
Model Checking An Entire Linux Distribution for Security Violations

Benjamin Schwarz Hao Chen David Wagner
{bschwarz, hchen, daw}@cs.berkeley.edu

Geoff Morrison Jacob West
{gmorrison, jwest}@fortifysoftware.com

Jeremy Lin (jjlin@ocf.berkeley.edu) Wei Tu (tuwei@berkeley.edu)
University of California, Berkeley

Abstract

Software model checking has become a popular tool for
verifying programs’ behavior. Recent results suggest that it
is viable for finding and eradicating security bugs quickly.
However, even state-of-the-art model checkers are limited
in use when they report an overwhelming number of false
positives, or when their lengthy running time dwarfs other
software development processes. In this paper we report
our experiences with software model checking for security
properties on an extremely large scale—an entire Linux dis-
tribution consisting of 839 packages and 60 million lines of
code. To date, we have discovered 108 exploitable bugs.
Our results indicate that model checking can be both a fea-
sible and integral part of the software development process.

1 Introduction

Software bugs are frequent sources of security vulnera-
bilities. Moreover, they can be incredibly difficult to track
down. Automated detection of possible security violations
has become a quickly-expanding area, due in part to the ad-
vent of model checking tools that can analyze millions of
lines of code [6].

In this paper we describe our experience using MOPS,
a static analyzer, to verify security properties in an entire
Linux distribution. We use the following recipe for finding
security bugs: identify an important class of security vul-
nerabilities, specify a temporal safety property expressing
the condition when programs are free of this class of bugs,
and use MOPS to decide which programs violate the prop-
erty. We have developed six security properties—expressed
as finite state automata (FSAs)—and refined them to min-
imize false positives while preserving high effectiveness.
These properties aim at finding security bugs that arise from
the misuse of system calls, often vulnerable interaction
among these calls. For example, time-of-check-to-time-of-

use (TOCTTOU) bugs involve a sequence of two or more
system calls acting on the same file (see Section 3.1).

Our primary contribution is the scale of our experiment.
We ran MOPS on the entire Red Hat Linux 9 distribution,
which contains 839 packages totaling 60.0 million lines
of code (counting total lines in all .h, .c, and .cc files).
MOPS successfully analyzed 87% (732) of these packages;
the remaining 107 packages could not be analyzed because
MOPS’s parser cannot parse some files in these packages.
To the best of our knowledge, our experiment is the largest
security audit of software using automated tools reported in
the literature. Model checking at this scale introduces major
challenges in error reporting, build integration, and scalabil-
ity. Many of these technical challenges have been addressed
in our work; we show how to surmount them, and demon-
strate that model checking is feasible and effective even for
very large software systems.

As part of this experiment, we have worked out how to
express several new security properties in a form that can be
readily model checked by existing tools. Earlier work de-
veloped simple versions of some of these properties [6], but
in the process of applying them at scale we discovered that
major revisions and refinements were necessary to capture
the full breadth of programming idioms seen in the wild.
Some of the properties checked in this paper are novel; for
instance, we introduce a TOCTTOU property that turned
out to be very effective in finding bugs. In our experiments,
we focused on finding bugs rather than proving their ab-
sence. Verification is difficult, especially since MOPS is
not completely sound because it does not yet analyze func-
tion pointers and signals. However, we expect that our tech-
niques could point the way to formal verification of the ab-
sence of certain classes of bugs, as better model checkers
are developed in the future.

The technical contributions of this paper are threefold: 1)
We show how to express six important security properties in
a form that can be model checked by off-the-shelf tools; 2)
We report on practical experience with model checking at

a very large scale, and demonstrate for the first time that
these approaches are feasible and useful; 3) We measure
the effectiveness of MOPS on a very large corpus of code,
characterizing the false positive and bug detection rates for
different classes of security bugs.

The full version of this paper [1] contains further detail
on our experiments, some of which is omitted from the con-
ference version due to space constraints. MOPS is freely
available from mopscode.sourceforge.net.

2 The MOPS Model Checker

MOPS is a static (compile time) analysis tool that model
checks whether programs violate security properties [7].
Given a security property—expressed as a finite-state au-
tomaton (FSA) by the user—and the source code for a
program, MOPS determines whether any execution path
through the program might violate the security property.

In more detail, the MOPS process works as follows.
First, the user identifies a set of security-relevant operations
(e.g., a set of system calls relevant to the desired property).
Then, the user finds all the sequences of these operations
that violate the property, and encodes them using an FSA.
Meanwhile, any execution of a program defines a trace, the
sequence of security-relevant operations performed during
that execution. MOPS uses the FSA to monitor program ex-
ecution: as the program executes a security-relevant opera-
tion, the FSA transitions to a new state. If the FSA enters an
error state, the program violates the security property, and
this execution defines an error trace.

At its core, MOPS determines whether a program con-
tains any feasible traces (according to the program’s source
code) that violate a security property (according to the
FSA). Since this question is generally undecidable, MOPS
errs on the conservative side: MOPS will catch all the bugs
for this property (in other words, it is sound, subject to
certain requirements [7]), but it might also report spuri-
ous warnings. This requires the user to determine manu-
ally whether each error trace reported by MOPS represents
a real security hole.

