
Secure File System Services for Web 2.0 Applications

Francis Hsu Hao Chen
Department of Computer Science

University of California, Davis
Davis, CA, USA 95616

{fhsu,hchen}@cs.ucdavis.edu

ABSTRACT
We present a design for a file system that provides a secure file
storage service for Web 2.0 applications. Currently, each Web
application stores its own user data. This not only burdens the
applications with storing, managing, and securing user data but
also deprives users from controlling their own data. With recent
proposals of secure client-side cross-domain communication mech-
anisms, we can provide an independent file system service to Web
applications. This service returns the control over user data back to
the users, where users can share or restrict access to their files as
they wish, and relieves web application servers from the contractual
or regulatory obligation of safeguarding user data.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based services, Data
sharing; D.4.6 [Security and Protection]: Access controls

General Terms
Design, Security

Keywords
web application, mashup, file system

1. INTRODUCTION
A typical host-based computing environment consists of an oper-
ating system, a file system, and applications. Even though some
of them may overlap (e.g., an operating system may contain a lo-
cal file system, an application may reside on a file system), they
are independent entities and can be provided by different vendors.
Particularly, application vendors do not provide file systems and
vice versa. The separation of file systems from applicationspro-
vides several benefits. First, it simplifies application development.
Developers can focus on the application logic; they need notman-
age data from multiple users and the related access control issues.
Second, it facilitates sharing data between applications.Since the
file system manages all the data, all applications share the same
interface for accessing data, under the access control policy of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCSW’09,November 13 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-784-4/09/11 ...$10.00

operating system. Last, it provides better security and privacy pro-
tection for users. Since the file system manages user data, vulner-
abilities in an application cannot compromise user data when the
user is not running the application.

In Web 2.0, web applications are hosted on web servers and runin
browsers. Compared to traditional host-based applications, these
applications provide several advantages to the users: theyneed not
be installed on the client computer; they can run on any hardware
and software platform that has a compatible browser. As a result,
we witness that the number and popularity of these applications
quickly increase.

However, current web applications have also lost several advan-
tages of host-based applications. One big difference between host-
based and web-based applications is that web applications merge
the storage of data into the applications themselves. A usermust
go though the web application to get to his data.

This decision could result from three factors. First, web appli-
cations running on a web server gain performance benefits from
keeping the file system nearby, since all of the user’s requested
operations travel over the network back to the web server. Sec-
ond, web applications also benefit from designing their datastorage
component to optimally serve the requirements of web application.
Third, since the Same Origin Policy on browsers prevents cross-
domain communications, it is difficult for client-side codefrom one
web site to access stored user data on another web site.

As a result of hosting the application and user data storage on
the same web site, current web applications lose several benefits
of host-based applications. First, they obligate their hosting web
servers to provide data storage for all users of that application. This
increases the cost to the web sites, and requires each user tohave
a separate account and storage at each web site. Second, it makes
sharing data among different web applications difficult. Since each
web application provides its own data storage, it likely hasa home-
grown data access API that is incompatible with other applications.
Another issue is access control. Each data store likely has its own
access control policy and user accounts. Sharing data amongmul-
tiple web applications data stores like these can be complicated.
Finally, users lose control of their data. User data is scattered across
all the web sites that host web applications. The user has to register
separately with each of these web sites.1 The confidentiality and
integrity of user data are at the mercy of the security and honesty
of the web sites.

1Single sign-on systems partially alleviate this burden.

