
MOPS∗: an Infrastructure for Examining Security Properties
of Software †

Hao Chen
University of California at Berkeley

hchen@cs.berkeley.edu

David Wagner
University of California at Berkeley

daw@cs.berkeley.edu

ABSTRACT
We describe a formal approach for finding bugs in security-

relevant software and verifying their absence. The idea is as
follows: we identify rules of safe programming practice, en-
code them as safety properties, and verify whether these
properties are obeyed. Because manual verification is too
expensive, we have built a program analysis tool to auto-
mate this process. Our program analysis models the pro-
gram to be verified as a pushdown automaton, represents
the security property as a finite state automaton, and uses
model checking techniques to identify whether any state vi-
olating the desired security goal is reachable in the program.
The major advantages of this approach are that it is sound
in verifying the absence of certain classes of vulnerabilities,
that it is fully interprocedural, and that it is efficient and
scalable. Experience suggests that this approach will be use-
ful in finding a wide range of security vulnerabilities in large
programs efficiently.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—

verification; D.2.4 [Software Engineering]: Software/ Pro-
gram Verification—formal methods, model checking

General Terms
Security, Languages, Verification

Keywords
security, model checking, verification, static analysis

1. INTRODUCTION
∗MOPS: MOdel Checking Programs for Security properties
†This research was supported in part by DARPA contract
N66001-01-C-8040 and by an equipment grant from Intel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’02,November 18–22, 2002, Washington, DC, USA.
Copyright 2002 ACM 1-58113-612-9/02/0011 ...$5.00.

Software vulnerabilities are an enormous cause of security
incidents in computer systems. A system is only as secure as
its weakest link, and often the software is the weakest link.

We can attribute software vulnerabilities to several causes.
Some bugs, like buffer overruns in C, reflect poorly designed
language features and can be avoided by switching to a safer
language, like Java. However, safer programming languages
alone cannot prevent many other security bugs, especially
those involving higher level semantics. As a typical example,
OS system calls have implicit constraints on how they should
be called; if coding errors cause a program to violate such
constraints when interacting with the OS kernel, this may
introduce vulnerabilities.

In this paper, we focus on detecting violations of order-
ing constraints, also known as temporal safety properties. A
temporal safety property dictates the order of a sequence
of security-relevant operations. Our experience shows that
many rules of good programming practice for security pro-
grams can be described by temporal safety properties. Al-
though violating such properties may merely indicate risky
features in a program in some cases, it often renders the
program vulnerable to attack, depending on the nature of
the violation. In either case, the ability to detect violations
of the properties or to verify the satisfaction of them would
be a significant help in reducing the frequency of software
vulnerabilities.

To illustrate the relevance of such temporal safety prop-
erties, we give next a few examples that reflect prudent pro-
gramming practice for Unix applications.

• Property 1. Suppose a process uses the chroot system
call to confine its access to a sub filesystem. In this
case, the process should immediately call chdir(“/”)
to change its working directory to the root of the sub
filesystem.

This rule can be described by the temporal safety prop-
erty that any call to chroot should be immediately fol-
lowed by a call to chdir(“/”). The program in Fig-
ure 1(b) violates this property: it fails to call chdir(“/”)
after chroot(“/var/ftp/pub”), so its current directory
remains /var/ftp. As a result, a malicious user may
ask the program to open the file ../../etc/passwd

successfully even though this is outside the chroot jail
and the programmer probably intended to make it in-
accessible. Here, the malicious user takes advantage
of the method by which the operating system enforces
chroot(new root). When a process requests access to a
file, the operating system follows every directory com-
ponent in the path of the file sequentially to locate the

chroot
other

chdir
other

(a) An FSA describing the Property 1

// Here the current directory is “/var/ftp”
chroot(“/var/ftp/pub”);
filename = read from network();
fd = open(filename, O RDONLY);

(b) A program segment violating Property 1. Note that
the program fails to call chdir(“/”) after chroot(), so
if filename is “../../etc/passwd”, a security violation
ensues.

Figure 1: An FSA illustrating Property 1 (chroot()
must always be immediately followed by chdir())
and a program violating it

file. If the operating system has followed into the di-
rectory new root and if the next directory name in
the path is “..”, then “..” is ignored. However,
in the above example, since the current directory is
/var/ftp, the path ../../etc/passwd never comes
across the new root /var/ftp/pub and is therefore fol-
lowed successfully by the operating system. In short,
the chroot system call has subtle traps for the unwary,
and Property 1 encodes a safe style of programming
that avoids some of these traps.

• Property 2. A call to stat(f) should not be followed
immediately by a call to open(f) (otherwise, it is a
suspicious code sequence that tends to indicate poten-
tial security weaknesses [5]).

Before explaining this property, we give some back-
ground. In Unix systems, each process has an effective
user ID (euid), which determines the file access per-
mission of the process. If the euid of the process is
zero, the user ID of the super-user root, the process
has full access to the filesystem and is said to be privi-
leged. Consider a privileged process that runs on behalf
of a normal user and that wants to constrain itself to
access only files owned by the normal user. A naive
implementation involves two steps: (1) call stat(“foo”)
to identify the owner of the file foo; (2) only open the
file if it is owned by the current user. This strategy,
however, is insecure because of a race condition: an
attacker may change the file associated with the name
foo (e.g., through modifying a symbolic link) between
the stat(“foo”) and open(“foo”) calls. The program
in Figure 2(b) illustrates this race condition. Suppose
the filename foo in the variable logfile initially is a
symbolic link to a file owned by the attacker. When
stat(logfile, &st) is called, the program verifies that the
attacker is the owner of the file. But before the pro-
gram proceeds to open the file by calling open(logfile,
O RDWR), the attacker changes foo to be a symbolic
link to /etc/passwd, a file that should not be writable

open(f)stat(f)

other

other

(a) An FSA describing Property 2

// Here ruid=x (a normal user), euid=0 (root)
stat(logfile, &st);
if (st.st uid != getuid())

return -1;
open(logfile, O RDWR);

(b) A program segment violating Property 2. Note that
the program is susceptible to a race condition, since the
binding of logfile to a file may change between the
stat() and open() calls.