Specification of Security Properties. MOPS provides a
custom property language for specifying security proper-
ties. The MOPS user describes each security-relevant op-
eration using a syntactic pattern similar to a program’s ab-
stract syntax tree (AST). With wildcards, these patterns can
describe fairly general or complex syntactic expressions in
the program. The user then labels each FSA transition us-
ing a pattern: if the pattern matches an AST in the program
during model checking, the FSA takes this transition.

To extend the expressiveness of these patterns, we intro-
duced pattern variables, which can describe repeated oc-
currences of the same syntactic expression. For instance, if

X denotes an pattern variable, the pattern f(X,X) matches
any call to the function f with two syntactically identical ar-
guments. In any error trace accepted by an FSA, the pattern
variable X has a single, consistent instantiation throughout
the trace.

Formally, let Σ denote the set of ASTs. We may view
a program trace as a string in Σ∗, and a property B as a
regular language on Σ∗. Pattern variables provide existen-
tial quantification over the set of ASTs. For instance, the
pattern ∃X.f(X,X) matches any call to f whose two ar-
guments, once parsed, yield the same syntax subtree. If
B(X) is a language with an unbound pattern variable X ,
the language ∃X.B(X) accepts any trace t ∈ Σ∗ where
there exists an AST A′ so that B(A′) accepts t. In other
words, if L(B) denotes the set of error traces accepted by
the language B, we define L(∃X.B(X)) = ∪A′L(B(A′)).
We use the convention that unbound pattern variables are
implicitly existentially quantified at the outermost scope.

Scalability. Since we aim at analyzing hundreds of large,
real application, MOPS must be scalable in several senses.
First, MOPS must run quickly on large programs. Second,
MOPS must run on different application packages without
requiring the user to tweak each package individually.

We have put much effort into integrating MOPS with ex-
isting build processes, including make, rpmbuild, and oth-
ers. By interposing on gcc, the model checker sees the same
code that the compiler sees. As a result, running MOPS on
numerous software packages is as easy as invoking a MOPS
script with the names of these packages. This ease of use
has been critical to our success in checking such a large
number of packages.

Error Reporting. MOPS reports potential errors in a pro-
gram using error traces. A typical problem with reporting
error traces is that a single bug can cause many (sometimes
infinitely many) error traces. To avoid overloading the user,
MOPS divides error traces into groups such that each group
contains all the traces caused by the same bug. More pre-
cisely, two traces belong to the same group if the same line
of code in both traces causes the FSA to enter an error state
for the first time via the same transition1. The user can then
examine a representative trace from each group to deter-
mine whether this is a bug and, if so, to identify the cause
of the bug.

Not all error traces identify real bugs: imprecision in the
analysis causes spurious traces. MOPS provides an HTML-
based user interface where the user can examine traces
very rapidly. The user, however, does spend time identi-
fying false positives, so the cost of using MOPS correlates
roughly to the number of trace groups, each of which the
user has to examine. In our experiments, we quantify the

1This implies that both traces enter the same error state. An FSA may
contain multiple error states, corresponding to different kinds of bugs.

Property Reported Warnings Real Bugs Section
TOCTTOU 790 41 3.1
Standard File Descriptors 56 22 3.2
Temporary Files 108 34 3.3
strncpy 1378 11* 3.4
Chroot Jails 1 0 (full version)
Format String (too many) (unknown) (full version)

Total 2333 108

Table 1. Overview of Results.

cost of using MOPS by measuring the number of false pos-
itives, counting only one per trace group.

Resource Usage. The running time of the model checker
is usually dwarfed by the time a human spends perusing
error traces. Still, since our goal is to audit entire distribu-
tions, we have aimed to make computation time small. We
timed the process of model checking several of our prop-
erties against all of Red Hat 9. Using MOPS to look for
TOCTTOU vulnerabilities (filesystem races) among all Red
Hat 9 packages requires about 1 GB of memory and takes a
total of 465 minutes—a little less than 8 hours—on a 1.5
GHz Intel Pentium 4 machine. Detecting temporary file
bugs takes 340 minutes of CPU time and about the same
memory footprint. The observed wall-clock time was be-
tween 20% and 40% more than the CPU time. MOPS pro-
duces an extraordinary amount of output, and is required to
read in extremely large control flow graphs; I/O thus consti-
tutes a significant portion of this running time, although it
is dominated by the time needed for model checking itself.

Also of chief concern to us was being able to audit man-
ually all error traces produced by MOPS. Error trace group-
ing was a huge time saver: a typical group has more than
4 traces, but some groups contain more than 100 traces.
The amount of human effort that was spent auditing the er-
ror groups is roughly proportional to the total number of
groups. We spent about 100 person-hours auditing error
reports from the TOCTTOU property, 50 person-hours for
the temporary file property, and less for the other properties.
Several of us were undergraduate students who had no prior
experience with MOPS prior to joining this project.

3 Checking Security Properties

We developed six security properties. Table 1 shows a
summary of the bugs discovered. For each property, the ta-
ble shows the number of warnings reported by MOPS, the
number of real bugs, and the section that describes detailed
findings on this property. We will describe four properties in
detail, explain the model checking results, and show repre-
sentative bugs and vulnerabilities that we discovered in this
section. The other two are discussed in the full version.