We argue that we should separate user data storage from the web
application. The three previously mentioned obstacles to this ap-
proach are disappearing. First, some web applications are begin-
ning to rely on third-parties for data storage. With cloud com-
puting, those web applications no longer have their data store re-
siding on same web server serving that web application. Instead
the web application communicates with another entity providing
the services for data storage and retrieval. These web applications
lose the flexibility of a customized local storage system andmust
rely on the API of the storage provider. The web applications
however, make this exchange for the scalability benefits from the
storage provider. Second, some web applications can run outside
of a web server. Thick-client AJAX versions of traditional desktop
application like mail clients and word processors can run mainly
in the browser on the client machine. Therefore, the advantage of
hosting the file system on the web server, such as performance,
is diminishing. Third, recently researchers have proposedmecha-
nisms, such as MashupOS [19] and OMash [4], for enabling client-
side cross-domain communications. Their motivation is to enable
secure Web mashups, where an integrator creates contents from
multiple providers. These techniques would also enable data stor-
age services independent of web applications.

We wish to place a storage web application at the same level asthe
web application providing other services. We propose a secure file
system service for web applications. Like existing cloud storage
systems, the service provides a file system at the server and an API
to web applications at the client. We, however, make the file system
directly accessible to the user via his browser. We provide the user
access to his data on the storage service, without the filter of other
web applications. We can view the file system service and the
web application as two providers in a Web mashup in the browser.
After the browser loads the mashup integrator, web application and
file system service, the integrator introduces and connectsthe web
application to the file system service. Separating the file system
service from web applications have many advantages for bothweb
applications and users:

• Benefits to web applications: First, Web applications need
not provide the file system service and its related administra-
tive tasks, such as user registration and access control. This
reduces the complexity and cost of developing and servicing
web applications. Second, since web applications invoke
the file system service via an API, it offloads the complex-
ity of implementing the file system to the file system ser-
vice. Third, since the web application may work with any
file system service that implements the expected API, the
user may freely choose a file system service that best suits
his/her needs. For example, some web applications wish
to be able to run in the offline mode. Direct browser sup-
port for structured client-side file system or browser plug-
ins, such as Google Gears, allows the application to cache
data locally with the browser, but requires the individual web
applications to support them. Using our proposed file system
service, the user can simply connect the web application to
a file system service with local backend file system without
requiring any modification to the web application.

• Benefits to users: Users should have the freedom to decide
what happens to the data they create with applications. This
existed with traditional desktop applications (modulo DRM
and proprietary file formats), but was lost in the move to
web applications. By default, the data is locked up on the

application servers, and the application developers need to
provide functionality to free the data to be shared. By sepa-
rating the application provider from the file system provider,
users can gain the flexibility of interchanging file system and
application providers for their data. This also improves the
user’s ability to keep his data private. He can enforce access
control at any time, independent of the application. Applica-
tions have access to the user’s data only when needed. This
narrows the window of vulnerability. Application providers
that may have weaker security can not accidentally reveal a
user’s information during a breach.

2. OVERVIEW
2.1 Web Applications
From a user’s perspective, a web application is any program run
within a web browser. Once we look behind the scenes, we see
that many different types of programs make up the category of
web applications. The browser displays a presentation layer of the
web application that a users sees, but the code used to createthat
presentation can start from different sources. There is a spectrum of
web application based on their design for code execution anddata
processing. The execution of web application code ranges from
being primarily server-based to primarily browser-based.

• Server-basedweb applications are programs that run all of
their code on a server communicating with the browser over
the network. The interaction with these programs usually
consist of a repeated sequence of a synchronous web page
retrieval and load followed by user input submission.

• AJAX web applications push some code execution into the
browser. They ship a Javascript client component to improve
the user experience by having the client perform some pro-
cessing of user input and data locally and communicate with
the server process without page reloads.

• Mashupweb applications process data not only from the user
but also from other web-accessible data sources by interact-
ing directly with other web applications that are loaded in the
same browser.

• Offline capableweb applications can run when disconnected
from the network for some period of time. They download all
the necessary executable code and store it within the browser.
When disconnected from the network, all code execution takes
place within the browser. An offline application may recon-
nect to a server later when network access is available to
perform additional processing. A completely offline web ap-
plication would be able to connect to a server once to retrieve
the code, and never need reconnect. This would be equivalent
to downloading a program executable to run locally on the
computer.