Figure 2: An FSA illustrating Property 2 (stat(f)
must not be followed by open(f)) and a program
violating it.

to him. So open(logfile, O RDWR) ends up opening
/etc/passwd for him in read/write mode. We see that
violations of Property 2 often point to potential secu-
rity vulnerabilities in the code.

• Property 3. Since a privileged process has full access
permission to the system, it should not make certain
system calls that run untrusted programs without first
dropping all privileges (thereby granting them with full
access permission to the system).

One such system call is execl. For example, the pro-
gram in Figure 3(b) calls execl(“/bin/sh”, “sh”, NULL)
in the privileged state, giving the untrusted user a shell
with full filesystem access permission. It violates the
property that a privileged process should drop privi-
lege (by calling seteuid(u) with some user ID u6=0, for
example1) before calling execl.

In summary, the Unix system call interface comes with var-
ious pitfalls and implicit requirements on how this interface
should be invoked. The temporal safety properties listed
above encode some of these requirements in an explicit form.
To reduce the risk of security vulnerabilities we would like
to verify that these security properties are all satisfied.

Although checking temporal safety properties by hand is
feasible in small programs, it does not scale to large pro-
grams because the sequence of operations in a property may
span multiple functions or files in a program. Moreover, we
would like to be confident that the property is satisfied on
all execution paths in the program, yet manually checking
all paths is infeasible in most cases. This point is illustrated
in the program in Figure 4 where the path [d0d2d3d4] in the

1For additional security, a privileged process should call se-
tuid(u) or setresuid(u,u,u) to drop all the privileges in its
ruid, euid, and suid. We simplify the property by consider-
ing only the euid and the seteuid system call.

unpriv
noexec

 priv
noexec

seteuid(0)

seteuid(!0)

other other

unpriv
 exec

 priv
 exec

execl() other execl()

execl()

se
teu

id(
0)

(a) An FSA describing Property 3

// Here ruid=x (a normal user), euid=0 (root)
execl(“/bin/sh”, “sh”, NULL);

(b) A segment from a setuid-root program that violates
Property 3. The user will receive a shell with full root
access, which may not have been intended. Probably
the programmer should have called seteuid(x) to drop
privilege before spawning the shell.

Figure 3: An FSA illustrating Property 3 (execl()
must not be called in privileged state) and a pro-
gram violating it

function drop privilege drops privilege, but the path [d0d1]
fails to do so. So the path [m1d0d2d3d4m2m3] satisfies Prop-
erty 3, but the path [m1d0d1m2m3] violates it. These types
of path-dependent errors are common in programs, but such
interprocedural errors are difficult to discover with testing or
manual review, especially if the caller and callee are in dif-
ferent source files. As a result, we conclude that automated
tools to help with this task are needed.

In this paper, we describe an automated approach to help
examine security-related temporal safety properties (abbre-
viated as security properties henceforth) in software. We
have built MOPS 2, a program analysis tool that allows us
to make these properties explicit and to verify whether they
are properly respected by the source code of some applica-
tion.

MOPS determines at compile time whether there is any
execution path through a program that may violate a se-
curity property. Since it is infeasible to traverse every exe-
cution path because there are prohibitively many paths, we
use techniques from model checking and program analysis
to structure the analysis. We model the security property
as a Finite State Automaton (FSA) and the program as a
Pushdown Automaton (PDA). We then use model checking
to determine whether certain states representing violation of
the security property in the FSA are reachable in the PDA.
Our approach may be viewed as an application of lightweight
formal methods to an interesting class of security properties.

MOPS is distinguished from other related tools in the
following aspects. First, since it is based on a solid for-
mal foundation, i.e., model checking, it can take advantage

2MOdel Checking Programs for Security properties

int main(int argc, char *argv[])
{ // start with root privilege

m0: do something with privilege();
m1: drop privilege();
m2: execl(“/bin/sh”, “/bin/sh”, NULL); // risky syscall
m3: }

void drop privilege()
{

struct passwd *passwd;

d0: if ((passwd = getpwuid(getuid())) == NULL)
d1: return; // but forget to drop privilege!
d2: fprintf(log, “drop priv for %s”, passwd->pw name);
d3: seteuid(getuid()); // drop privilege
d4: }

Figure 4: A program where the security property is
violated on one execution path but not on the other
one.

of existing algorithms and future advances from the model
checking community. Second, because it fully supports in-
terprocedural analysis and because interprocedural bugs are
more elusive than intraprocedural ones, MOPS promises to
complement manual auditing where an automated tool is
needed the most. Third, MOPS is sound (modulo the mild
assumptions to be discussed in Section 6): it reliably catches
all bugs of the specified types. This property makes MOPS
useful not only in finding security bugs but also in verify-
ing security properties. Fourth, thanks to a novel technique
that substantially reduces the size of a program without af-
fecting the result of model checking [7], MOPS scales well to
large programs in both time and space, overcoming the scal-
ability problem that hinders many software model checking
systems. Other tools have some of these properties, but to
the best of our knowledge MOPS is the only tool that has
all of these desirable properties.

This paper is organized as follows. Section 2 and 3 de-
scribe the formal models that are the foundations of this
approach. The former presents an abstract view of the mod-
els and the latter describes their implementation. Section 4
discusses how to derive a security model from the operat-
ing system accurately. Section 5 presents our experiences in
using MOPS to examine several security-relevant software.
Section 6 discusses the soundness of this approach and its
limitations. Section 7 reviews the related work and com-
pares them to MOPS.