3.1 TOCTTOU

Race condition attacks have perennially plagued secure
systems. One common mistake is that a program checks the
access permission of an object and, if the check succeeds,
makes a privileged system call on the object. For exam-
ple, one notorious error involves the access() and open()
system calls. Consider a program running as root (e.g., se-
tuid root, or executed by root) executing the following code
fragment:

if (access(pathname, R_OK) == 0)

fd = open(pathname, O_RDONLY);

The programmer is attempting to enforce a stricter security
policy than the operating system. However, the kernel does
not execute this sequence of system calls atomically— so if
there is a context switch between the two calls or if the pro-
gram is running on a multiprocessor system, another pro-
gram may change the permission of the object. When the
above program resumes its execution, it then blindly per-
forms open() even though the user should no longer have
access permission to the object.

Another example comes from UNIX folklore. It is well
known that the root user should not recursively remove files
inside directories that may be writable by other users. For
example, “rm -rf /tmp” is a dangerous command, even if
root has verified that the directory /tmp contains no symlink
to other parts of the file system. The reason is that after rm
verifies that a directory is not a symlink but before it enters
the directory to delete the files within, an adversary may
replace the directory with a symlink to another part of the
file system, therefore tricking rm into deleting that part of
the file system.

Many of the vulnerabilities that we found are exploitable
when two users share access to some portion of the file sys-
tem, and one user is operating on the shared portion while
the other mounts an attack by replacing symbolic links. Al-
though programs commonly attempt to ensure that they do
not follow symbolic links before doing dangerous opera-
tions like unlink(), they often check it incorrectly and are
susceptible to TOCTTOU attacks as a result.

Check(f) Use(f)

Check(f) = {stat(f), lstat(f), access(f),

readlink(f), statfs(f)}.
Use(f) = {basename(f), bindtextdomain(f),

catopen(f), chown(f), dirname(f), dlopen(f),

freopen(f), ftw(f), mkfifo(f), nftw(f),

opendir(f), pathconf(f), realpath(f),

setmntent(f), utmpname(f), chdir(f), chmod(f),

chroot(f), creat(f), execv(f), execve(f),

execl(f), execlp(f), execvp(f), execle(f),

lchown(f), mkdir(f), fopen(f), remove(f),

tempnam(f), mknod(f), open(f), quotactl(f),

rmdir(f), truncate(f), umount(f), unlink(f),

uselib(f), utime(f), utimes(f), link(f), mount(f),

rename(f), symlink(f)}.
Non-filename arguments are omitted.

Figure 1. A refined FSA for finding TOCTTOU
(file system race condition) vulnerabilities.

We have experimented with several different FSAs to
capture these types of vulnerabilities. In our first attempt,
we chose an FSA that had two transitions—one from the
start state to an intermediate state, and the other from the
intermediate state to the accepting state. Both transitions
were defined on the union of the file system calls that ac-
cess the file system using a pathname argument. How-
ever, we found that this naive property results in too many
false positives—for example, chdir(".") followed by a
chdir(".") would trigger a false positive. Typically these
situations arise when a single system call is located inside of
a loop, and both transitions in the FSA are made as a result
of executing the same line of code. Since these are obvi-
ously not security holes, we decided to separate out the file
system calls that can be classified as “checks” from those
that are “uses”.

We refined the property by dividing the file system calls
into two distinct sets. Figure 1 shows the general structure
of the FSA. We assume here, and in subsequent illustra-
tions, that there is an implicit other transition from every
state back to itself; if none of the normal outgoing tran-
sitions match, the other transition is taken, and the FSA
stays in the same state. The intuition is as follows: a call
to Check(f) is probably intended to establish an invariant
(e.g., “f is not a symlink”), and a call to Use(f) might rely
on this invariant. Of course, these invariants might be vio-
lated in an attack, so Check(f) followed by Use(f) may in-
dicate a TOCTTOU vulnerability. This refined property is
much more manageable and finds most of the bugs we are

interested in. However, the more general property is capa-
ble of finding some bugs which the narrower TOCTTOU
cannot—for example, creat(f) followed by chmod(f).

The types of vulnerabilities we have found can be clas-
sified under the following categories:

1. [Access Checks] A check is performed—often by a
program running as root—on file access permissions.
The result of the check is then used to determine
whether a resource can be used. The access(f) and
open(f) race at the beginning of this section illus-
trates this class of bugs.

2. [Ownership Stealing] A program may stat() a file to
make sure it does not exist, then open() the file for
writing. If the O EXCL flag is not used, an attacker may
create the file after the stat() is performed, and the
program will then write to a file owned by the attacker.
We consider this a vulnerability, because the program
may disclose sensitive information.

3. [Symlinks] Vulnerabilities due to symbolic links arise
when two users share the same portion of the file sys-
tem. One user can change a file to a symlink to trick
the other user to mistakenly operate on an unexpected
file. The method of such an attack depends on whether
the system call follows symlinks. Broadly, there are
two classes of system calls:

(a) [Syscalls that follow symlinks] Many system
calls will follow symbolic links that occur any-
where in the pathname passed to them. These
present no barrier to attack.

