
Using Build-Integrated
Static Checking to Preserve

Correctness Invariants

Hao Chen
University of California, Davis

Jonathan Shapiro
Johns Hopkins University

Motivation

� A key problem in creating secure systems:

� Demonstrate the correspondence between the
design and implementation, and

� Preserve the correspondence, and

� Achieve these goals cost effectively

� Success stories

� Static analysis tools have found many bugs

Open questions

� Are these tools cost-effective for preventing
bugs?

� How easy to write specifications by non-tool
developers?

� How easy to integrate the tools into the build
process?

� How much overhead does the checking add to
the build process?

Our work

� Empirically examine the cost and gain of
embedding a static analysis tool into the
development cycle of software

� Conduct a case study

� Analysis tool: MOPS

� Software checked: EROS

MOPS

� A static analysis tool that checks source
programs for temporal safety properties

� e.g.: a setuid-root program must drop privilege
before making risky system calls.

� Sound analysis under certain assumptions

� Memory safety

� No non-local jumps

� No pointer aliasing

� ...

The MOPS process

Parser Model
Checker

C Program

Safety
Property

CFG

FSA
Program satisfies

safety property

Error TracesFSA: finite state automaton
CFG: control flow graph

Treat the model checker as a black box for this talk

EROS

� A capability-based OS running on commodity
hardware

� We focus on the EROS microkernel

� Interrupt-style kernel

� Single-level storage

� Caching design

Properties checked

� Transactional requirement in system calls

� Sleeping and yielding

� Interrupt enables and disables

� Caching requirement

� Consistency in the memory subsystem

Property: transactional
requirement in system calls

� EROS is an interrupt-style kernel

� When blocked, a process does not retain a
kernel stack

� Upon wake up, the process restarts the system
call

Commit point

� A commit point separates the two phases of
a system call

� Prepare phase: check preconditions.
If preconditions unsatisfiable, Yield()

� Action phase: must complete the operation

� Commit() separates the two phases

Property: transactional
requirement in system calls

Init Committed

Yielded Error

Commit()

Yield() Yield()

Syscall
Return

� Every path should invoke exactly one of Yield() or Commit()

� After Commit(), should not invoke Yield()

Bug in system call transaction

int syscall(...)
{
 // commit point
 Commit();
 ...
 p = malloc();
}

void *malloc(size_t len)
{
 if (memory unavaiable)
 Yield();
}

Property: Sleep() and Yield()

� EROS differs from typical kernels in that

� A process can sleep on at most one queue at
any time

� Sleep() and Yield() are not atomically joined.

� Sleep() places the process on a sleep queue

� Yield() relinquishes the CPU

Sleep() and Yield(): first try

Init Slept

Yielded

Error

Yield()

Yield()

Sleep() Sleep()

Syscall
Return

� No kernel path can invoke Sleep() more than once.

� After Sleep(), the kernel must call Yield().

� Before Yield(), the kernel must call Sleep().

Sleep() and Yield(): problem

� Problem

� Occasionally, it is allowable to invoke Yield()
without invoking Sleep() first

� Reason: needs to abort and retry the current
system call immediately

� Result: false positive errors

Sleep() and Yield(): solution

� Wrap those special Yield() in Retry()

� Avoid false positives

� Result in cleaner code

Init Slept

Yielded

Error

Yield()

Yield()

Sleep() Sleep()

Syscall
Return

Retry()

Property:
interrupt enable and disable

� Property

� Properly nest interrupt enables and disables

� Do not invoke Yield() while interrupt is disabled

� Problem

� Property needs a counter, so cannot be
accurately described by an FSA

� Solution: approximate the property using a guard
state

Property:
interrupt enable and disable

Enabled

Error

Disabled
Level 1

Disabled
Level 5

irq_DISABLE()

...

Irq_DISABLE()

irq_ENABLE() Irq_ENABLE()

Irq_Yield()
Irq_ENABLE()

Irq_Yield() or
Irq_DISABLE()

Evaluation: Usability

� Setup: cooperation between

� A MOPS developer

� An EROS developer

� Experience

� EROS developer wrote specifications by himself

� took 16 hours spanning several conference trips

� Only a few iterations is needed for each property

� Found a few false positives

Integration and Performance

� Integrating MOPS into EROS

� Took less than an hour

� Performance

� EROS kernel: 26K lines of code

� Checking five properties took 100 seconds

� Fast enough to be part of every major build

� Could be improved

Related work

� Static analysis tools

� For temporal safety properties

� SLAM, BLAST, ESP, MC

� For other properties

� Cqual, ESC/Java, Splint

� We expect that our conclusion applies to
many these tools as well.

Conclusions

� Requirements for an effective tool for
preventing temporal safety errors

� Be sound

� Have specifications that typical testers can write

� Require no invasive change to the code base

� Be efficient enough to be incorporated into the
build process

� Should incorporate these tools into the
development of critical software more broadly

