristic protein aligner, tPatternHunter.

An ungapped alignment seed is a vector v, a global
threshold 7', and a vector of positional minimum scores b.
There is a match between positions in the two sequences
when the vector of pairwise match scores is at least as large,
position-by-position, as the minimum scores vector b and
where the dot product of the position-by-position scores and
the multiplier vector v is at least 7. These seeds are a
compromise between spaced seeds and consecutive seeds:
They require spaced positions to have good scores (those
where the lower bound vector b has high values), while also
focusing on the quality of the local alignment at the seed by
possibly examining all of the positions of the seed. It is not
possible to cast an ungapped alignment seed in the language
of vector seeds because of the requirement that each
individual position’s score is greater than its bound. It is
possible to cast a vector seed as an ungapped alignment seed,
by setting the b vector to —oo in all positions, thus removing
the position-by-position lower bound requirement.

Csiirds [16] has also extended this framework of seeding to
look at variable-length seeds, where the length of the regions
that must match depends on their positional scores. While
this approach can also be brought into the framework of the
present work, we have not done so in our experiments.

BROWN: OPTIMIZING MULTIPLE SEEDS FOR PROTEIN HOMOLOGY SEARCH

2.3 Multiple Seeds

Another important extension to these ideas of seeding has
been the use of multiple seeds of different sorts in basing
alignments. In this approach, an attempt is made to perform
extension when any of a collection of seed models has a hit.
This will work well if each chosen seed has a very low false
positive rate so that their total false positive rate is still
below that of one seed of comparable sensitivity.

Several authors [2], [3], [4], [6], [10], [17] have proposed
using multiple seeds and given heuristics to choose them.
This problem was recently given a theoretical framework by
Xu et al. [5] and, independently, Kucherov et al. [18] studied
heuristic algorithms for identifying sets of good seeds. In
work unrelated to the present work, Kisman et al. [7] have
heuristically used multiple ungapped alignment seeds
(though not called by that term) for protein alignment. To
the best of our knowledge, the present work is the first work
to choose multiple seeds for protein alignment with a
theoretical basis.

3 CHOOSING A GOOD SET OF SEEDS

Spaced seeds have made a substantial impact in nucleotide
alignments, but less in protein alignment. Here, we show
that they have use in this domain as well. Specifically,
multiple vector seeds or multiple ungapped alignment
seeds, with high thresholds, give essentially the sensitivity
of BLASTP with four times fewer noise hits. Slightly fewer
alignments are hit, but the regions of alignment hit by the
vector seeds are all of the same good ones as hit by the
BLASTP seed and a few more. In other words, BLASTP hits
more alignments, but the hits found by BLASTP and not the
vector seeds are mostly in areas unlikely to be expanded to
full alignments.

We adapt a framework for identifying sets of seeds
introduced by Xu et al. [5]. We model multiple seed
selection as a set cover problem and give heuristics for the
problem. For our purposes, one advantage of the formula-
tion is that it works with explicit alignments: Since real
alignments may not look like a probabilistic model, we can
pick a set of seeds for sensitivity to a collection of true
alignments. Unfortunately, this also gives rise to problems,
as the thresholds may be set high due to overtraining for a
given set of alignments.

Most of our experiments concern themselves with vector
seeds, but the framework can be expanded straightforwardly
to ungapped alignment seeds as well. This is because we do
not compute theoretical sensitivity of the seeds, but, instead,
only identify hits in existing real alignments. Indeed, our
framework is quite broad and extends to many different
models for seeding as long as the assumption that false
positives are additive is reasonably accurate and that one can
compute that false positive rate for the seed models. Where
the ungapped alignment seeds require some thought, we
present the addition needed for them.

3.1 Background Rates

One important detail that we need before we begin is to the
background hit rate for a given vector or ungapped
alignment seed. We noted previously [3] that this can be
computed for vector seeds, given a scoring matrix; it is also

Find hits to Filter for hits Locally align
BLASTP . .
) ((1,1,1),13) in locally regions
approach: seed high—scoring around hits
remaining

/ regions

Fig. 1. Flowchart contrasting BLASTP’s approach to heuristic sequence
alignment to the one proposed here. The only difference is in the initial
collection of hits. The smaller collection of hits found with the variations
on seeds gives as many hits to true alignments that survive to the third
stage as does BLASTP, yet far fewer noise hits must be filtered out.

Find hits to
any member
of a collection
of vector seeds

Vector seed
approach:

straightforward to compute for ungapped alignment seeds
as well. Namely, from the scoring matrix, we can compute
the distribution of letters in random sequences implied by
the matrix; this can then be used to compute the distribu-
tion of scores found in unrelated sequences. Using this, we
can compute the probability that unrelated sequences give a
hit to a given seed at a random position, which we call the
false positive rate for that seed. In fact, we can easily
compute the entire probability distribution on the score for
a given seed vector at a random position. Similarly, we can
compute this probability under the constraint that posi-
tional scores have minimum value, thus expanding to
ungapped alignment seeds.