For each of these types of web applications that need to storeuser
data, we believe that the web application can be separated from the
storage of user data. A web application does not need to storeuser
data at the same location is it executing. We already see thisin the
case of web applications with a server-based component thatcan
outsource storage to a third party like Amazon S3. In this paper we
propose a storage solution for web applications with browser-based
components. As the browser becomes a richer platform, providing
functionality equivalent to full operating systems, web applications

can take advantage of the platform by running more code on the
browser.

2.2 Goals
We propose a mashable file system service for web applications.
We have two design goals:

• The file system should be easy to use by application devel-
opers.

At the most basic level, a file system provide a way for a
client to store a chunk of data and retrieve that data. The file
system provides a handle or name by which the client uses to
designate a particular chunk of data. For ease of use, we can
layer on top of the basic storage mechanism additional APIs.

For desktop replacement web applications, we provide an
API of the file system designed to mimic that of POSIX.
Since host-based applications use POSIX-style API to access
the file system, our API facilitates porting host-based appli-
cations to a web application architecture. Web applications
requiring other data storage semantics like the object store of
Amazon S3, can make use a simpler API that is a subset of
the functionality provided by the POSIX-style API.

• The file system should let users own their data. A web appli-
cation should not dictate where users store their data, should
not be able to access the data when the user is not running
the application, and should not restrict how the user uses the
data. By contrast, current web applications decide where to
store the user’s data, have constant access to the data regard-
less whether users are running the applications, and restrict
the data to be used only by the application running on the
same server.

2.3 Web Application Design
From the user’s perspective, the move away from desktop applica-
tions to web applications has centralized computing in a waysim-
ilar to the earlier computing environment of mainframe computer
and connected terminals. Although the user is now reliant ona
bevy of web application services instead of a single system,he still
relinquishes some control over his computing resources.

Cloud computing has allowed web applications to untether from a
particular server and have their computation, data storage, and net-
work bandwidth requirements serviced by third-parties. Webelieve
that pushing user-data storage into the cloud, also to be serviced by
third-parties, would give web applications and users more flexibil-
ity in their use of computing resources.

A user-centered storage system for web applications not only re-
turns more control to the user to run the decentralized application
that he was accustomed to on the desktop, but also enables new
types of applications. With user-centered data storage, a single
web application can have a better view of all of the a user’s data.
An web application like a trusted personalized search engine could
crawl the user data storage and answer search queries over all the
data. Previously, a user would only have been able to search over
publicly published data with a web search engine, or rely on the
separate web applications to individually performs the searches.

To illustrate the design of our file system service, we draw ananal-
ogy between a web-based computing environment to a host-based
environment. The latter has an operating system, a file system, and

applications, where the operating system connects the file system
with the applications. In a web-based computing environment, we
let the mashup integrator to connect the applications with the file
system service, assuming the role of an operating system.

2.4 Requirements
Our proposed file system service requires that the browser pro-
vide secure cross-domain communication. More specifically, the
browser can isolate contents from different domains and yetallow
controlled communications between the domains. The formerre-
quirement is provided by the same origin policy, which is a standard
security policy in modern browsers. The latter requirementis being
fulfilled by browser cross-domain communication mechanisms.

2.5 Example
In the example in Figure 1,editor.comprovides an application for
editing photos, andorganizer.comprovides an application for or-
ganizing photos. Neither of them stores any user data. Instead, a
user chooses to store his photos atfilesystem.com. integrator.com
provides an application that connects the two applicationsto the file
system. When the user visitsintegrator.com, integrator.comcreates
three frames and loads the main pages fromeditor.com(containing
the editor),organizer.com(containing the organizer), andfilesys-
tem.com(containing the client code for the file system) into the
frames. integrator.comalso sets up communication channels be-
tween the frame fromeditor.comand that fromfilesystem.com.

