
ww.sciencedirect.com

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 6 1 2e6 2 8
Available online at w
journal homepage: www.elsevier .com/locate/cose
Noncespaces: Using randomization to defeat cross-site
scripting attacks
Matthew Van Gundy*, Hao Chen

Department of Computer Science, University of California, One Shields Ave., Davis, CA 95616-8562, USA
a r t i c l e i n f o

Article history:

Received 8 April 2011

Received in revised form

5 November 2011

Accepted 5 December 2011

Keywords:

Security

Defense

Cross-site scripting

Client-side policy enforcement

Information flow tracking

Web application

World wide web
* Corresponding author. Tel.: þ1 805 699 613
E-mail addresses: mdvangundy@ucdavis.

0167-4048/$ e see front matter ª 2012 Elsev
doi:10.1016/j.cose.2011.12.004
a b s t r a c t

Cross-site scripting (XSS) vulnerabilities are among the most common and serious web

application vulnerabilities. It is challenging to eliminate XSS vulnerabilities because it is

difficult for web applications to sanitize all user input appropriately. We present Non-

cespaces, a technique that enables web clients to distinguish between trusted and

untrusted content to prevent exploitation of XSS vulnerabilities. Using Noncespaces, a web

application randomizes the the (X)HTML tags and attributes in each document before

delivering it to the client. As long as the attacker is unable to guess the random mapping,

the client can distinguish between trusted content created by the web application and

untrusted content provided by an attacker. To implement Noncespaces with minimal

changes to web applications, we leverage a popular web application architecture to auto-

matically apply Noncespaces to static content processed through a popular PHP template

engine. We design a policy language for Noncespaces, implement a training mode to assist

policy development, and conduct extensive security testing of a generated policy for two

large web applications to show the effectiveness of our technique.

ª 2012 Elsevier Ltd. All rights reserved.
1. Introduction trustworthy and can be granted access to all data associated
Cross-site scripting (XSS) vulnerabilities pose a serious threat

to the security of modern web applications. Year after year,

XSS vulnerabilities top lists of the most dangerous and the

most commonly reported vulnerabilities (CWE, 2010; MITRE

Corporation, 2007). They are surprisingly easy to create and

difficult to mitigate completely. Any web application that fails

to properly sanitize user input before displaying it to other

users will be vulnerable to XSS attacks.

Web browsers protect multiple web applications running

within the same browser instance by isolating them according

to the Same Origin Policy. The Same Origin Policy prevents

web applications from accessing the private data of other web

applications. However, the Same Origin Policy presumes that

all content from a single web application is equally
4; fax: þ1 865 357 7210.
edu (M. Van Gundy), hch
ier Ltd. All rights reserve
with the web application. A cross-site scripting (XSS) vulner-

ability allows an attacker to inject malicious content into web

pages served by a trusted web application. Because the

browser receives the malicious content from a trusted server,

the malicious content will run with the same privileges as

trusted content allowing it to run malicious code within the

browser, impersonate the user to trusted servers, steal

a victim user’s private data and authentication credentials, or

present forged content to the victim.

Fig. 1 shows an example web page template like those used

by many web applications to render dynamic web pages. A

sequence of the form {x} will be replaced at runtime by the

value of the variable x. For instance, if an attacker can submit

<script src¼’http://badguy.com/attack.js’/> as

a review, the template variable review.text will be replaced
en@cs.ucdavis.edu (H. Chen).
d.

mailto:mdvangundy@ucdavis.edu
mailto:hchen@cs.ucdavis.edu
www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2011.12.004
http://dx.doi.org/10.1016/j.cose.2011.12.004
http://dx.doi.org/10.1016/j.cose.2011.12.004

Fig. 1 e Vulnerable web page template. This template is

used to render dynamic web pages. It is written in

a Smarty-like language where the appearance of the token

{x} instructs the template engine to replace the token by

the value of the variable named “x”.

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 6 1 2e6 2 8 613
with this script tag. When a victim visits the page, the victim’s

web browser will download and execute http://badguy.com/

attack.js with the same permissions as legitimate scripts. It

has long been recognized that non-script elements pose

a threat as well. (CERT Coordination Center, 2000; The Open

Web Application Security Project, 2010) For instance, an

attacker could inject a fake login form and style it to obscure

a legitimate login form. When the victim attempts to login,

their credentials could be sent to a site of the attacker’s

choosing. Nevertheless, many existing XSS defenses focus on

preventing the execution of untrusted scripts without

addressing malicious non-script content.