For the default BLASTP seed, the probability that two
random unrelated positions have a hit is quite high, 1/
1,600. Because of this high level of false positives, BLASTP
must filter hits further in hopes of throwing out hits in
unrelated sequences. Specifically, BLASTP rapidly exam-
ines the local area around a hit and, if this region is not also
well-conserved, the hit is thrown out. Sometimes, this
filtering throws out all of the hits found in some true
alignments and, thus, BLASTP misses them, even though
they hit the seed. One way of modeling this filtering is to
view BLASTP as testing two seeds simultaneously: The
vector seed ((1, 1, 1), 13) and an ungapped alignment seed
that looks at the region surrounding the seed hit.

Our goal in using other seed models here is to reduce the
false positive rate, while still hitting the overwhelming
majority of alignments and hitting them in places that are
highly enough conserved as to make a full alignment likely.
A flowchart of our proposal, and the approach of BLASTP,
is in Fig. 1.

For aset () of alignment seeds, we say that its false positive
rate is the probability that any seed in @ has a hit to two
random positions in unrelated sequences. This is not equal to
the sum of the false positive rates for all seeds in () since hits to
one seed may overlap hits to another. However, we will use
this approximation in our optimization. As we extend to a
very large collection of seeds in), this can become worrisome
as the same false positive may be counted many times.
However, this may be appropriate, in fact, depending on how
the search is done to find the false hits.

4 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.2, NO. 1,

3.2 An Integer Program to Choose Many Seeds

Here, we give an integer program to find the set of seeds
that hits all alignments in a given training set with overall
lowest possible false positive rate. We will show that our IP
encodes the Set-Cover problem and that it is NP-hard to
solve and Quasi-NP-hard even to approximate to a
sublogarithmic factor. However, for moderate-sized train-
ing sets, we can solve it, in practice, or use simple heuristics
to get good solutions.

Given a set of alignment seeds (), we say that they hit a
given alignment a if any member of @ has a hit to the
alignment. Our goal in picking such a set will be to
minimize the false positive rate of the set (), with the
requirement that we hit all alignments in a training
collection, A.

This optimization goal is the alternative to the goal of Xu
et al. [5]. In that work, we maximized seed sensitivity when
a maximum number of spaced seeds is allowed; given that
all possible seeds had the same false positive rate, this was
equivalent to maximizing sensitivity for a given false
positive rate. This alternative goal of minimizing false
positives when we want 100 percent sensitivity on the
training set is appropriate for protein alignment; however,
we want to achieve extremely high sensitivity, as close to
100 percent as possible.

3.2.1 The Integer Program

Here, we show how to cast this seed selection problem as an
integer program. Recall that a seed model is the vector v of
multipliers or for an ungapped alignment seed, the vector v
of multipliers, and the vector b of positional lower bounds.
We will call this vector or vectors the “pattern” of a seed.
We can then view choosing a set of vector or ungapped
alignment seeds as choosing thresholds for each pattern.

More formally, suppose we are given a collection of
alignments A = {ai,...,a,} and a set of seed patterns
P ={p,...,pn}. We will choose thresholds (17, ...,T") for
the patterns of P such that the seed model set Q* =
{(p1, TY), ..., (pn, T;})} hits all alignments in A and the false
positive rate of Q* is as low as possible. The 7;* may be oo,
which corresponds to not choosing the pattern p; at all.

We require that each alignment a must be hit, so one of
the thresholds must be low enough to hit a. To verify this,
we compute the best-scoring hit for each seed pattern p; in
each alignment a;; let the score of this hit be T;;. If we
choose T} so that it is at most T; ;, then the seed (p;, ;") will
hit alignment a.

To model this as an integer program, we have a collection
of integer variables x; 7 for each possible threshold value for
seed pattern p;. We note that we are requiring that this
number is a small number or can be granularized reasonably
since each possible threshold will get its own constraint. For
simple seeds from a BLOSUM matrix, the scores at a position
come in a small range of integers, so the possible reasonable
thresholds form a small range; let T, be the smallest such
threshold. We will set variable z; 1 to 1 when the threshold or
seed vector z; is at most T’; for each pattern p;, its threshold
chosen is the smallest T, where z; 7 = 1.

To compute the false positive rate, we let r; 7 be the
probability that a random place in the background model

JANUARY-MARCH 2005

has score exactly T according to the seed model (p;, T"). We
add these up for all of the false hits with score equal to or
greater than the chosen thresholds. Our integer program is
as follows:

min E x; i T, such that

il
Z rir, = 1 for all alignments a;
i
x;7 > ;-1 for all thresholds T' > T5,
zir € {0,1} foralliand T.