3. DESIGN
3.1 Components
To the web browser, the mashable file system can be treated as an-
other web application. Its API is retrieved via HTTP as a Javascript
library. It would be combined by a mashup integrator with other
web applications needing a file system for storage. Our mashable
file system service runs as a provider, which exposes a file system
API to a web application running as another provider. As is typical
for mashup providers, the file system service has a server andclient
component.

3.1.1 Server component
The server component provides persistent data storage and exposes
an API via a file system access protocol for the client. Since the
client is JavaScript code running in an unmodified browser, this
API must be accessible by JavaScript in browsers. Since a file
system service deploys both its server and client components, the
API between these components need not be standardized, because
interoperability between server and client components from differ-
ent file system services in unnecessary. This gives the developers
the freedom to optimize their API.

Since web applications interact only with the client component of
the file system service, the location of the file system serveris trans-
parent to web applications. The server could run either remotely or
locally (on the same machine as the browser). When the serveris
on the network, the access protocol must be over HTTP since the
browser restricts the client component, which is in JavaScript, to
use HTTP. When browsers provide data storage capabilities,such
as thelocalStorageobject of HTML5, they also can function as file
system servers. In this case, the client component of our filesystem
service can use the API provided by the browser to access the local
data storage. Note that no browser modification is necessaryin
this case. Since web applications are being deployed with off-
line capabilities, providing file system services both remotely and

editor.com organizer.com

filesystem.com

1.

2.

3.

4.

5.

Figure 1: Example of file system service used by two web applications. Step 1: The application fromeditor.com requests to open a
file. Step 2: The file system client component displays a file browser where the user chooses an existing or new file name. Step3: The
file system client component requests the server component to open the file. Step 4: The file system server component opens the file,
obtains a capability for this file, and returns the capability to the client component. Step 5: The file system client component returns
the capability to the application. Thereafter, the application can access the file via the capability.

locally is desirable. Compared to the current approach where web
application developers have to handle offline mode explicitly, the
file system API can provide offline storage transparently to web
applications.

3.1.2 Client component
For desktop-replacement web applications, the client component of
our file system service provides similar functions to that ofa net-
worked file system. It exposes an API to web applications and com-
municates with the server component of the file system service. We
design the API between the client component and web applications
to be similar to the POSIX file API to facilitate porting host-based
applications to the web. A basic client can simply translatebetween
the POSIX-like JavaScript API (between the client component and
web applications) and a remote file system protocol (betweenthe
client and server components). Advanced clients may provide file
replication, caching, and online/offline access.

Unlike a traditional client component of a networked file system,
our client component provides an interface to allow the userto
authorize access to his files. The user interface provides a file
browser for the user to delegate access to his files. When a web
application requests to create or open a user file (not application
configuration files, see Section 3.2), the client component of the
file system service opens the file browser, which allows the user to
select an existing file or name a new file.

We could place the file browser in the mashup integrator or the
web application, but both these options are inferior to our choice
of placing the file browser in the file system client component. If
we place the file browser in the integrator, each file open request
from the web application would have to go to the integrator first
before it reaches the client component. This could cause a perfor-
mance penalty. More importantly, this design would have granted
the integrator all the privileges that the authenticated user has on
the file system: because the user selects files in the UI provided
the integrator, the client component, having no knowledge of the
user’s action, would have to grant access to all the user’s files. By
contrast, since we chose to place the file browser in the file system

client component, we need to provide no file system privilegeto the
integrator. Since the user interacts directly with client component,
the client component will not authorize any file access without
the user’s consent. By the same reasoning, our design choiceis
superior to placing the file browser in the web application.

3.2 Access control
The file system service regulates access by a capability system.
After the browser loads the client component of the file system
service, the client component asks the user to log in. The integrator
connects API calls from the web applications to the API functions
in the client component of the file system service. When a web
application requests a user file, the client component of thefile
system service displays a file browser where the user selectsa file
or creates a new file. Then, the file system creates a capability
for this file and sends the capability to the web application.The
application can subsequently access the file using this capability.