2. FORMAL MODELS
MOPS is based on a formal approach that builds a formal

model of a program and of a security property and then
analyzes the models. We start by describing the problem.

2.1 The Problem
Given a program and a security property, the goal is to

verify whether the program satisfies the property, and if
not, identify why. Typically, the program performs sev-
eral security-relevant operations, and the security property
specifies certain sequences of security operations that lead

to potential security violations and that should be avoided.
The problem is to determine if there exists any execution
path through the program that contain such a sequence of
operations.

2.2 The Formal Framework
We start with a highly abstract model. Let Σ be the set

of security-relevant operations. Let B ⊆ Σ∗ be all sequences
of security operations that violate the security property (B
stands for bad). A trace t ∈ Σ∗ will represent a sequence of
operations executed by a path p through the program, and
we say that t is a feasible trace if p is a possible execution
path through the program. Let T ⊆ Σ∗ denote the set of
all feasible traces, extracted from all execution paths of the
program (T stands for trace). The problem is to decide if
T ∩B is empty. If so, then the security property is satisfied.
If not, then some execution path in the program violates the
security property.

In the above model, B and T are arbitrary languages.
Since in general T is an uncomputable set, deciding whether
T ∩B = ∅ is an undecidable problem. To make the problem
decidable, we specialize the problem by restricting the form
of B and T .

First, we assume that B, the set of sequences of security
operations that violate the security property, is a regular
language. Our experiences show that most temporal safety
properties can be described by regular languages (see Sec-
tions 3 and 5 for examples). Since B is a regular language,
there exists a Finite State Automaton (FSA) M that ac-
cepts B (M stands for model); in other words, B = L(M).
We will usually identify the security property with its rep-
resentation as an FSA.

Although we assume that B is a regular language, it is
not sufficient to assume that T , the set of all feasible traces,
will always be a regular language. The problem is that a
regular language cannot describe the execution paths that
cross function calls very well. In the case of a function call, a
stack is needed to record the return address in the caller, and
the language generated with a stack is context free rather
than regular. Therefore, in this paper we model the set T
of feasible traces as a context free language. It follows that
there exists a Pushdown Automaton (PDA) P that accepts
T (P stands for program). A PDA consists of a set of states,
stack symbols, input symbols, and transitions. A snapshot
of the PDA, called a configuration, consists of its current
state and all the symbols on the stack. A transition specifies
that the PDA moves from one configuration to another upon
receiving a certain input symbol. With these specializations
of B and T , the original problem becomes deciding if L(M)∩
L(P) is empty.

To solve the problem, first we need to compute L(M) ∩
L(P). Since C = L(M) ∩ L(P) is the intersection of a reg-
ular language (L(M)) and a context free language (L(P)),
C is a context free language. It also follows that C is ac-
cepted by the PDA that is the intersection of M and P .
Second, we need to determine if the language C is empty.
According to automata theory, there are efficient algorithms
to compute the intersection of a PDA and an FSA and to
determine if the language accepted by a PDA is empty [13,
§6.2 and §6.3]. Hence we obtain a means to verify whether
the security property is satisfied by the program.

Using a context free language to model the set of feasi-
ble traces does introduce some imprecision. In general we

have T ⊆ L(P): the PDA P will indeed accept all feasi-
ble traces, yet it might also accept some additional, spuri-
ous traces that are in fact infeasible due to the presence of
other effects (such as data flow) not modeled in our frame-
work. Nonetheless, since T ⊆ L(P), we are guaranteed that
T ∩ B ⊆ L(P) ∩ L(M). Consequently, if L(M) ∩ L(P) is
empty, we can conclude that T ∩B is also empty, hence the
program definitely satisfies the security property; in con-
trast, if L(M) ∩ L(P) is non-empty, then we can only say
that T ∩ B may or may not be empty, hence the program
might not satisfy the security property, but there are no
guarantees in this case.

This means that our analysis is sound : it may make mis-
takes by giving false alarms (warnings that do not corre-
spond to an actual security vulnerability), but it will not
overlook a real violation of the security property. This lim-
itation is unavoidable. Since the general problem is unde-
cidable, no algorithm can both avoid false alarms and avoid
overlooking real bugs. Our experience is that false alarms
are tolerable enough in practice that the approach is still
useful despite occasional bogus warning messages.

2.3 A Concrete Example
To illustrate the formal framework, let us work through a

concrete example. The problem is to check if the program in
Figure 4 violates the security property that a process should
not make the execl system call while it is in the privileged
state (Figure 3(a))

In this problem, the set of security operations is Σ =
{execl(), seteuid(0), seteuid(!0)}, where the last element rep-
resents any call to seteuid with a non-zero parameter (rep-
resenting a non-root user ID). The set B ⊆ Σ∗, the se-
quences of security-relevant operations that violate the se-
curity property, is accepted by the FSA M shown in Fig-
ure 3(a). The set T ⊆ Σ∗, the feasible traces of the program
in Figure 4, is T = {[seteuid(!0), execl()], [execl()]}. Since
this is a setuid-root program, the initial state in the FSA
M is (priv,noexec). According to Figure 3(a), although the
path [seteuid(!0), execl()] in T is not accepted by M , the
path [execl()] in T is accepted by M . Therefore, we find
that T ∩L(M) 6= ∅, or in other words, an execution path in
the program violates the security property. This indicates
the presence of a security vulnerability.

3. IMPLEMENTATION OF FORMAL MOD-
ELS

In this section, we describe how to construct formal mod-
els from security properties and programs.

3.1 Modeling Security Properties
We call an FSA that describes a security property a secu-

rity model. A transition in the FSA represents an execution
of a security-relevant operation. All sequences of operations
that violate the property end in the final states of the FSA.
So the final states might also be thought of as risky states
and are shown in double circles in the figures. The FSAs
describing Properties 1, 2, and 3 in Section 1 are shown in
Figures 1(a), 2(a), and 3(a) respectively. Note that in these
figures each transition labeled other is a special transition,
which is taken when no other transition from the same state
can be taken.