(b) [Syscalls that don’t follow symlinks] Other sys-
tem calls avoid following symbolic links if they
occur in the last component of their pathname
argument. For instance, if c is a symbolic link
to d, calling unlink("/a/b/c") will delete the
symbolic link itself rather than the target of the
link: it deletes /a/b/c, not /a/b/d. How-
ever, many programmers do not realize that these
calls will gladly follow any symlinks that oc-
cur in earlier components of the pathname. For
example, if b is a symlink to ../etc, then
unlink("/a/b/passwd") will delete the pass-
word file /etc/passwd. Consequently, to attack
this second class of system calls, it suffices for
the attacker to tamper with one of the intermedi-
ate components of the path.

Many bugs we found were not previously known. Some
were previously reported (but apparently not yet fixed and
not known to us at the time of our experiments). To illustrate
the kinds of bugs we found with MOPS, we will show three
representative examples of TOCTTOU bugs.

binutils-2.13.90.0.18-9 :: ar

exists = lstat (to, &s) == 0;

/* Use rename only if TO is not a symbolic

link and has only one hard link. */

if (! exists || (!S_ISLNK (s.st_mode)

&& s.st_nlink == 1)) {

ret = rename (from, to);

if (ret == 0) {

if (exists) {

chmod (to, s.st_mode & 0777);

if (chown (to, s.st_uid,

s.st_gid) >= 0) {

chmod (to, s.st_mode & 07777);

}

...

In our first example, the program ar executes the code
fragment above to replace an archive file with one of the
same name. It calls lstat on the destination file and then
checks if the file is a symbolic link. If it is not, ar calls
rename on the file and then sets the mode of the file. This
code, however, is unsafe. An adversary may change the
file to be a symbolic link after ar checks for symbolic links.
Then, ar will happily change the mode of whatever the sym-
bolic link points to—assuming the user running ar has per-
mission to do so. The attack is applicable when two users
have write access to the directory of the archive file.

initscripts-7.14-1 :: minilogd

/* Get stat info on /dev/log so we can later

check to make sure we still own it... */

if (stat(_PATH_LOG,&s1) != 0) {

memset(&s1, ’\0’, sizeof(struct stat));

}

...

if ((stat(_PATH_LOG,&s2)!=0) ||

(s1.st_ino != s2.st_ino) ||

(s1.st_ctime != s2.st_ctime) ||

(s1.st_mtime != s2.st_mtime) ||

(s1.st_atime != s2.st_atime)) {

done = 1;

we_own_log = 0;

}

/* If we own the log, unlink it before trying

to free our buffer. Otherwise, sending the

buffer to /dev/log doesn’t make much sense */

if (we_own_log) {

perror("wol");

unlink(_PATH_LOG);

}

The second code fragment is taken from the program
minilogd, which is run by root. This program may unlink
_PATH_LOG (which is defined to be /dev/log by default) if

it thinks it exclusively owns the file. It compares the times-
tamps on the file at two different times in the execution of
the program and, if they are equal, decides that it exclu-
sively owns the file and then removes the file. However,
even if another program modifies the file after minilogd
checks the timestampes, minilogd will still unlink it, pos-
sibly corrupting other programs. An additional vulnera-
bility exists when user programs can write to the log file;
for instance, if _PATH_LOG is defined as something like
/home/alice/log instead. In this case, Alice can trick
minilogd into removing anything on the file system. We
have found many vulnerabilities that are similar to the lat-
ter case. It is important that these filename constants be
checked very carefully when these programs are built, since
it may not be obvious to users that defining _PATH_LOG to a
user-writable file can result in a total compromise of the file
system.

zip-2.3-16 :: zip

d_exists = (LSTAT(d, &t) == 0);

if (d_exists) {

/* respect existing soft and hard links! */

if (t.st_nlink>1 ||

(t.st_mode&S_IFMT)==S_IFLNK)

copy = 1;

else if (unlink(d))

return ZE_CREAT;

}

The final code snippet comes from the widely-used pro-
gram zip. If the destination file already exists, zip will move
the file to a new location, unlink the old copy, and write
the new copy. The program verifies that the file is not a
link before calling unlink on it. The attack is applicable
when two users share a portion of the file system and one
user is running zip to write a new file to the shared space.
If the other user is malicious, after zip calls stat, the user
can change the file to be a symbolic link that points to an-
other part of the file system. Since unlink will not fol-
low the last component of a pathname, the attacker would
have to change one of the components in the middle of the
pathname to a symbolic link. For instance, if Alice is us-
ing zip to write a file to /shared/alice/afile2, Bob can
change /shared/alice to be a symbolic link that points to
/home/alice. Then the zip program running on behalf of
Alice will remove /home/alice/afile. Most users will
not be aware that using a shared directory enables such at-
tacks, so it seems unfair to blame Alice for doing so. In
this case, zip does try to do the right thing by checking for
symbolic links; it just happens to get the check wrong.

2The suggested scenario requires that the sticky bit is not set. The sticky
bit prevents deletion of files and directories for anyone except the creator,
even if others have write access. Generally, /tmp has the sticky bit set.