We choose capabilities over access control lists for accesscontrol
because capabilities mesh well with the decentralized nature of web
applications. We expect the user to find new web applicationsall
the time and to want to share file access with new friends. Main-
taining an access control list at the file service would be unwieldy
and not scale. With capabilities, we empower the user to delegate
access as he sees fit.

The designer needs to decide on the granularity of the capabilities.
Does a capability allow access to only one file or a set of files?If
a capability refers to a directory, does the capability allow access
to the files in all the subdirectories? The file browser displayed by
the client component could include check boxes to allow the user
to make these choices.

Our access control scheme so far requires the user to approveeach
file access request (unless the user chooses a directory and allows
access to all the files in the directory). This is appropriatefor
user files. User files are created by applications for users and can
be potentially shared with other applications. Examples include
documents, images, address books, and bookmarks. Since users

manage and manipulate their files directly (e.g., backing up, delet-
ing, or emailing their documents), it is reasonable to expect users
to make intelligent access control decisions on these files.On the
other hand, applications also create and access application-specific
data, such as configuration and temporary files. Since users do
not typically manage or manipulate these files, we cannot expect
users to make intelligent access control decisions on thesefiles.
Fortunately, since these files rarely need to be shared with other
applications, we can simply create a directory for each application,
and returns a capability that allows the application full access rights
to this directory. To allow the application to access this directory
across sessions, we could name the directory by the application’s
domain name or a hash of its public key and enforce access control
based on this.

In this scheme, granting access to other users would be similar to
granting access to a web application. When a users wishes to share
a file with others, he simply needs to share the capability. While
our design does not directly recognize the other users, thistask
can be delegated to a file sharing web application. The user first
grants access to a file he wants to share to the file sharing web
application. The file sharing web application would then pass on
the capability it was granted to the recipients’ web application that
eventually accesses the file.

The longevity of these capabilities can also be user controlled. A
user may explicitly expire a capability. This would usuallyoccur
when the user is done using the web application requesting the file
and the web application would then signal the file system service
to close the file. The user or file system service may also expire a
capability based on time, access count, or other parameters. This
form of expiration may be useful for capabilities given to a web
application that may have crashed without properly closingopened
files, or for capabilities that may need to persist beyond a web
application session, such as for the file sharing web application
previously mentioned.

3.3 Usage example
Continuing from the example in Section 2.5 where integrator.com
loads three frames from two web application (editor.comandorga-
nizer.com) and one file system service (filesystem.com). The user
creates a new picture in the application fromeditor.com. When
the user saves the file, the application callsopen() in the client
component fromfilesystem.com(Step 1 in Figure 1). The client
component displays a file browser where the user chooses an ex-
isting or new file name (Step 2 in Figure 1). Then, the client
component makes a request of the server to open the file, obtains a
capability for this file, and returns the capability to the application
(Step 3, 4, 5 in Figure 1). The application then uses this capability
to write to the file. When the user wishes to add this file to the
photo organizer fromorganizer.com, the above process repeats.

4. IMPLEMENTATION
We developed a proof-of-concept file system server and client. The
two components work together to provide data storage services to
browser-based web applications. The client, written in Javascript,
provides the file system API for other Javascript applications. It
primarily translates and redirects storage requests from the web
application to the file system server. We chose a simple JSON-
RPC protocol over the HTTP transport provided by the browser.
The server is also a software layer processing the network requests
into actual storage of the data.

4.1 Authentication
The user first authenticates to the file system service. The mech-
anism for authentication is not important to our design. When a
web application wishes to use the file system, the integratormust
introduce the file system to the client. The integrator provides the
filesystem with the identity of the application desiring services and
provides the application a handle to directly make file system calls.
We trust the integrator to identify the applications correctly; we
have no recourse if the integrator is malicious. The file system
service needs to know the identity of the application to provide
access to application-specific storage.