3.1.1 Modularization

unpriv priv

seteuid(0)

seteuid(!0)

other other

(a) A model of process privilege.

noexec exec

execl()

other

other execl()

(b) A model of risky system calls.

unpriv
noexec

 priv
noexec

seteuid(0)

seteuid(!0)

other other

unpriv
 exec

 priv
 exec

execl() other execl()

execl()

se
teu

id(
0)

(c) A composite model describing the property that
a process should not make risky system calls while it
is in the privileged state. The model is automatically
constructed as the product of 5(a) and 5(b). Note that
the outgoing transitions from the final state (priv, exec)
are omitted for clarity.

Figure 5: Building a complex model from simpler
models.

One important feature of MOPS is that it allows complex
security properties to be decomposed into simpler security
models which are easier to describe. MOPS is able to com-
bine these simpler models into a complex model on the fly 3.
For example, consider the property that a process should
not make a risky system call such as execl while it is in
the privileged state. This property can be decomposed into
two simpler models: the first one describes the transition
of a process between the privilege state and the unprivi-
leged state (Figure 5(a)) and the second one describes the
execution of a risky system call (Figure 5(b)). MOPS auto-
matically combines the two simpler FSAs into the product
automaton shown in Figure 5(c). Checking the program in
Figure 4 against this security model shows that the risky
state is reachable at the program point m3.

Modularization also makes it possible to reuse existing

3The complex model is a product automaton of the au-
tomata of the simple models

models. Suppose we have already built the model of process
privilege (Figure 5(a)) and we want to build the model for
the property that a process should not make risky system
calls in the privileged state (Figure 5(c)). Instead of building
it from scratch, we only need to build the model describing
risky system calls (Figure 5(b)) and then plug in the ex-
isting model of process privilege (Figure 5(a)). This allows
the construction of a model library which supplies building
blocks for new models.

Enabling modularity is very important for practical use.
For ease of presentation, we have so far described only se-
curity properties that have concise representations as small
FSAs, but in practice our security models may be very com-
plex. For instance, our model of user IDs in Linux has dozens
of states and many more transitions. If we had to re-specify
this every time we wanted to check some security property
that involves privileges, the result would be too unwieldy for
practical use. Modularity comes to the rescue here: it lets
us build a few base models once, then we can compose and
extend them in many interesting ways.

3.1.2 Pattern Variables
MOPS is control flow and path sensitive but data flow

insensitive. In other words, we ignore most data flow: for
instance, when processing an if-then-else statement, we
conservatively assume that either branch could be taken,
and we do not try to analyze whether the condition to the
if statement is true or not. We make this choice for the
following reasons. First, we conjecture that many security
properties do not require the analysis of data flow. Second,
analysis of data flow is expensive and will severely limit the
scalability of MOPS. Third, we can do rudimentary data
flow analysis by encoding data values into a security model.
For example, if we want to analyze the value of a boolean
variable b, then we can split each state si in the security
model into two states si,0 and si,1, where si,0 represents
when b is true and si,1 represents when b is false.

MOPS supports a special form of data flow analysis via
pattern variables. A pattern variable used in an FSA may
be bound to any expression that satisfies context constraints
in a program. For example, if x is a pattern variable in the
FSA in Figure 6(a), then x can be bound to the expression
either a or b in the program in Figure 6(b). In other words,
pattern variables enable syntactic matching.

3.2 Modeling Programs
Since we only care about all feasible paths in a program

and the statements executed on these paths, we can model
the execution of the program by a pointer and a stack. The
pointer points to the program position of the next statement
to be executed, and the stack records the return addresses
of all unfinished function calls. Therefore, the value of the
pointer and the values on the stack uniquely identify a snap-
shot of the program in execution. If we merge the pointer
and the stack by regarding the pointer as the top element
on the stack, we get a Pushdown Automaton(PDA). The
control flow in the program determines the transitions in
the PDA. An algorithm that constructs the PDA from the
program is described elsewhere [7].

Once we have an FSA describing a security property and
a PDA representing a program, our goal is to check if any
risky state in the FSA is reachable at any program point
in the PDA. To answer this question, MOPS composes the

closed open

x=open()

close(x)

other other

(a) An example of a security property using pattern
variables.

int main()
{

int a, b;
a = open(“foo”, O RDONLY);
b = open(“bar”, O RDONLY);
. . .
close(a);
close(b);

}

(b) An example of a program motivating the utility
of pattern variables. By using the pattern variable to
match up each open call to its corresponding close call,
we can accurately track the state of each file descriptor.

Figure 6: An example showing the use of pattern
variables

unpriv priv

seteuid(0)

seteuid(!0)

other other

Figure 8: A simplified FSA describing process priv-
ilege in Linux 2.4.17

FSA M with the PDA P using standard techniques [13,
Theorem 6.5]. This results in a new PDA, called the com-
posite PDA, which accepts the language L(M)∩L(P). The
initial configuration of the composite PDA represents the
snapshot when the program starts, where the state of the
PDA is the initial state of the security model and the stack
of the PDA only contains the entry point of the program.
By using model checking techniques, MOPS can determine
if any risky state is reachable within the composite PDA.
If this is the case, then MOPS has found a potential secu-
rity violation and outputs an execution path in the program
that causes this violation. For example, MOPS finds that
the path in Figure 7 from the program in Figure 4 violates
the security property in Figure 3(a).

Furthermore, MOPS can determine, for each statement in
a program, all the states in an FSA that the statement can
be executed in. For example, if the FSA contains a priv-
ileged and an unprivileged state, MOPS tells which state-
ment may be executed in the privileged state. If this does
not meet a programmer’s expectation, a vulnerability is
likely. We speculate that this additional functionality may
be very useful when auditing security-critical programs by
hand.