Our framework is quite general: Given any collection of
alignments and the sensitivity of a collection of seeds to the
alignments, one can use this IP formulation to choose
thresholds to hit all alignments while minimizing false
positives. In particular, one could require that a hit satisfy
multiple seeds simultaneously or use more complicated hit
formulations. Of course, for these harder models, one might
have a more difficult time optimizing the integer program.

3.2.2 NP-Hardness

We now show that the problem of optimizing the seed set to
minimize the false positive rate while hitting all alignments
is NP-hard and that it is Quasi-NP-hard to approximate to
within a logarithmic factor [19]. (That is, assuming N P does
not have polynomial-time deterministic algorithms running
in O(n?eele)) time, no polynomial-time algorithm exists
with approximation ratio o(logn).)

We show this by giving an approximation-preserving
reduction of the Set-Cover problem to this problem. Since
Set-Cover is Quasi-NP-hard to approximate to within a
logarithmic factor [19], so is our problem.

An instance of Set-Cover is a ground set S and a
collection 7 = {T1,...,T,,} of subsets of S; the goal is the
smallest cardinality subset of T" whose union is S. The
connection to our problem is clear: We will produce one
alignment per ground set member and, for each of the
elements of T', we will have one seed. For simplicity, we will
assume that S = {1,...,n}. To fill the construction out, we
will assign the vector seed

——
v =((1,0,...,0,1),1)

to every ground set element s;. In a model of sequence
where all positions are independent of all other, each of
these seeds has the same false positive rate, so the false
positive rate will be proportional to the number of ground
set members chosen.

Then, for each set T € T, we create an alignment A; of
length 2n? + 4n by pasting together in n blocks of length
2n+4. If i is in Tj, then we make the ith block of the
alignment have the first and ¢ + 2nd position be of score 1,
while all other positions in the block have score zero, while
if ¢ ¢ Tj, then the ith block is all score zero. Then, it is clear
that if we choose the seed v;, we will hit all alignments A;,
where ¢ € T). If we desire the minimum false positive rate to
hit all alignments, this is exactly equivalent to choosing the
minimum cardinality set to cover all of the T}.

BROWN: OPTIMIZING MULTIPLE SEEDS FOR PROTEIN HOMOLOGY SEARCH

Thus, we have presented an approximation-preserving
transformation from Set-Cover to our problem and it is both
NP-hard and Quasi-NP-hard to approximate to within a
logarithmic factor.

3.2.3 Expansions of the Framework

In our experiments, we use the vector seed requirement as a
threshold; one could use a more complicated threshold
scheme to focus on hits that would be expanded to full
alignments. That is, our minimum threshold for 7;; could
be the highest-scoring hit that is expanded to a full alignment
of seed vector v; in alignment a;. We could also have a more
complicated way of seeding alignments and, still, as long as
we could compute false positive rates, we could require that
all alignments are hit and minimize false positive rates.

Also, we can limit the total number of vector seeds used
in the true solution (in other words, limit the number of
vectors with finite threshold). We do this by putting an
upper bound on), z;r for the maximum threshold 7' In
practice, one might want an upper bound of four or eight
seeds, as each chosen seed requires a method to identify hits
and one might not want to have to use too many such
methods in the goal of keeping fewer indexes of a protein
sequence database, for example.

Further, we might want to not allow seeds to be chosen
with very high threshold. The optimal solution to the
problem will have the thresholds as on the seeds as high as
possible while still hitting each alignment. This allows
overtraining: Since even a tiny increase in the thresholds
would have caused a missed alignment, we may easily
expect that, in another set of alignments, there may be
alignments just barely missed by the chosen thresholds.
This is particularly possible if thresholds are allowed to get
extremely high and only useful for a single alignment. This
overtraining happened in some of our experiments, so we
lowered the maximum so that they were either found in a
fairly narrow range (+13 to +25) or set to co when a seed
was not used. As one way of also addressing overtraining,
we considered lowering the thresholds obtained from the IP
uniformly or just lowering the thresholds that have been set
to high values.

And, finally, the framework can be extended to allow a
specific number of alignments to be missed. For each
alignment, rather than requiring that

Z%,T,(, > 1,
;

which requires that some threshold be chosen so that the
alignment is hit, we can add a 0/1 slack variable to count
how many are missed, changing the constraint to

Do wim, s> 1L
i

Then, if we require that

Zsj S M7

J

this allows at most M alignments to be so missed. This may
be appropriate to allow the optimization framework to be
less sensitive to a small number of outliers. We show

experiments with this slightly expanded framework in the
next section.