3.2 A Standard File Descriptor Attack

The first three file descriptors of each Unix process are
called standard file descriptors: FD 0 for the standard input
(stdin), FD 1 for the standard output (stdout), and FD 2 for
the standard error (stderr). Several commonly used C stan-
dard library functions read from or write to these standard
file descriptors; e.g., fgets() reads from stdin, printf()
writes to stdout, and perror() writes to stderr. Programs
that print information intended for the user to see, or diag-
nostic information, typically do so on FDs 1 and 2. Cus-
tomarily, a program starts with its standard file descriptors
opened to terminal devices. However, since the kernel does
not enforce this convention, an attacker can force a standard
file descriptor of a victim program to be opened to a sensi-
tive file, so that he may discover confidential information
from the sensitive file or modify the sensitive file.

For example, suppose a victim program is setuid-root3

and executes the following code:

/* victim.c */

fd = open("/etc/passwd", O_RDWR);

if (!process_ok(argv[0])) perror(argv[0]);

Then the adversary can run the following attack program
to exploit the standard file descriptor vulnerability in the
victim program:

/* attack.c */

int main(void) {

close(2);

execl("victim",

"foo:<pw>:0:1:Super-User-2:...", NULL);

}

This attack works as follows. First, the attack program
closes FD 2 and executes victim.c. A child process will
inherit the file descriptors from the parent process; conse-
quently, the victim program starts with FD 2 closed. Then,
when the victim opens the password file /etc/passwd, the
file is opened to the smallest available file descriptor—in
this case, FD 2. Later, when the victim program writes an
error message by calling perror(), which writes to FD 2,
the error message is appended to /etc/passwd. Due to the
way the attacker has chosen this error message, the attacker
may now log in with superuser privileges. These bugs are
particularly dangerous when the attacker can influence the
data written to the standard FD.

In the previously discussed vulnerability, the attacker is
able to append content to an important system file. One can
envision similar attacks on the stdin file descriptor in which
the attacker can read content from a file that is not intended

3A setuid-root program runs with root privileges, even if it is executed
by an unprivileged user.

COC

CCO
OCO

COO

CCC OCC

OOC

OOO

Figure 2. The structure of an FSA for find-
ing file descriptor vulnerabilities. This FSA
tracks the state of the three standard file de-
scriptors across open() calls.

to be publically available. To stage such an attack, the ma-
licious program would first close FD 0, then execute the
privileged program containing code that unwittingly tries to
read from stdin. The vulnerable program will now instead
read data that is from the attacker’s choosing, and possibly
disclose confidential information in the process. Note that
the program must relay the information it has learned back
to the attacker, either directly or through a covert channel.
The latter means of disclosure is impossible to detect using
the single program analysis techniques we employ.

The way to prevent these types of attacks is simple—a
program that runs as setuid-root should ensure that the three
lowest numbered file descriptors are opened to a known
safe state prior to carrying out any important operations. A
common way to do this is by opening a safe file, such as
/dev/null, three times when the program first starts up. In
the case that someone tries to attack the program by closing
one or more of the file descriptors prior to executing the vic-
tim program, no harm is done because they are re-opened to
point to /dev/null. This solution is usually acceptable be-
cause the overhead is only three system calls. In the case
that all 3 FDs were already opened, the program also con-
sumes three file descriptor slots.

Our FSA used in this property (see Figure 2) contains
eight states that are used to describe a unique combination
of the states of the three standard file descriptors 0, 1 and 2.
For example, the state OCC represents that FD 0 is open, but
FD 1 and FD 2 are closed. The program may start in any
of the seven states where at least one of the three standard
FDs is closed; the case where all of the standard FDs are ini-
tially open is the usual one, and not of interest to an attacker.
The starting state will be chosen nondeterministically dur-
ing the model checking phase to insure all possibilities are
explored. Transitions in the FSA occur only along the edges

of the cube, as there are no system calls that can change the
status of multiple standard file descriptors at once.

The basic FSA structure in Figure 2 is not entirely com-
plete, as we have not shown the error state. For detecting the
class of attacks which can cause the vulnerable program to
write to arbitrary files, we add a new error state and a transi-
tion to the error state when a file that is neither /dev/null nor
/dev/tty is opened on FD 1 or 2 in a mode other than read-
only. For detecting the class of attacks that may disclose
the contents of secret files, we add transitions to the error
state from the four states in which FD 0 is closed (COO, COC,
CCO, and CCC), and a file other than /dev/null or /dev/tty is
opened for reading. These two transitions are seperated into
two different automata, to give the two properties.

To save space, we have not labeled the transitions along
the edges of the cube. These transitions are taken for sys-
tem calls that are considered a “safe” open—that is, when
/dev/null or /dev/tty is opened. For example, if the current
state is COC and a “safe” open is encountered, then the new
state is OOC, since the file will be opened on the lowest-
numbered available FD.