4. MODELING OPERATING SYSTEMS SE-
MANTICS

Since a security model is an abstract representation of
the security operations in an operating system, we need to
understand the semantics of the security operations precisely
to construct an accurate security model. This, however, is
often difficult because the semantics of security operations
is subtle and varies among different operating systems (such
as different flavors of the Unix system). Moreover, their
documentation is sometimes incomplete or incorrect [8].

We advocate relying on the kernel code for the construc-
tion of security models, since the kernel code determines the
semantics of the security operations. We adopt a two step
process: in the first step, find out all the kernel variables
that affect the security operations and then determine the
states in the FSA based on these kernel variables; in the
second step, determine the transitions among these states
in the FSA. The first step can usually be done by hand, but
manually doing the second step is often laborious and error
prone because of the large number of transitions. We tackle
this problem by writing a state-space explorer that exhaus-
tively executes all the security operations on the operating
system and automatically creates all the transitions in the
security model.

To illustrate this process, we will show how to build a
security model that describes the transition of privilege in a
process in Linux 2.4.17. Further details may be found in a
companion paper [8].

4.1 A simple model
Since the privilege of a process is carried in its euid, we

start with a simple model with two states: the privileged
state priv representing when the euid is zero and the un-
privileged state unpriv representing when the euid is non-
zero, as shown in Figure 8. The call seteuid(0) causes a
transition from unpriv to priv and any call to seteuid with
a non-zero argument, denoted by seteuid(!0), causes a re-
verse transition. Furthermore, the euid can also be changed
by the setuid, setreuid, and setresuid system calls, so they
are also added into the model (not shown in Figure 8 for
legibility). We will refer to these system calls that modify
the user IDs of a process as the uid-setting system calls.

4.2 Improving the model
The above simple model, however, is inaccurate. The be-

havior of the uid-setting system calls depends not only on
the euid but also on the ruid and suid [8]. Therefore, we
extend the model to consider all the three user IDs. The
range of values in each user ID determines the number of
states in the model. Typically, a process switches its user
IDs between root, whose user ID is zero, and a non-root
user, whose user ID is non-zero. In this case, the model
needs eight states to describe all possible combinations of
the values in the three user IDs. In addition, there is an
error state, which represents a failed system call. This re-
sulting model is shown in Figure 9. For legibility, all input
symbols (system calls) on the transitions are omitted.

To verify if the states in this model are complete, we need
to find out if other kernel variables besides the ruid, euid,
and suid of a process can affect the behavior of the uid-
setting system calls. A search through the kernel finds that
the effective capability (cap effective), the permitted capa-
bility (cap permitted), and the variable keep capabilities of

Function Program Point Statement

main m0: do something with privilege();
main m1: drop privilege();
drop privilege d0: if ((passwd = getpwuid(getuid())) == NULL)
drop privilege d1: return; // but forget to drop privilege!
main m2: execl(“/bin/sh”, “/bin/sh”, NULL); // risky system call

Figure 7: An execution path that causes a security violation, from the program in Figure 4.

ruid=0,euid!=0,suid=0

ruid=0,euid=0,suid=0

ruid!=0,euid!=0,suid!=0

ruid=0,euid!=0,suid!=0

ruid!=0,euid=0,suid=0

ruid=0,euid=0,suid!=0

ruid!=0,euid=0,suid!=0

ruid!=0,euid!=0,suid=0

ERROR

Figure 9: A refined view of the Linux 2.4.17 process
privilege model, capturing the ruid, euid, and suid.

a process are also relevant. Like the ruid, euid, and suid,
they are also per-process variables. We add cap effective
and cap permitted into the state space, each of which is rep-
resented as a binary value. We ignore keep capabilities be-
cause few programs modify it and we let MOPS warn about
such programs.

4.3 Determining Transitions
Having determined the states in the security model, the

next step is to create transitions in the model. However, it
would be too laborious and error prone to create the huge
number of transitions in Figure 9 and Figure 10. Instead,
we write a state-space explorer that creates the transitions
automatically. From each state in the FSA, the explorer
determines all the outgoing transitions from this state by
making all the uid-setting system calls from this state and
examining the state transitions resulting from the calls. A
proof of correctness of this approach and other details may
be found elsewhere [8].

5. APPLICATIONS

5.1 Checking Privilege Flow in Non-local Con-
trol Flow

5.1.1 Problem

jmp buf env;

void signalhandler()
{

seteuid(0);
logwtmp(message, ””, ””);
longjmp(env, 1);

}

int main()
{

// drop privilege
seteuid(getuid());
...
setjmp(env);
// do something potentially risky
...

}

Figure 11: A program with a security vulnerability
caused by longjmp carrying privilege to the call site
of setjmp, where privilege should have been dropped

POSIX allows a program to do a non-local jump by call-
ing longjmp, in which the program jumps to the stack con-
text saved by a previous setjmp call. Since non-local jumps
are not in the Control Flow Graph of the program, most
program analysis tools cannot analyze them. However, non-
local jumps are prone to security vulnerabilities since they
may cause unexpected control flow. For example, the pro-
gram in Figure 11 starts with privilege. Then, it drops priv-
ilege (by calling seteuid(getuid())) before doing potentially
risky operations in the function main. However, if the pro-
gram subsequently receives a signal, the longjmp call in the
function signalhandler will cause the program to jump into
the function main (immediately after the call site of setjmp)
with the privilege obtained in signalhandler. Thereafter,
the program will execute potentially risky operations in the
function main with privilege.

5.1.2 Temporal Safety Property
To prevent a longjmp call from carrying privilege to the

call site of a setjmp where privilege should have been dropped,
we propose the following temporal safety property:

Property 4: the privilege of a process when it
calls longjmp must match its privilege when it
calls setjmp.