To prevent XSS vulnerabilities, all the untrusted (user-

contributed) content in a web page must be sanitized.

However, proper sanitization is very challenging. The context

in which untrusted data is interpreted determines the forms

of sanitization that are appropriate. If sanitization is per-

formed by the server, but the browser interprets the content in

a way that the server did not intend, there are many ways for

an attacker to take advantage of this discrepancy (RSnake,

2008). The Samy worm (Samy, 2006), one of the fastest

spreading worms to date, used this ambiguity between server

sanitization and client parsing to propagate. Alternatively,

one could let the client sanitize untrusted content. However,

without the server’s help, the client cannot distinguish

between trusted and untrusted content in a web page since

both appear to originate from the trusted server.

We can avoid ambiguity between the client and server by

requiring the server to identify untrusted content and

requiring the client to ensure that it is displayed safely.

However, challenges remain. After the server identifies

untrusted content, it needs to tell the client the locations of

the untrusted content in the document tree. However, if the

untrusted content (without executing) could distort the

document tree, it could evade sanitization. To achieve this,

the untrusted content could contain node delimiters that split

the original node where untrusted content resides into

multiple nodes. This is known as a Node-splitting attack (Jim

et al., 2007). To defend against this attack without restricting

the richness of user provided content, the server must take

care to remove only those node delimiters which would

introduce new trusted nodes.

We present Noncespaces, an end-to-end mechanism that

allowsa server to identifyuntrusted content, to reliably convey

this information to the client, and that allows the client to
enforce a security policy on the untrusted content. Non-

cespaces is inspiredby InstructionSetRandomization (Kcetal.,

2003; Barrantes et al., 2003), which randomizes the processor’s

instruction set to identify and defeat injectedmalicious binary

code. Analogously, Noncespaces randomizes (X)HTML tags

and attributes to identify and defeat injected malicious web

content. Randomizationserves twopurposes. First, it identifies

untrusted content so that the client canuse a policy to limit the

capabilities of untrusted content. Second, it prevents the

untrustedcontent fromdistorting thedocument tree. Since the

randomized tags are not guessable by the attacker, he cannot

embed proper delimiters in the untrusted content to split the

containing node without causing parsing errors.

We make the following contributions:

� We leverage the similarities between injected code in

executable programs and injected content in web pages to

apply techniques from Instruction Set Randomization to

defend against XSS attacks.

� We observe that current web application design practices

lead to simple, effective policies for defending against

popular XSS attack vectors.

� Wemodify a popular template engine to facilitate automatic

deployment of our technique.

� We design a flexible yet simple language for specifying

commonsecuritypolicies.Wethenextend thebasic language

to support organizing trust classes into anarbitrary lattice for

expressing a wider range of information flow policies. In

contrast tomost existing XSS defenses, our technique allows

prevention of both script and non-script XSS attacks.

� We create a training mode to facilitate rapid policy

development.

� We demonstrate the effectiveness and usability of Non-

cespaces by porting a 155 K SLOC blog application to work

with Noncespaces, using the training mode to develop

a policy for the application, and conducting an extensive

security evaluation with the generated policy.
2. Threat model

In this paper,we restrict our attention toXSS attackswhere the

malicious content is unintentionally delivered to the victim

user by a trusted server. Specifically, our solution addresses

reflected (Type I) and stored (Type II) XSS attacks. In a reflected

XSS attack, the victim visits a page controlled by the attacker.

The attacker encodesmalicious content into a link orweb form

that targets a trusted web site. The victim clicks the link or

submits the form and themalicious content is reflected by the

trustedwebserver back to thevictim’swebbrowser. Ina stored

XSS attack, the attacker causes malicious content to be stored

directly on a trusted web server. Later, when the victim visits

the trustedweb server, the attacker’smalicious contentwill be

delivered to the victim’s web browser.