4.2 Storage API
Once the application has a handle to make calls into the file system
client, it can use the full API provided to store data on the file
system. Currently, we provide a basic POSIX-like API, with file
operations likeopen(), read(), write(), truncate(), etc. The POSIX
API provides a capability-like system when issuing file descriptors
for file access.

The file system client intervenes onopen()calls for user data with
the file system user interface. The iterface prompts the userto grant
the application access to one or more user data files. The user
additionally has the option to specify the type of access granted
(read-write/read-only). The handles returned by theopen()calls
are opaque identifiers. These opaque identifiers are essentially ca-
pabilities for access to the file. Web applications wishing to share
files can simple exchange the file handles once they are created.
These capabilities grant access as long as no application issues a
close()for the handle. For other API calls, the file system client
serves as a simple relay of these API calls to the file system server.

5. SECURITY ANALYSIS
5.1 Threat model
We assume the trustworthiness of the following entities:

• The mashup integrator, which connects the file system ser-
vice to the web application. It truthfully conveys the identity
of the web application to the user and the file system service,
and it does not violate the confidentiality and integrity of the
file system.

• The file system. It can authenticate its users securely.

• The browser. The browser isolates contents from different
domains but allows secure cross-domain communication.

5.2 Security benefits
Compared to current practice of storing user data on the sameserver
as the web application, our file system service has the following
security advantages:

• It reduces the risk of user data compromise in the case of
an application server compromise. Using our file system
service, a web application has no access to user data when
the user is not running the application. Therefore, when an
attacker breaks into a web application server, he can compro-
mise only the data of the users who are running the applica-
tion. As another benefit, it relieves the web application from
complying with regulatory mandates for user data security
because the application server stores no user data.

• The use of capabilities for file access protects the user au-
thentication credentials at the file system service even when
an application or integrator server is compromised, because
the credentials never leave the file system service. The capa-
bilities also restrict the web application to only the files that
the capabilities allow.

5.3 Potential attacks
5.3.1 Network MITM

We prevent network Man-In-The-Middle attacks with SSL/TLSfor
connections to integrator and file system. If we do not trust the
user not to bypass SSL/TLS by ignoring warnings, the applications
themselves can use a Diffie-Hellman key exchange to secure their
communication. The user does need a secure connection to the
integrator to bootstrap this process.

5.3.2 Malicious web applications
A malicious web application could attack the application specific
storage or the user data. With quotas, we can limit resource exhaus-
tion attacks on application specific storage. The application needs
to be handed a capability to have access user data. This requires
the user to consciously give that access to the application.In order
to accomplish this, the malicious application must misrepresent
itself to both the integrator and to the user when he is granting the
capability. Any damage is restricted only to the file for which the
capability is assigned.

6. RELATED WORK
6.1 Networked file systems
Networked file systems allow for distributed storage and access of
data. The Sun Network File System (NFS) [15, 16], originallyde-
signed for sharing among a small set of mutually-trusting worksta-
tions, developed over several versions to now support access over
wide-area networks with strong security mechanisms for endto end
mutual authentication and integrity. Other network file systems like
the Andrew File system [10] and CIFS [3] developed in a similar
fashion and also now scale to service large distributed networks of
computers.

As the web grew to become one of the most pervasive computing
platforms, network file systems were created or adapted to fulfill
the needs of this new area. WebFS [18] provides a global file
system over HTTP with support for functionality needed by many
distributed Internet applications. WebDAV [5] focuses on web au-
thoring specifically and extends HTTP to a read-write platform for
web clients. WebDAVA [12] provides for file sharing over HTTP
with flexible access controls using user issued access credentials.
WebNFS [2] adapts the NFS protocol for the web, by extending
the semantics of the NFS protocol to support web browser clients
by creating a lightweight binding mechanism. Even though these
protocols target web browsers as clients, they are not fullysup-
ported by current web browsers. They require additional software
to enable the browser to communicate with the file system servers.
Web applications running in the browser do not interface with these
network file systems in through the browser.