We have audited the programs that run as setuid root on
our Linux distribution, and have identified a number of bugs
(but not exploitable vulnerabilities at this time). In many
cases, an attacker can cause a setuid program to write data
not of her choosing to temporary files, lock files, or PID files
(files used to store the process ID of the currently running
service). These situations can be potential vulnerabilities
if some other program trusts the contents of the PID file.
For example, consider a system administration script for
restarting some network daemon that executes kill ‘cat

pidfile‘. If the attacker exploits a setuid program that
writes to this PID file to introduce a line of the form “PID;

rm /etc/passwd” into the PID file, then the administra-
tion script might unwittingly remove /etc/passwd when
it is next run. We have not yet found any fully exploitable
scenario like this, but the fact that some setuid programs al-
low corrupting PID files like this is perhaps room for some
concern.

An example of a bug we found in the program gnuchess,
a chess playing application, follows:

int main(int argv, char *argv[]){

... BookBuilder(depth, ...); ...

}

void BookBuilder(short depth, ...){

FILE *wfp,*rfp;

if (depth == -1 && score == -1) {

if ((rfp = fopen(BOOKRUN,"r+b")) != NULL) {

printf("Opened existing book!\n");

} else {

printf("Created new book!\n");

wfp = fopen(BOOKRUN,"w+b");

fclose(wfp);

if ((rfp = fopen(BOOKRUN,"r+b"))

== NULL) {

printf("Could not create %s file\n",

BOOKRUN);

return;

}

...

}

The function BookBuilder is called to manipulate and
read from the playbook used by the game. Although there
is no attack to compromise security, it is easy to see the bug.
The playbook can become corrupted when a malicious user
closes all file descriptors except standard out, and invokes
the gnuchess program. The file BOOKRUN will then be
opened onto standard out, and the subsequent writes from
printf() can corrupt the book.

The full version of the paper lists results from apply-
ing MOPS to all Redhat 9 setuid programs. There were
two main sources of false positives: 1) the property does
not track the UID privilege changes inside the program, so
the program may drop privileges before opening files, and
2) the property did not recognize that the program safely
opened /dev/null three times, due to a nonstandard invoca-
tion of safe opens. Unfortunately these are difficult false
positives to recognize, because they require the user to look
at the trace in its entirety as opposed to the usual points of
interest (line numbers that caused transitions in the FSA).
The presentation of our results differentiates betweens bugs
and exploits. For this property, we classify bugs as program-
ming mistakes that can cause unexpectd program behavior,
but not necessarily lead to any compromise of security. For
example, an attack that can compromise the contents of a
non-important file, such as a lockfile, falls under the cate-
gory of a bug. An exploit needs to have security concerns—
we have found none of these to date. However, it was sur-
prising that many setuid programs did not open /dev/null
three times before performing file operations, given that it
has low overhead and guarantees safety with regards to this
property.

3.3 Secure Temporary Files

Applications often use temporary files as a means for
passing data to another application, writing log information,
or storing temporary data. Often times on a Unix system,
the files will be created in the /tmp directory, which is world
writable and readable. For example, the GNU C compiler
creates temporary files when it is compiling programs, and
later passes them to the linker. Many of the functions to cre-
ate temporary files that are found in the C standard library
are insecure. The reason is that they do not return a file de-
scriptor, but rather a file name. An adversary that is able to

tmpnam()
tempnam()
mktemp()
tmpfile()

FSsyscall(x)mkstemp(x)

Figure 3. An FSA to detect insecure uses of
temporary files.

predict the filename can thus create the file before the ap-
plication has a chance to open or create it. This attack can
give the adversary ownership of the temporary file, which is
undesirable4.

We identified the set of insecure functions: mktemp,
tmpnam, tempnam, and tmpfile. These functions should
never be used. There is one function that can be secure, de-
pending on how it is used: mkstemp. Security requires that
the filename retrieved from mkstemp is never subsequently
used in another system call: mkstemp returns both a file de-
scriptor and a filename, but a secure program should not use
the filename. Figure 3 illustrates our automaton.

Below we show a representative example of a program
that violates the clause of our property that finds reuses
of the parameter passed to mkstemp. Not only is this the
most complicated example presented thus far, but it shows
how the whole-program inter-procedural analysis was ef-
fective. The code will be presented in several fragments as
they occur temporally while executing the program. The
example comes from the program yacc from the package
byacc-1.9-25.

static void open_files() {

int fd;

create_file_names();

if (input_file == 0) {

input_file = fopen(input_file_name, "r");

if (input_file == 0)

open_error(input_file_name);

fd = mkstemp(action_file_name);

if (fd < 0 || (action_file =

fdopen(fd, "w")) == NULL) {

if (fd >= 0)

close(fd);

open_error(action_file_name);

}

4In the gcc example, an adversary could insert malicious code into a
user’s program by replacing the temporary file with the desired code.

}

Before the above program fragment executes, there is
some setup code that sets the value of the variable
action file name. Specifically, it is a string whose first
component is a pathname to a temporary directory (by de-
fault, it chooses /tmp, but this can be changed by defining
an environment variable), and whose second component is
a temporary file template5. The above code alone should
be of concern to us. Recall that mkstemp returns a file de-
scriptor that can be safely used, but the template passed to
mkstemp is not safe to re-use. In this case, we see the tem-
plate being passed to another function called open error:

void open_error(char *filename) {

warnx("f - cannot open \"%s\"", filename);

done(2);

}

From the above fragment it looks like the function warnx

may be a good candidate for inspection because it is the
recipient of the filename we are interested in tracking.
Strangely enough, MOPS directs us to the function done:

void done(int k) {

if (action_file)

fclose(action_file);

if (action_file_name[0])

unlink(action_file_name);

Here we find the bug. The variable action file name,
which is the template passed to mkstemp, is re-used as an
argument to the unlink system call. This is unsafe. By
the time we call unlink, the filename may no longer point
to the location we think it does. Recall that the directory
in which the file is being created may be world writable.
An attacker that has write access to the file can change it
to a symbolic link, and cause the program to unlink other
unexpected files on the system. Unfortunately there does
not appear to be a good resolution to the problem.