We do not address DOM-based (Type III) XSS attacks,

where trusted client-side JavaScript permits the injection of

untrusted content in violation the web application’s security

policy; Universal XSS Vulnerabilities (Shezaf, 2007), where

a browser extension can be tricked into violating the

http://badguy.com/attack.js
http://badguy.com/attack.js
http://dx.doi.org/10.1016/j.cose.2011.12.004
http://dx.doi.org/10.1016/j.cose.2011.12.004

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 6 1 2e6 2 8614
browser’s own security policies; or Cross-Site Request Forgery

(CSRF), where a malicious web server tricks the client into

sending amalicious request to a trusted server. Thoughwe do

not address DOM-based XSS and Universal XSS attacks in this

work, our approach can be employed as a component in

solutions to these problems.

Because the goal of Noncespaces is to defend against XSS

attacks, we assume that the attacker’s only means of attack is

to submit malicious data to XSS-vulnerable web applications.

Existing mechanisms can be used to ensure that an attacker

cannot compromise the web server or browser directly via

buffer overflow attacks, malware, etc.
3. Related work

Given the high impact of XSS attacks, there is a significant

amount of related work. Here we attempt to compare our

work with a sampling of other relevant work.

3.1. Randomization

Our work was inspired by Instruction Set Randomization (ISR)

(Kc et al., 2003; Barrantes et al., 2003) d a technique for

defending against code injection attacks in executables by

randomly remapping a computer’s instruction set architec-

ture. SQLrand (Boyd and Keromytis, 2004) first employed

randomization to defeat SQL Injection attacks. Noncespaces is

an analogous approach that protects web applications from

Cross-Site Scripting attacks. ISR and SQLrand prevent an

attacker from injectingmeaningful code and SQL keywords by

forcing an attacker to guess a random mapping. Noncespaces

also forces an attacker to guess a randommapping in order to

inject trusted content. ISR and SQLrand consider static

program code and SQL queries trustworthy. Similarly, our

prototype considers all static (X)HTML template content to be

trustworthy. Unlike ISR or SQLrand, Noncespaces must

support web applications which permit rich user input.

Therefore, Noncespaces expands the ISR approach by using

a configurable policy to constrain the capabilities of untrusted

content on the client side.

3.2. Preserving document structure integrity

Document Structure Integrity (DSI) (Nadji et al., 2009) was

developed independently and contemporaneously with our

work. Each system has advantages over the other in different

areas. Like Noncespaces, DSI uses randomized delimiters to

allow a web browser to distinguish between trusted and

untrusted content. In DSI, the server identifies untrusted

content using a prototype taint tracking implementation for

PHP. The browser enforces a simple policy that limits

untrusted content to terminals in (X)HTML and JavaScript and

to tags and attributes whitelisted on a per-page basis. DSI also

augments the browser with information flow tracking in order

to defeat DOM-based (Type III) XSS attacks. Noncespaces’s

policy language is more expressive than the policy language

provided by DSI. DSI’s policy language does not capture posi-

tion of whitelisted elements or provide an ability to constrain

terminal values. Both of these capabilities are important for
defeating injection of non-script elements. Inmany scenarios,

non-code injection attacks can be just as dangerous as code

injection attacks (Chen et al., 2005). For instance, an attacker

can steal login credentials by injecting a fake login form onto

a bank’s website. The whitelisting approach employed by

Noncespaces is superior to the blacklisting approach

employed by DSI (called “minimal-serialization”) insomuch as

it respects the Principle of Fail-Safe Defaults. If the classifica-

tion mechanism is incomplete, Noncespaces would classify

trusted data as untrusted and thereforemight refuse to render

a legitimate page, but DSI would classify untrusted data as

trusted, resulting in security vulnerabilities.

Before Noncespaces and DSI, work on ensuring document

structure integrity typically focused on ensuring that output

documents were valid (Kirkegaard and Møller, 2006) and that

web designers would not inadvertently print unsanitized

output to the browser (Genshi, 2008). However, neither

approach is sufficient to mitigate XSS attacks.

The Noncespaces and DSI approach of defeating XSS

by ensuring document structure integrity has appeared

in subsequent research. Blueprint (Ter Louw and

Venkatakrishnan, 2009) provides a DSI-like terminal confine-

ment and no script policy mechanism for unmodified modern

browsers. An application developer manually annotates all

web application statements that output untrusted content.