Obviously, an FSA describing this property should have two
dimensions: one dimension records the privilege of the pro-
cess when it last called setjmp, and the other records its

R!=0,E!=0,S=0,CE=1,CP=1

R=0,E=0,S=0,CE=1,CP=1

R!=0,E!=0,S!=0,CE=0,CP=0

R!=0,E=0,S=0,CE=1,CP=1

R=0,E=0,S!=0,CE=1,CP=1

R!=0,E=0,S!=0,CE=1,CP=1

R=0,E!=0,S=0,CE=1,CP=1

R=0,E!=0,S!=0,CE=1,CP=1

R=0,E!=0,S=0,CE=0,CP=1

R=0,E!=0,S!=0,CE=0,CP=1

R!=0,E!=0,S=0,CE=0,CP=1

EPERM

R!=0,E=0,S!=0,CE=0,CP=1

R=0,E=0,S=0,CE=0,CP=1

R=0,E=0,S!=0,CE=0,CP=1

R!=0,E=0,S=0,CE=0,CP=1 R!=0,E!=0,S=0,CE=0,CP=0

R=0,E=0,S=0,CE=0,CP=0

R=0,E=0,S!=0,CE=0,CP=0

R=0,E!=0,S!=0,CE=0,CP=0

R=0,E!=0,S=0,CE=0,CP=0

R!=0,E=0,S=0,CE=0,CP=0

R!=0,E=0,S!=0,CE=0,CP=0

Figure 10: A further refined model of process privilege in Linux 2.4.17, this time capturing all of the ruid,
euid, suid, effective and permitted capabilities.

current privilege. The states in the FSA whose privileges in
the two dimensions are different represent violation of this
property. Formally, let F be the FSA describing the tran-
sition of privilege in a process (constructed in Section 4)
and let S be the set of states in F . We derive an FSA
G that describes the above property. The states in G are
S × (S ∪ {⊥}) ∪ {ERROR}, where × denotes the Cartesian
product and ⊥ represents the uninitialized state (the setjmp
buffer is in the uninitialized state before the first setjmp is
called). Use the following rules to add transitions to G.

• For every transition u
i→ v in F and every state s ∈

(S ∪ {⊥}), add a transition (u, s)
i→ (v, s) to G .

• For every state s ∈ S and t ∈ (S ∪ {⊥}), add a transi-

tion (s, t)
setjmp(env)

−→ (s, s) to G.

• For every state s ∈ S and t ∈ (S∪{⊥}) and s 6= t, add

a transition (s, t)
longjmp(env, *)

−→ ERROR to G where the
state ERROR indicates violation of the property.

• For every state s ∈ S, add a transition

(s, s)
longjmp(env, *)

−→ (s, s) to G.

5.1.3 Implementation
We used the above security model to find a known secu-

rity vulnerability in wu-ftpd version 2.4 [6]. The vulnerabil-
ity is similar to the one in Figure 11, except that seteuid(0)
and longjmp(env) are called in the handlers for the signals
SIGPIPE and SIGURG respectively. Therefore, by sending
the signal SIGURG immediately after the signal SIGPIPE
to a wu-ftpd process, an attacker can cause the process to
call seteuid(0) in the handler of the signal SIGPIPE to gain
privilege, and then to call longjmp(env) in the handler of
the signal SIGURG to return to the call site of setjmp(env)
in the function main. Thereafter, wu-ftpd will execute with
root privilege, which results in giving the attacker root priv-
ilege.

Since this vulnerability involves signal handling which is
not part of the control flow of a program and which most
program analysis tools, including MOPS, are unable to han-
dle, at present we need to manually insert the control flow of

signal handling into the program. A naive approach would
be to non-deterministically add a call to a signal handler
after every statement in the program wherever the signal is
enabled. This is too laborious. Fortunately, there is a better
approach. We observe that it is sufficient to add such calls
only after the statements that may trigger state changes
in the FSA. Since only the uid-setting system calls and the
setjmp call may trigger transitions in the above FSA, we only
need to non-deterministically add a call to a signal handler
after the uid-setting system calls and the setjmp call in the
program wherever the signal is enabled. This substantially
reduces the number of calls added to the program. The need
to modify the program by hand is a repairable limitation of
our current implementation, not a fundamental limitation
of the approach. It would be straightforward to extend the
control flow analysis to add transitions for signal handlers as
needed automatically, and we hope to add this to a future
version of MOPS.

Since longjmp(env, *) causes a program to jump to the
stack context in env which has been saved by setjmp(env),
if the program uses multiple jump buffers, we need to match
every longjmp with its corresponding setjmp. Pattern vari-
ables (Section 3.1.2) handle this naturally, so long as there
is no aliasing.

5.1.4 Results
MOPS detected the vulnerability in wu-ftpd 2.4 beta 11

and discovered the offending path that was given in the re-
port of the vulnerability [12].

wu-ftpd version 2.4 beta 12 fixed the vulnerability by safe-
guarding every seteuid call with enabling/disabling signals.
This new version precedes every call to gain privilege (se-
teuid(0)) with a call to disable signals and follows every
call to drop privilege (seteuid(!0)) with a call to enable sig-
nals. We used MOPS to verify that this new version satisfies
Property 4, as given above.