3.4 Attacks Against strncpy

There are several common attacks against programs
that misuse the standard library function strncpy.
strncpy(d,s,n) copies a string of characters pointed to
by s into the memory region designated by d. If s con-
tains more than n characters, strncpy only copies the first
n characters. If s contains fewer than n characters, strncpy
copies all the characters in s and then fills d with null char-
acters until the length of d reaches n.

5A template is a partial filename with a number of placeholders denoted
by a special character X that will be filled in with random numbers by the
function creating the temporary filename.

strncpy is easy to misuse for two reasons. First, it en-
courages off-by-one errors if the programmer is not care-
ful to compute the value of n precisely. Off-by-one errors
can often cause the program to write past the end of an ar-
ray bounds, which can in turn lead to buffer overrun attacks
against the program. In particular, consider a case where the
string buffer in question is allocated on the runtime stack (as
it will be when the buffer is an array local to a function in
C), and the user of the program is able to control the con-
tents of the source of s. If the program writes past the end
of the buffer, a malicious user may construct a special string
s, such that when the program writes past the array bounds,
it writes special code into the stack frame that corrupts the
program. Secondly, because the function does not automat-
ically null-terminate a string in all cases (for instance, when
the size of the source string is larger than n), it is a common
mistake for a program to create unterminated strings during
its execution.

We have constructed an FSA to try and catch both sce-
narios as described above. The intuition is that we iden-
tify several idioms that are correct ways to null terminate a
string, and raise an alarm when one of these idioms is not
used. For example, a common idiom is the following code
sequence that is safe:

buf[sizeof(buf)-1] = ’\0’;

strncpy(buf, ..., sizeof(buf)-1);

In the above case, the buffer will also be terminated.
However, the following two cases show a common misuse
of strncpy:

• buf[sizeof(buf)-1] = ’\0’;

strncpy(buf, ..., sizeof(buf));

• memset(buf, 0, sizeof(buf)-1);

strncpy(buf, ..., sizeof(buf)-1);

In the first unsafe example, the string is null-terminated be-
fore the strncpy, and the execution of the function sub-
sequently may overwrite the null-terminating character. In
the second unsafe example, memset is used to zero-out the
destination buffer; unfortunately, it is misused—the third
argument needs to be the size of the entire buffer. Our
FSA attempts to detect patterns that appear fishy, and alerts
the user to their presence. Pattern variables are used judi-
ciously to make MOPS precisely match the null-terminating
code to the strncpy code that uses the same buffers. The
property requires more manual inspection than other prop-
erties, because we have chosen an approach where we iden-
tify correct behavior, then raise an alarm at code that does
not match our expectations. Moreover, our property does
not attempt to find all strncpy bugs, focusing instead on
patterns that are particularly suspicious.

Our strncpy FSA has alerted us to a number of bugs.
Below we show one of the most interesting examples. It
comes from the program xloadimage:

void dumpImage(Image *image, char *type,

char *filename, int verbose) {

int a;

char typename[32];

char *optptr;

optptr = index(type, ’,’);

if (optptr) {

strncpy(typename, type, optptr - type);

typename[optptr - type] = ’\0’;

...

In the above code fragment, MOPS identifies an id-
iom that does not appear to be safe. The character buffer
typename is declared to be 32 bytes long, but the length
passed to strncpy is computed entirely based on the sec-
ond argument to the function dumpImage. We must ver-
ify that this string cannot be constructed in such a way
that when optptr - type is computed, the result is longer
than 32 bytes. MOPS is able to direct us to the call site of
this function, in which we see the following (abbreviated):

newopt->info.dump.type= argv[++a];

...

dumpImage(dispimage, dump->info.dump.type,

dump->info.dump.file, verbose);

Shockingly, the contents of the string come from the
command line arguments, and can be set entirely by the
user. Consequently, a malicious user can supply a carefully
crafted argument to the function which causes the function
dumpImage to write past the end of an array, causing a
buffer overrun.

Unfortunately, this property produced 1378 unique
warnings, too many to examine exhaustively by hand.
Therefore, we picked a semi-random sample of 16 packages
out of the set of 197 packages with one or more warning,
yielding a set of 53 warnings. Examining these 53 warnings
revealed 11 bugs spread among 6 packages, where in each
case a string could be left unterminated or the strncpy()

operation could overflow buffer bounds for some input. We
did not attempt to assess the security implications of these
bugs, though we expect that many of them could be ex-
ploited under some circumstances.