We note one simplification of our formulation: False hit
rates are not additive. Given two spaced seeds, a hit to one
may coincide with a hit to the other, so the background rate
of false positives is lower than estimated by the program.
When we give such background rates later, we will
distinguish those found by the IP from the true values.

3.2.4 Solving the IP and Heuristics

To solve this integer program or its variations is not
necessarily straightforward since the problem is NP-hard.
In our experiments, we used sets of approximately 400 align-
ments and the IP has been able to solve directly quickly, using
the CPLEX 9.0 integer programming solver.

Straightforward heuristics also work well for the
problem, such as solving the LP relaxation and rounding
to 1 all variables with values close to 1, until all alignments
are hit, or setting all variables with fractional LP solutions to
1 and then raising thresholds on seeds until we start to miss
alignments.

We finally note that a simple greedy heuristic works well
for the problem, as well: Start with low thresholds for all
seed patterns and repeatedly increase the threshold whose
increase most reduces the false positive rate until no such
increase can be made without missing an alignment. This
simple heuristic performed essentially comparably to the
integer program in our experiments, but, since the IP solved
quickly, we present its results.

One other advantage to the IP formulation is that the
false-positive rate from the LP relaxation is a lower bound
on what can possibly be achieved; the simple greedy
heuristic offers no such lower bound.

4 EXPERIMENTAL RESULTS

Here, we present the results of experiments with our
multiple seed selection framework in the context of protein
alignments. Our goal is to identify collections of seed
models which together have extremely high sensitivity to
even moderately strong alignments, while admitting a very
low false positive rate.

Since we pick seeds with a relatively small number of
alignments, we run the serious risk of overtraining. In
particular, the requirement that our set of seeds has
100 percent sensitivity on the training data need not require
that it also have comparable sensitivity overall. In one
example, the particular choice of training examples was
apparently quite unrepresentative since a 100 percent
sensitivity to this set of alignments still gave only 96 percent
sensitivity on a testing set. (Or, presumably, the testing set
may be unrepresentative.) As a simple way of exploring this,
we examined what happened when we lowered the thresh-
old on some seeds that were chosen by the integer program
to modestly increase their false positive rates and sensitivity
in the hope of still keeping very high sensitivity.

We first present simple experiments with vector seeds
and with ungapped alignment seeds on a small sample of
alignments discovered with BLASTP; in this section, we
also allow for seed sets that miss a small number of the
training alignments.

6 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.2, NO. 1,

TABLE 1
Hit Rates for Optimal Seed Sets for Various Sets of Training
Alignments when Applied to an Unrelated Test Set

Training | False positive Test alignment
alignments rate fraction hit
404 1/12,600 407/423 (96%)
403 1/9200 401/407 (98.5%)
409 1/8000 398/402 (99.0%)
394 1/10,700 395/400 (98.75%)
415 1/9500 410/416 (98.5%)

Then, we explore how well these seed sets do in hitting
alignments that we did not use BLASTP to identify. Here,
we note that our vector seed sets do not appear to do as well
as BLASTP for sensitivity to alignments in general, but they
do hit more alignments with high-scoring short regions;
presumably, these alignments are more likely true.

4.1 Preliminary Experiments

We begin by exploring several sets of alignments generated
using BLASTP. Our target score range for our alignments is
BLASTP score between +40 and +60 (BLOSUM score +112
to +168). These moderate-scoring alignments can happen by
chance, but also are often true. Alignments below this
threshold are much more likely to be errors, while, in a
database of proteins we used, such alignments are likely to
happen to a random sequence by chance only one time in
10,000, according to BLASTP’s statistics.

We begin by identifying a set of BLASTP alignments in
this score range. To avoid overrepresenting certain families
of alignments in our test set, we did an all-versus-all
comparison of 8,654 human proteins from the SWISS-PROT
database [20]. (We note that this is the same set of proteins
and alignments we used in our previous vector seed work
[3]. We have used this test set in part to confirm our belief
that, while a single seed may not help much, in comparison
to BLASTP, many seeds will be of assistance.) We then
divided the proteins into families so that all alignments
with BLASTP score greater than 100 are between two
sequences in the same family and there are as many families
as possible. We then chose 10 sets of alignments in our
target score range such that, in each set of alignments, a
particular family will only contribute at most eight
alignments to that set. Note that, since our threshold for
sharing family membership is a BLASTP score greater than
100 and the alignments we are seeking score between +40
and +60, many chosen alignments will be between members
of different families. We divided the sets of alignments into
five training sets and five testing sets. It is possible that the
same alignments will occur in a training and testing set as
we did not take any efforts to avoid this, though the set of
possible alignments is large enough to make this a rare
occurrence.