The web browser itself is changing to support the more complex
AJAX web applications with new data storage requirements. The
HTML5 specification [11] proposes structured client-side storage
that is being adopted by some browsers and projects such as Google
Gears [8] provide similar mechanisms as a browser add-on. They
enable web applications to store data locally as name/valuepairs or

directly into a database. Keeping data into these local browser con-
tainers ties the data to a single instance of the browser. Each web
application needs to handle its own data synchronization individu-
ally among the different browser instances of a user. Data sharing
among web applications is possible, but is still limited by the same
origin policy. By contrast, our system provides for arbitrary data
file sharing governed by the user.

6.2 Web application storage
With cloud computing, web applications can run without being
installed to a particular server, by renting on-demand computing
resources from a third-party and run “in the cloud”. Services like
Amazon S3 [1], provide web applications with network accessible
storage. Such cloud storage systems have rudimentary access con-
trol settings, since the cloud storage systems are primarily designed
provide the storage service to a single web application. Cloud-
views [7] proposes a system to construct views over datasetson
a cloud storage service. Web applications define these database-
style views of their data and can then selectively share the view
with other web applications. Menagerie [6] provides a virtual file
system composed of data from heterogeneous web applications by
providing an interface for a web application to export theirdata into
a namespace and a file system interface that combines these names-
paces. A user can then mount this virtual file system on his local
computer and manipulate it with standard file system commands.
We take a user-centric approach where data is stored separately
from the application and provide web applications with interfaces
to the storage. The user then also retains control over the sharing
of his data.

6.3 Capability systems
Capability systems are an access control mechanism that associate
an unforgable object identifier with set of rights. They permit sim-
ple and transparent sharing of those rights. A holders of thecapa-
bility only needs to transmit the identifier to another grantaccess.
They work well as authorization mechanisms for distributedsys-
tems where access control may be decentralized. OAuth [13] and
delegation permits [9] provide mechanisms to grant and transfer
arbitrary authorizations among web applications. Our file system
could be extended to use one of these systems for file access con-
trol, however we maintain our own access control system for sim-
plicity. CapaFS [14] encodes capabilities into the names offiles on
a file system to allow a user to share files with dynamic groups of
other users. In our file system, we provide a similar mechanism
for granting access to different web applications as well asusers.
The design of our file management user interface is inspired by
CapDesk [17] where the user directly grants capabilities for file
access to an application via a file browser.

7. CONCLUSION
We have proposed a design for a web based file system to provide
a storage service to web applications. Such a file system would
free web applications from developing and administering their own
storage mechanisms. The web applications can instead rely on a
POSIX-like standard file system interface, much like host-based
applications. Our file system provides another component for a
web-based computing environment that will simplify application
development and provide greater ease of use to end users.

Users of web applications that rely on this file system gain more
control over their data since their files are independently managed
from the web applications. Our file capability system allowsusers

to grant new web applications access to existing file and revoke
access at any time. By providing the familiar file metaphor for a
user’s data, we can make it easier for users to understand when
data sharing takes place and for users to control the access of their
data.

8. REFERENCES
[1] Amazon Simple Storage Service (S3).https://s3.

amazonaws.com/.
[2] B. Callaghan. WebNFS Client Specification. RFC 2054

(Informational), Oct. 1996.
[3] Common internet file system (cifs) technical reference.

http://www.snia.org/tech_activities/CIFS/
CIFS-TR-1p00_FINAL.pdf.

[4] S. Crites, F. Hsu, and H. Chen. OMash: enabling secure web
mashups via object abstractions. InCCS ’08: Proceedings of
the 15th ACM conference on Computer and communications
security, pages 99–108, New York, NY, USA, 2008. ACM.