5.2 Checking Proper Dropping of Privilege
Many server processes start with root privilege in their

user IDs. They often need to drop privilege temporarily
before doing untrusted operations on a user’s behalf or to
drop privilege permanently before passing control to the
user. Failure in dropping privilege may allow an attacker

to take control of the application or even the OS.
To detect this vulnerability, we need to find which state-

ments in the program may be executed with privilege. Us-
ing the techniques described in Section 4, we built an FSA
for describing privilege transitions in each process on Linux
(Figure 9 shows the FSA, where for clarity all the labels of
the transitions are removed). Each state in the FSA encodes
whether the root privilege is present in the ruid, euid, and
suid. By using MOPS to find, for each statement in the
program, the set of states in the FSA that the statement
may be executed in (Section 3.2), we are able to identify
all the statements that may be executed with privilege, and
therefore to determine whether each operation that intends
to drop privilege may fail. By this approach, we identified
two known vulnerabilities in sendmail : sendmail 8.10.1 fails
to drop root privilege in user IDs permanently due to a bug
in the Linux kernel and an unexpected interaction between
the user IDs and the capabilities [16], and sendmail 8.12.0
fails to drop privilege in group IDs permanently due to an
unexpected interaction between the user IDs and the group
IDs [19]. More details of these vulnerabilities may be found
elsewhere [8].

5.3 Verifying Success of System Calls
Failure of certain security related system calls may cause

vulnerability. For example, if setuid(getuid()) fails, the call-
ing process fails to drop privilege permanently which may
allow an untrusted application to take over the OS. We ob-
tain the following security property:

Property 5: the setuid system call should never
fail.

The FSA that we built for modeling uid-setting system
calls includes a state that represents failed calls. With this
FSA, MOPS is able to verify that no uid-setting system calls
may fail in OpenSSH 2.5.2.

5.4 Performance
We measured the performance of MOPS by sendmail 8.12.0,

which has 53k lines of code, in the experiment described in
Section 5.2. On an 1.5GHz Pentium machine, MOPS spent
110 seconds in parsing the source files and 95 seconds in
model checking. This computation needed less than 300MB
of memory. This suggests that MOPS will scale well to large
security-relevant programs.

6. DISCUSSION
The two major goals of MOPS are soundness and scala-

bility. Soundness will enable MOPS to be used not only as
a bug-finding tool but also as a property-verification tool.
To evaluate the soundness of MOPS, let us look at the two
stages of MOPS: transforming a C program into a PDA, and
model checking the PDA. The latter stage is always sound.
The former stage is sound as long as every execution path
in the program is captured in the PDA. This requires that
the program be a portable, single-threaded C program that
has no implementation-defined behavior: for example, no
buffer overruns and no runtime code generation. In addition,
MOPS ignores control flow by function pointers, signal han-
dlers, and non-local jumps via setjmp/longjmp. Although
this approximation introduces unsoundness, it is not a fun-
damental limitation of the approach but rather a limitation

of the current implementation. We can overcome this prob-
lem by manually transforming the control flow that MOPS
ignores to the equivalent ones that MOPS considers, as we
did in Section 5.1.3. We are working on automating this
process and we hope to add it to a future version of MOPS.

Scalability will enable MOPS to work on a broad range of
programs, especially the more complex ones which are more
error-prone. MOPS has achieved high scalability by disre-
garding most data flow and compacting the CFGs very effi-
ciently [7]. This advantage, however, comes with the price
of lower precision: MOPS may mistakenly consider paths
that are infeasible in the program to be feasible, and issue
extraneous warnings. Although there is always a trade-off
between scalability and precision, we are investigating how
much we can push MOPS’s precision without sacrificing scal-
ability.

7. RELATED WORK
A number of static analysis techniques have been used

to detect specific security vulnerabilities in software. Wag-
ner et al. used integer range analysis to find buffer over-
runs [18]. Koved et al. used context sensitive, flow sensitive,
interprocedural data flow analysis to compute access rights
requirement in Java with optimizations to keep the analysis
tractable [15]. CQUAL [11] is a type-based analysis tool that
provides a mechanism for specifying and checking properties
of C programs. It is used to detect format string vulnera-
bilities [17] and to verify authorization hook placement in
the Linux Security Model framework [20], which are exam-
ples of the development of sound analysis for verification of
particular security properties. The application of CQUAL,
however, is limited by its flow insensitivity and context in-
sensitivity, although it is being extended to support both.

Metal [9, 1] is a general tool that checks for rule vio-
lations in operating systems, using meta-level compilation
to write system-specific compiler extensions. The goals of
Metal and MOPS are different. Metal is aimed at find-
ing bugs with few false positives. Therefore, false nega-
tives are quite possible and it is neither sound nor complete.
On the other hand, MOPS is aimed at verifying security
properties with no false negatives, which is achieved by its
soundness (modulo the mild assumptions discussed in Sec-
tion 6). Moreover, Metal is primarily an intra-procedural
tool — inter-procedural checking requires extra effort from
the user. However, since interprocedural bugs are more elu-
sive, automated tools become more valuable when they find
interprocedural bugs. MOPS is fully interprocedural.

SLAM [2, 3] is a pioneer project that uses software model
checking to verify temporal safety properties in programs. It
validates a program against a well designed interface using
an iterative process. During each iteration, a model checker
determines the reachability of certain states in a boolean ab-
straction of the source program and a theorem prover ver-
ifies the path given by the model checker. If the path is
infeasible, additional predicates are added and the process
enters a new iteration. SLAM, however, does not yet scale
to very large programs. Compared to SLAM, MOPS trades
precision for scalability and efficiency by considering only
control flow and ignoring most data flow, as we conjecture
that many security properties can be verified without data
flow analysis. Also since MOPS is not an iterative process,
it does not suffer from possible non-termination as SLAM
does.

Jensen et al. model checked a special class of security prop-
erties in Java using only control flow analysis [14, 4]. Its
algorithm, however, requires that one specifies a fixed, finite
bound on the size of the program stack. The model checking
algorithm in MOPS is based on the work by Esparza [10],
which properly handles stacks of unbounded size. We have
extended the algorithm with backtracking and CFG com-
paction [7].