We note that we are using this somewhat complicated
system specifically because we want to avoid imposing a
preexisting bias on the set of alignments: Many true yet
moderate-scoring alignments will be between proteins with
different function or from different biological families. For the

JANUARY-MARCH 2005

TABLE 2
Seeds and Thresholds Chosen by
Integer Programming for 409 Test Alignments

Seed vector IP Threshold | Lowered threshold
(1,0,0,0,1,1,1) 21 20
(1,0,0,1,0,1,1) 21 20
(1,0,1,0,0,1,1) 20 20
(1,0,1,1,0,0,1) 19 19

(1,0,1,1,0,1) 23 22
(1,0,0,1,1,1) 18 18
(1,1,1,0,0,1) 20 20

(1,1,0,1,1) 21 20

same reason, we have used alignments from dynamic
programming as our standard, rather than structural align-
ments of known proteins or curated alignments because our
goal is to improve the quality of heuristic alignments.
Certainly, many of the alignments we consider will not be
precise; still, a heuristic dynamic programming-based align-
ment that finds a hit between two proteins and then uses the
same scoring matrix as BLASTP will find the exact same,
potentially inaccurate, alignment as did BLASTP.

4.1.1 Multiple Vector Seeds

We then considered the set of all 35 vector patterns of length
at most 7 that include three or four 1s (the support of the
seed). We used this collection of vector patterns as we have
seen no evidence that nonbinary seed vectors are preferable
to binary ones for proteins and because it is more difficult to
find hits to seeds with higher support than four due to the
high number of needed hash table keys.

We computed the optimal set of thresholds for these
vector seeds such that every alignment in a training set has
a hit to at least one of the seeds, while minimizing the
background rate of hits to the seeds and only using at most
10 vector patterns. Then, we examined the sensitivity of the
chosen seeds for a training set to its corresponding test set.
The results are found in Table 1. Some seed sets chosen
showed signs of overtraining, but others were quite
successful, where the chosen seeds work well for their
training set as well and have low false positive rate.

We took the best seed set with near 100 percent
sensitivity for both its training and testing data, which
was the third of our experimental sets and used it in further
experiments. This seed set is shown in Table 2. We note that
this seed set has five times lower false positive rate
(1/8,000) than does BLASTP, while still hitting all of its
testing alignments but four (which is not statistically
significant from zero). We also considered a set of thresh-
olds where we lowered the higher thresholds slightly to
allow more hits and possibly avoid overtraining on the
initial set of alignment. These altered thresholds are shown
as well in Table 2 and give a total false positive rate of
1/6,900. (This set of thresholds also hits all 402 test
alignments for that instance.)

BROWN: OPTIMIZING MULTIPLE SEEDS FOR PROTEIN HOMOLOGY SEARCH

TABLE 3
Weakening Sensitivity to Testing Alignment
Reduces Sensitivity on Training Alignments

Training alignments
missed

False positive
range

0 1/7700 - 1/11500
1 1/9800 - 1/12100
2 1/11400 - 1/13100
3 1/12700 - 1/14700
4 1/13600 - 1/15900

Testing alignment
sensitivity range

98.5% - 99.8%
98.5% - 98.8%
98.3% - 98.7%
97.8% - 98.3%
96.9% - 98.5%

4.1.2 A Weaker Requirement on the Sensitivity

As noted previously, we can alter our integer program so
that it does not require 100 percent sensitivity on the
training data set. We performed experiments on this
formulation, using five subsets of the training alignments
chosen as before, where we allowed between zero and five
alignments from the training set to be missed by the seed
set. We show results in Table 3, using again a randomly
chosen testing set for each training set. The training data
sets varied in size from 304 to 415, while the testing sets
ranged from 392 to 407 in size.

Unsurprisingly, if we did not hit all alignments in the
training set, we often miss alignments in the testing set as
well. However, the ranges of the sensitivities we saw in
testing data for the seed sets picked allowing some misses
in the training data were much less wide, suggesting that
there may be fewer seed thresholds lowered merely to
accommodate a single outlier in the training data. As such,
if slightly lower sensitivity is acceptable, this approach may
give much more predictable results than training to require
all alignments to be hit.

4.1.3 Multiple Ungapped Alignment Seeds

Ungapped alignment seeds can be seen as breaking the
model we have for alignment speed. The most straightfor-
ward implementation of ungapped alignment seeds would
involve a hash table keyed on the letters corresponding to
the positions in the bounds vector b, where there is a
nontrivial lower bound on the score of a position. Still, even
after the first step, where we identified pairs of positions
satisfying the minimum bounds scores, we still need
another test to verify that a pair of positions satisfies the
requirement of the dot product of the local alignment score
with the vector v of positional multipliers being higher than
the threshold. Similar limitations affect any such two-phase
seed, such as requiring that two hypothetically aligned
positions satisfy two vector seeds at once.