[5] L. Dusseault. HTTP Extensions for Web Distributed
Authoring and Versioning (WebDAV). RFC 4918 (Proposed
Standard), June 2007.

[6] R. Geambasu, C. Cheung, A. Moshchuk, S. D. Gribble, and
H. M. Levy. Organizing and sharing distributed personal
web-service data. InProceeding of the 17th international
conference on World Wide Web, pages 755–764, Beijing,
China, 2008. ACM.

[7] R. Geambasu, S. D. Gribble, and H. M. Levy. CloudViews:
communal data sharing in public clouds. InHotCloud ’09
Workshop on Hot Topics in Cloud Computing, 2009.

[8] Google gears.http://gears.google.com/.
[9] R. Hasan, M. Winslett, R. Conlan, B. Slesinsky, and

N. Ramani. Please permit me: Stateless delegated
authorization in mashups.Computer Security Applications
Conference, Annual, 0:173–182, 2008.

[10] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale
and performance in a distributed file system.ACM Trans.
Comput. Syst., 6(1):51–81, 1988.

[11] HTML 5 draft recommendation.http://www.whatwg.org/
specs/web-apps/current-work/.

[12] A. Levine, V. Prevelakis, J. Ioannidis, S. Ioannidis, and A. D.
Keromytis. Webdava: An administrator-free approach to web
file-sharing. InWETICE ’03: Proceedings of the Twelfth
International Workshop on Enabling Technologies, page 59,
Washington, DC, USA, 2003. IEEE Computer Society.

[13] OAuth core 1.0.http://oauth.net/core/1.0/.
[14] J. T. Regan and C. D. Jensen. Capability file names:

separating authorisation from user management in an
internet file system. InSSYM’01: Proceedings of the 10th
conference on USENIX Security Symposium, pages 17–17,
Berkeley, CA, USA, 2001. USENIX Association.

[15] R. Sandberg, D. Goldberg, S. Kleinman, D. Walsh, and
B. Lyon. Design and implementation of the sun network
filesystem. InProceedings of the Summer 1986 USENIX
Conference. USENIX Association, 1985.

[16] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow,
C. Beame, M. Eisler, and D. Noveck. Network File System
(NFS) version 4 Protocol. RFC 3530 (Proposed Standard),
Apr. 2003.

[17] M. Stiegler and M. S. Miller. E and capdesk: Pola for the
distributed desktop.http://www.combex.com/tech/

edesk.html.
[18] A. M. Vahdat, P. C. Eastham, and T. E. Anderson. Webfs: A

global cache coherent file system. Technical report, UC
Berkeley, 1996.

[19] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection
and Communication Abstractions for Web Browsers in
MashupOS. InProceedings of the 21st ACM Symposium on
Operating Systems Principles (SOSP 2007), pages 1–16,
New York, NY, USA, October 2007. ACM.

https://s3.amazonaws.com/
https://s3.amazonaws.com/
http://www.snia.org/tech_activities/CIFS/CIFS-TR-1p00_FINAL.pdf
http://www.snia.org/tech_activities/CIFS/CIFS-TR-1p00_FINAL.pdf
http://gears.google.com/
http://www.whatwg.org/specs/web-apps/current-work/
http://www.whatwg.org/specs/web-apps/current-work/
http://oauth.net/core/1.0/
http://www.combex.com/tech/edesk.html
http://www.combex.com/tech/edesk.html

	Introduction
	Overview
	Web Applications
	Goals
	Web Application Design
	Requirements
	Example

	Design
	Components
	Server component
	Client component

	Access control
	Usage example

	Implementation
	Authentication
	Storage API

	Security analysis
	Threat model
	Security benefits
	Potential attacks
	Network MITM
	Malicious web applications

	Related work
	Networked file systems
	Web application storage
	Capability systems

	Conclusion
	References