8. CONCLUSIONS
In this paper, we have described a formal approach that

is able to check a wide range of security properties in large
programs efficiently. We have implemented this approach in
a tool called MOPS. In our approach, we identify rules of
safe programming practice, encode them as security prop-
erties, and describe them by Finite State Automata (FSA).
To check these properties in a program, MOPS models the
program as a pushdown automaton (PDA) and uses model
checking techniques to determine the reachability of risky
states in the PDA. The major advantages of this approach
are: (1) since it is fully interprocedural, it is especially use-
ful in finding interprocedural bugs, which are more likely
to elude manual audit; (2) since it is sound (modulo mild
assumptions), it can reliably catch all bugs of the specified
types; (3) thanks to our novel compaction algorithm, MOPS
is efficient and scales to handle large programs. Preliminary
evidence suggests that MOPS will be helpful in finding var-
ious types of security vulnerabilities in C programs.

We are working on extending MOPS. We are investigating
how much data flow analysis we can incorporate into MOPS
without affecting its scalability. We are also experimenting
with checking more security properties in more programs so
that we can improve MOPS as we gain more experience.

9. ACKNOWLEDGMENT
We thank Drew Dean for suggesting the security property

regarding setjmp and longjmp. Robert Johnson helped with
the initial implementation of pattern variable and David
Schultz helped improve the usability of MOPS. We are grate-
ful to Zhendong Su, David Schultz, Naveen Sastry, Dawn
Song, Helen Wang, and the anonymous reviewers for their
valuable comments.

10. AVAILABILITY
MOPS is available at:

http://www.cs.berkeley.edu/~daw/mops/

11. REFERENCES
[1] K. Ashcraft and D. Engler. Using programmer-written

compiler extensions to catch security holes. In
Proceedings of IEEE Security and Privacy 2002, 2002.

[2] T. Ball and S. K. Rajamani. Automatically validating
temporal safety properties of interfaces. In SPIN 2001,
Workshop on Model Checking of Software, 2001.

[3] T. Ball and S. K. Rajamani. The SLAM project:
Debugging system software via static analysis. In
POPL 2002, 2002.

[4] F. Besson, T. Jensen, D. L. Metayer, and T. Thorn.
Model checking security properties of control flow
graphs. Journal of Computer Security, 9:217–250,
2001.

[5] M. Bishop and M. Dilger. Checking for race conditions
in file access. Computing Systems, 9(2):131–152, 1996.

[6] CERT. CERT Advisory CA-1997-16: ftpd signal
handling vulnerability.
http://www.cert.org/advisories/CA-1997-16.html.

[7] H. Chen and D. Wagner. MOPS: an infrastructure for
examining security properties of software. Technical
Report UCB//CSD-02-1197, UC Berkeley, 2002.

[8] H. Chen, D. Wagner, and D. Dean. Setuid
demystified. In Proceedings of the Eleventh Usenix
Security Symposium, San Francisco, CA, 2002.

[9] D. Engler, B. Chelf, A. Chou, and S. Hallem.
Checking system rules using system-specific,
programmer-written compiler extensions. In OSDI,
2000.

[10] J. Esparza, D. Hansel, P. Rossmanith, and
S. Schwoon. Efficient algorithms for model checking
pushdown systems. Technical report, Technische
Universität München, 2000.

[11] J. Foster, M. Fähndrich, and A. Aiken. A theory of
type qualifiers. In ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI’99), May 1999.

[12] D. Greenman. Serious security bug in wu-ftpd v2.4.
http://online.securityfocus.com/archive/1/

6056/1997-01-04/1997-01-10/2.

[13] J. Hopcroft and J. Ullman. Introduction to automata
theory, languages, and computation. Addison-Wesley,
1979.

[14] T. Jensen, D. L. Metayer, and T. Thorn. Verification
of control flow based security properties. In
Proceedings of the 1999 IEEE Symposium on Security
and Privacy, 1999.

[15] L. Koved, M. Pistoia, and A. Kershenbaum. Access
rights analysis for java. In Proceedings of the 17th
Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
2002.

[16] Sendmail Inc. Sendmail workaround for linux
capabilities bug. http://www.sendmail.org/
sendmail.8.10.1.LINUX-SECURITY.txt.

[17] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner.
Detecting format string vulnerabilities with type
qualifiers. In Proceedings of the 10th USENIX Security
Symposium, 2001.

[18] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first
step towards automated detection of buffer overrun
vulnerabilities. In Proceedings of NDSS 2000, 2000.

[19] M. Zalewski. Multiple local sendmail vulnerabilities.
http://razor.bindview.com/publish/advisories/

adv_sm812.html.

[20] X. Zhang, A. Edwards, and T. Jaeger. Using CQUAL
for static analysis of authorization hook placement. In
Proceedings of the Eleventh Usenix Security
Symposium, August 2002.

http://www.cs.berkeley.edu/~daw/mops/
http://www.cert.org/advisories/CA-1997-16.html
http://online.securityfocus.com/archive/1/6056/1997-01-04/1997-01-10/2
http://online.securityfocus.com/archive/1/6056/1997-01-04/1997-01-10/2
http://www.sendmail.org/sendmail.8.10.1.LINUX-SECURITY.txt
http://www.sendmail.org/sendmail.8.10.1.LINUX-SECURITY.txt
http://razor.bindview.com/publish/advisories/adv_sm812.html
http://razor.bindview.com/publish/advisories/adv_sm812.html

	Introduction
	Formal Models
	The Problem
	The Formal Framework
	A Concrete Example

	Implementation of Formal Models
	Modeling Security Properties
	Modularization
	Pattern Variables

	Modeling Programs

	Modeling Operating Systems Semantics
	A simple model
	Improving the model
	Determining Transitions

	Applications
	Checking Privilege Flow in Non-local Control Flow
	Problem
	Temporal Safety Property
	Implementation
	Results

	Checking Proper Dropping of Privilege
	Verifying Success of System Calls
	Performance

	Discussion
	Related Work
	Conclusions
	Acknowledgment
	Availability
	REFERENCES -9pt