If we assume, however, that testing a hit to the simple
hash-table to verify if the dot product of the local alignment
score with the vector of multipliers v has score greater than
the threshold 7' so rapidly that we can throw out misses
without having to count them, then we return to the case
from before, where we need count only the fraction of
positions expected to pass both levels of filtration. This
assumption may be appropriate, assuming that the small
amount of time taken to throw out a hash-table hit that does

TABLE 4
Ungapped Alignment Seeds Offer
Similar Performance to Vector Seeds

Training alignments
missed

0 1/5200 - 1/6900
1 1/7100 - 1/7600
2 1/7500 - 1/9200
3 1710100 - 1/13900
4 1/10600 - 1/13200

False positive
range

Testing alignment
sensitivity range

98.7% - 100%
98.7% - 99.0%
98.8% - 99.3%
97.8% - 99.0%
97.5% - 98.7%

not satisfy the dot product threshold is much, much smaller
than the amount of time needed to throw out a hit to the
whole ungapped alignment seed that still does not make a
good local alignment.

With this in mind, we tested our set of moderate
alignments on a simple collection of ungapped alignment
seed patterns to identify whether ungapped alignment seeds
form a potentially superior seed filtering approach to vector
seeds. Of course, since they include vector seeds as a special
case, this is trivial, but our interest is primarily whether the
advantage of ungapped alignments is large enough to merit
their consideration over that of vector seeds.

In our experiments, we used ungapped alignment seeds
where the vector of score lower bounds consisted of only
the values 0 and —oo (which results in no score restriction);
we also allowed the vector of pairwise multipliers to only
be the all-ones vector. This simple approach, which was
used independently in the multiple aligner of Brown and
Hudek [15] and in the tPatternHunter protein aligner [7],
simply requires a good local region, with certain specified
positions having positive score. We required that the
bounds vector have at most four active positions and
considered seed lengths between three and six. Note that, in
this model, the bounds vector (0,0,0, —o0) behaves quite
differently than the bounds vector (0,0,0) because we will
be adding pairwise scores of four positions in the former
case and three in the latter.

The results of our experiment are shown in Table 4. We
used the same testing and training data sets as for Table 3.
In general, these results are slightly worse than the results
of our original experiments with vector seeds when we
require 100 percent sensitivity to testing data, but improve
when we allow some misses in the training data. Typical
false positive rates on the order of 1/10,000 are common
with testing sensitivity of approximately 99 percent, as
before; again, the corresponding false positive rate for
BLASTP’s seed is approximately 1/1, 600.

A positive note to the ungapped alignment seeds is that
there seems to be less overtraining: As the training
sensitivity is allowed to go down slightly, the testing
sensitivity does not plummet as quickly as for vector seeds.

One reason for this is that an ungapped alignment seed,
both times they have been implemented [7], [15], still
requires high-scoring short local alignment around the
seed. As we show in the next section, focusing on very
narrow alignments in seeding may be inappropriate and

8 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.2, NO.1, JANUARY-MARCH 2005
TABLE 5
Hits in Locally Good Regions of Alignments
Subregion score Multiple seeds
threshold Seed ((1,1,1),13) | Multiple seeds | Thresholds raised | Seed ((1,1,1),15)
Any region 99.3% 96.5% 97.0% 91.8%
+25 77.8% 73.2% 75.2% 63.9%
+30 47.7% 46.7% 47.6% 41.1%
+35 24.3% 24.3% 24.4% 23.0%
+40 13.0% 13.0% 13.0% 12.8%

Shown are the fraction of 2950 alignments found with a hit to a seed that is found in a region of length 10 whose total

subalignment score is above a given threshold.

one should instead focus on longer windows around a hit
before discarding it with a filter.

4.2 A Broader Set of Alignments

Returning to our set of vector seeds from Table 2, we then
considered a larger set of alignments in our target range of
good, but not great scores to verify if the advantage of
multiple seeds still holds. We used the Smith-Waterman
algorithm to compute all alighments between pairs of a
1,000-sequence subset of our protein data set and computed
how many of them were not found by BLASTP. Only 970
out of 2,950 Smith-Waterman alignments with BLOSUM62
score between +112 and +168 had been identified by
BLASTP, even though alignments in this score range would
have happened by chance only one time in 10,000 according
to BLASTP’s statistics.

Almost all of these 2,950 alignments, 2,942, had a hit to
the BLASTP default seed. Despite this, however, only 970
actually built a successful BLASTP alignment. Our set of
eight seeds had hits to 1,939 of the 1,980 that did not build a
BLASTP alignment and to 955 of the 970 that did build a
BLASTP alignment, so, at first glance, the situation does not
look good. However, the difference between having a hit
and having a hit in a good region of the alignment is where
we are able to show substantial improvement.