Based on this limited sample, we suspect that a full
manual audit using MOPS would turn up many more
strncpy() bugs. Since we saw 11 bugs among 53 warn-
ings, this suggests a false positive rate of about 79%, and a
true positive rate of about 21%. If all warnings are equally
likely to correspond to real bugs, we might estimate that
there are about 1378 × 11

53
≈ 286 bugs, with a 95% confi-

dence interval of between 165 to 468 bugs. Of course, these

estimates are fairly rough, but our best prediction is that a
full manual audit of all the MOPS warnings would turn up
in excess of one hundred strncpy() bugs.

4 Related Work

There is a broad and growing array of work on software
model checking, and MOPS represents just one of several
tools in this area. BLAST [11] and SLAM [3] are dataflow-
sensitive model checkers that use adaptive iterative refine-
ment to narrow down the locations of bugs. Both have been
used primarily on smaller programs, such as device drivers,
but they are able to provide a much more precise analy-
sis. Similar to BLAST is MAGIC [5], a system that ab-
stracts predicates and uses a theorem prover for dataflow
analysis. CMC, a model checker for C and C++ programs
[13], has been used on large-scale applications like the en-
tire Linux kernel [10]. Metal, a ground-breaking bugfinding
tool which is similar in concept to a model checker, has been
very successful at finding a broad variety of rule violations
in operating systems [2, 9]. Metal has been augmented with
Z-ranking, a powerful technique for reducing the number of
false positives, and used to find many bugs in large appli-
cations [12]. MOPS has previously been used to find bugs
in eight security-relevant packages from the Red Hat distri-
bution [6, 7]. However, none of these tools have yet been
applied on as large a scale as shown in this paper.

File system race conditions have been extensively stud-
ied in the computer security literature. Bishop and Dil-
ger first articulated the vulnerability pattern and developed
a syntactic pattern-matching analysis for detecting TOCT-
TOU vulnerabilities in C code [4]; however, because their
analysis is not semantically based, it is unable to find many
of the vulnerabilities found in this work. Also, some au-
thors have proposed runtime program analysis methods to
detect TOCTTOU bugs by monitoring program executions
and preventing their exploitation [8]; our work differs by
trying to find TOCTTOU bugs at compile time, rather than
at runtime.

5 Conclusion

Our work demonstrates that large-scale model checking
is feasible. We showed that it is possible to develop mod-
els of incorrect and insecure program behavior that are pre-
cise enough to prevent false positives from dwarfing the real
bugs; also, as this work showed, many of these properties
can be encoded in MOPS without serious loss of sound-
ness. Thanks to the sophisticated error reporting in MOPS,
we found that we were able to manually inspect all error
traces. Consequently, we were able to find many (108) real
exploitable software bugs; in several cases, we have crafted

attacks to verify their validity. As a result of this experi-
ence, we are convinced that software model checking can
easily be integrated into the development process, partic-
ularly when using model checkers like MOPS that can be
integrated into build processes at the highest level.

References

[1] mopscode.sourceforge.net.
[2] K. Ashcraft and D. Engler. Using programmer-written com-

piler extensions to catch security holes. In Proceedings of
IEEE Security and Privacy 2002, 2002.

[3] T. Ball and S. K. Rajamani. The SLAM project: Debugging
system software via static analysis. In POPL ’02: Proceed-
ings of the ACM SIGPLAN-SIGACT Conference on Princi-
ples of Programming Languages, 2002.

[4] M. Bishop and M. Dilger. Checking for race conditions
in file accesses. Computing Systems, 9(2):131–152, Spring
1996.

[5] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular
verification of software components in C. In International
Conference on Software Engineering, pages 385–395, May
2003.

[6] H. Chen, D. Dean, and D. Wagner. Model checking one
million lines of C code. In Proceedings of the 11th Annual
Network and Distributed System Security Symposium, San
Diego, CA, Feb. 4–6, 2004.

[7] H. Chen and D. Wagner. MOPS: an infrastructure for exam-
ining security properties of software. In Proceedings of the
9th ACM Conference on Computer and Communications Se-
curity (CCS), pages 235–244, Washington, DC, Nov. 18–22,
2002.

[8] C. Cowan, S. Beattie, C. Wright, and G. Kroah-Hartman.
RaceGuard: Kernel protection from temporary file race vul-
nerabilities. In Proceedings of the Tenth USENIX Security
Symposium, 2001.

[9] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking sys-
tem rules using system-specific, programmer-written com-
piler extensions. In OSDI, 2000.

[10] D. Engler and M. Musuvathi. Model-checking large network
protocol implementations. In Proceedings of the First Sym-
posium on Networked Systems Design and Implementation,
2004.

[11] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Soft-
ware verification with BLAST. In Proceedings of the 10th
SPIN Workshop on Model Checking Software, 2003.

[12] T. Kremenek and D. Engler. Z-Ranking: Using Statistical
Analysis to Counter the Impact of Static Analysis Approxi-
mations. In Proceedings of the 2003 Static Analysis Sympo-
sium, 2003.

[13] M. Musuvathi, D. Park, A. Chou, D. R. Engler, and D. L.
Dill. CMC: A Pragmatic Approach to Model Checking Real
Code. In Proceedings of the Fifth Symposium on Operating
Systems Design and Implementation, Dec. 2002.