The discrepancy between hits and alignments comes
because the BLASTP seed can have a hit in a bad part of the
alignment, which is filtered out. Typically, such hits occur
in a region where the source of positive score is quite short,
which is much more likely with an unspaced seed than with
a spaced seed. We looked at all of the regions of length
10 amino acids of alignments that included a hit to a seed
(either the BLASTP seed or one of the multiple seeds), and
assigned the best score of such a region to that alignment; if
no ungapped region of length 10 surrounded a hit, we
assumed it would certainly be filtered out. The data are
shown in Table 5 and show that of the alignments hit by the
spaced seeds, they are hit in regions that are essentially
identical in conservation to where the BLASTP seed hits
them. For example, 47.7 percent of the alignments contain a
10-amino acid region around a hit to the ((1, 1, 1), 13) seed
with BLOSUM score at least +30, while 46.7 percent contain
such a region surrounding a hit to one of the multiple seeds
with higher threshold. If we use the lower thresholds that

allow slightly more false positives, their performance is
actually slightly better than BLASTP’s.

Table 5 also shows that the higher-threshold seed ((1, 1, 1),
15), which has a worse false positive rate (1/5,700) than our
ensembles of seeds, performs substantially worse: Namely,
only 64 percent of the alignments have a hit to the single seed
found in a region with local score above +25, while 73 percent
of the alignments have a hit to one of the multiple seeds with
this property. This single seed strategy is clearly worse than
the multiple seed strategy of comparable false positive rate
and the optimized seeds perform comparably to BLASTP in
identifying the alignments that actually have a core con-
served region.

Our experiments show that multiple seed models can have
an impact on local alignment of protein sequences. Using
many spaced seeds, which we picked by optimizing an
integer program, we find seed models with a comparable
chance of finding a good hit in a moderate-scoring alignment
than does the BLASTP seed, with four to five times fewer
noise hits. The difficulty with the BLASTP seed is that it not
only has more junk hits and more hits in overlapping places, it
also has more hits in short regions of true alignments, which
are likely to be filtered and thrown out.

5 CONCLUSIONS

We have given a theoretical framework to the problem of
using spaced seeds for protein homology search detection.
Our result shows that using multiple vector or ungapped
alignment seeds can give sensitivity to good parts of local
protein alignments essentially comparable to BLASTP,
while reducing the false positive rate of the search
algorithm by a factor of four to five.

Our set of vector seeds is chosen by optimizing an
integer programming framework for choosing multiple
seeds when we want 100 percent sensitivity to a collection
of training alignments. The framework is general enough to
accommodate many extensions, such as requiring a fixed
amount of sensitivity on the training (not only 100 percent),
allowing only a small number of seeds to be chosen or
allowing for many different sorts of seeding strategies. We
have mostly used it to optimize sets of vector seeds because
they encapsulate an approach to homology search for
nucleotides that has been very successful.

BROWN: OPTIMIZING MULTIPLE SEEDS FOR PROTEIN HOMOLOGY SEARCH

One difficulty with our approach is that it relies on a
theoretical estimate of the runtime of a homology search
program: namely, that the program will take time propor-
tional to the number of false positives found by the seeding
method. As seeding methods become more complex, such
as the two-step ungapped alignment seeds, it may become
harder to identify what a “false positive” is, in particular, if
a false positive fits through one step of a filter, but is quickly
discarded before the next step, should it count toward the
estimated runtime? Using our framework, we identified a
set of seeds for moderate-scoring protein alignments whose
total false positive rate in random sequence is four-to-five
times lower than the default BLASTP seed. This set of seeds
had hits to slightly fewer alignments in a test set of
moderate-scoring alignments found by the Smith-Water-
man algorithm than found by BLASTP; however, the
BLASTP seeds hit subregions of these alignments that were
actually slightly worse than hit by the spaced seeds. Hence,
given the filtering used by BLASTP, we expect that the two
alignment strategies would give comparable sensitivity,
while the spaced seeds give four times fewer false hits.

ACKNOWLEDGMENTS

The author would like to thank Ming Li for introducing him
to the idea of spaced seeds. This work is supported by the
Natural Science and Engineering Research Council of
Canada and by the Human Frontier Science Program. A
preliminary version of this paper [21] appeared at the
Workshop on Algorithms in Bioinformatics, held in Bergen,
Norway, in September, 2004.

REFERENCES

[1] S.F. Altschul, W. Gish, W. Miller, EW. Myers, and D.J. Lipman,
“Basic Local Alignment Search Tool,”]. Molecular Biology, vol. 215,
no. 3, pp. 403-410, 1990.

[2] B. Ma,]J. Tromp, and M. Li, “PatternHunter: Faster and More
Sensitive Homology Search,” Bioinformatics, vol. 18, no. 3, pp. 440-
445, Mar. 2002.

[3] B.Brejova, D. Brown, and T. Vinar, “Vector Seeds: An Extension to
Spaced Seeds Allows Substantial Improvements in Sensitivity and
Specificity,” Proc. Third Ann. Workshop Algorithms in Bioinformatics,
pp- 39-54, 2003.

[4] M. Li, B. Ma, D. Kisman, and J. Tromp, “Patternhunter II: Highly
Sensitive and Fast Homology Search,”]. Bioinformatics and
Computational Biology, vol. 2, no. 3, pp. 419-439, 2004.

[5] J. Xu, D. Brown, M. Li, and B. Ma, “Optimizing Multiple Spaced
Seeds for Homology Search,” Proc. 15th Ann. Symp. Combinatorial
Pattern Matching, pp. 47-58, 2004.

[6] Y.Sun and J. Buhler, “Designing Multiple Simultaneous Seeds for
DNA Similarity Search,” Proc. Eighth Ann. Int’l Conf. Computational
Biology, pp. 76-84, 2004.

[71 D.Kisman, M. Li, B. Ma, and L. Wang, “TPatternHunter: Gapped,
Fast and Sensitive Translated Homology Search,” Bioinformatics,
2004.

[8] T.Smith and M. Waterman, “Identification of Common Molecular
Subsequences,” J. Molecular Biology, vol. 147, pp. 195-197, 1981.

[9] B.Brejova, D. Brown, and T. Vinar, “Vector Seeds: An Extension to
Spaced Seeds,” |. Computer and System Sciences, 2005, pending
publication.

[10] J. Buhler, U. Keich, and Y. Sun, “Designing Seeds for Similarity
Search in Genomic DNA,” Proc. Seventh Ann. Int’l Conf. Computa-
tional Biology, pp. 67-75, 2003.

[11] B. Brejova, D. Brown, and T. Vinar, “Optimal Spaced Seeds for
Homologous Coding Regions,” J. Bioinformatics and Computational
Biology, vol. 1, pp. 595-610, Jan. 2004.

[12] U. Keich, M. Li, B. Ma, and]J. Tromp, “On Spaced Seeds for
Similarity Search,” Discrete Applied Math., vol. 138, pp. 253-263,
2004.

[13] K.P. Choi, F. Zeng, and L. Zhang, “Good Spaced Seeds for
Homology Search,” Bioinformatics, vol. 20, no. 7, pp. 1053-1059,
2004.

[14] G. Kucherov, L. Noé, and Y. Ponty, “Estimating Seed Sensitivity
on Homogeneous Alignments,” Proc. Fourth IEEE Int'l Symp.
BioInformatics and BioEng., pp. 387-394, 2004.

[15] D. Brown and A. Hudek, “New Algorithms for Multiple DNA
Sequence Alignment,” Proc. Fourth Ann. Workshop Algorithms in
Bioinformatics, pp. 314-326, 2004.

[16] M. Csiirds, “Performing Local Similarity Searches with Variable
Length Seeds,” Proc. 15th Amn. Symp. Combinatorial Pattern
Matching, pp. 373-387, 2004.

[17] K. Choi and L. Zhang, “Sensitive Analysis and Efficient Method
for Identifying Optimal Spaced Seeds,”]. Computer and System
Sciences, vol. 68, pp. 22-40, 2004.

[18] G. Kucherov, L. Noé, and Y. Ponty, “Multiseed Lossless
Filtration,” Proc. 15th Ann. Symp. Combinatorial Pattern Matching,
pp. 297-310, 2004.

[19] U. Feige, “A Threshold of Inn for Approximating Set Cover,”
J. ACM, vol. 45, pp. 634-652, 1998.

[20] A. Bairoch and R. Apweiler, “The SWISS-PROT Protein Sequence
Database and Its Supplement TrEMBL in 2000,” Nucleic Acids
Research, vol. 28, no. 1, pp. 45-48, 2000.

[21] D. Brown, “Multiple Vector Seeds for Protein Alignment,” Proc.
Fourth Ann. Workshop Algorithms in Bioinformatics, pp. 170-181,
2004.

Daniel G. Brown received the undergraduate
degree in mathematics with computer science
from the Massachusetts Institute of Technology
in 1995 and the PhD degree in computer science
from Cornell University in 2000. He then spent a
year as a research scientist at the Whitehead
Institute/MIT Center for Genome Research in
Cambridge, Massachusetts, working on the Hu-
man and Mouse Genome Projects. Since 2001,

) he has been an assistant professor in the School
of Computer Science at the University of Waterloo.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