Untrusted content will then be transmitted to the browser

where client-side JavaScript ensures that it cannot invoke the

JavaScript interpreter. By contrast, Noncespaces does not

require the developer to manually identify and modify

untrustedoutput statements.Noncespaces integrateswith the

Smarty template engine, allowing it to intercept all untrusted

template outputs automatically. Because Blueprint only

encodes untrusted content, incomplete sanitization can result

in successful XSS attacks. Noncespaces encodes trusted data

to ensure that any failure of completemediationwill not result

in a successful attack. Noncespaces also provides a signifi-

cantly more flexible policy mechanism.

SWAP (Wurzinger et al., 2009) takes a complementary

approach on the server-sidedit attempts to whitelist all

trusted scripts. SWAP identifies all static scripts and replaces

them with non-executable script identifiers. Before delivering

the response to the browser, SWAP invokes a server-side

script detector (consisting of a browser residing on the

server) to determine if any scripts have been injected. If no

scripts are detected, the script identifiers in the response are

replaced with the original scripts and the response is deliv-

ered to the client. Both Blueprint and SWAP incur higher

server-side overheads than Noncespaces because they

perform all policy enforcement on the server, preventing

clients from sharing the computational burden. Non-

cespaces’s client-side enforcement also allows for the possi-

bility of browser or user-contributed policies. Also, like DSI,

Blueprint and SWAP do not defend against non-script attacks.

Alhambra (Tang et al., 2010) is a pragmatic approach to

ease deployment of a document structure integrity system. It

is an entirely client-side mechanism that attempts to infer

a document structure integrity policy from multiple web page

visits. Client-side information flow tracking is also employed

to prevent DOM-based XSS attacks and certain common script

abuse patterns. Alhambra’s learning capabilities can be

http://dx.doi.org/10.1016/j.cose.2011.12.004
http://dx.doi.org/10.1016/j.cose.2011.12.004

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 6 1 2e6 2 8 615
compared to a more advanced rendition of Noncespaces’s

training mode. Greater learning algorithm intelligence is

necessary for Alhambra because, unlike the training envi-

ronment in Noncespaces, the resulting policy is not reviewed

by an expert before being employed to defend against attacks.

Alhambra’s client-side only approach imposes several addi-

tional challenges including the ability of a malicious attacker

to mislead the policy learner and attempting to remain robust

to legitimate website modifications.

Robertson and Vigna present another approach for

ensuring the structural integrity of a document by defining

a strongly-typed web application framework (Robertson and

Vigna, 2009). Instead of generating unstructured strings,

applications output an Abstract Syntax Tree. The AST is then

translated by a trusted renderer which ensures that all

content incorporated into document terminals is correctly

escaped. This prevents attacks which rely on violating the

document’s structural integrity. In addition to defeating

attacks that violate structural integrity, Noncespaces goes one

step further by protecting against attacks which leverage

unsafe attribute values and vulnerabilities caused by web

applications that permit an untrusted user to create security-

sensitive structural content.
3.3. Client-side policy enforcement

Client-side policy enforcement mechanisms enforce a secu-

rity policy in the browser to avoid the semantic gap between

the client and server. BEEP (Jim et al., 2007) allows a server-

specified JavaScript security handler to decide whether to

permit or deny the execution of each script based on

a programmable policy. The BEEP authors present two

example policies: an ancestry-based sandbox policy, which

prohibits scripts that are descendants of a sandbox node, and

a whitelist policy, which allows a script to execute only if it is

known-good. Mutation Event Transforms (Erlingsson et al.,

2007) extend the mechanism of BEEP to all operations that

modify the DOM. Before each DOM modification, a JavaScript

callback is invoked that can allow, deny, or arbitrarily change

the operation performed.

Noncespaces is similar to both of these approaches in that

the server delivers a policy that the client enforces. Like BEEP,

our policy language is able to express both ancestry-based

sandbox and whitelist policies. Additionally, like Mutation

Event Transforms, our policy language is also able to express

policies which constrain non-script content of a web page.

This is important because, as mentioned above, malicious

non-script content can successfully exploit security vulnera-

bilities. It would have been possible to leverage Mutation

Event Transforms as our client-side policy mechanism.

However, giving policies the full power of JavaScript would

make it hard to reason about a policy’s effects and could also

provide a new vector for bugs and vulnerabilities to be intro-

duced. This is why our client-side policy language consists of

simple rules that match nodes and attributes in the DOM and

declare whether they should be allowed or denied. We also

note that themain contributions of ourwork are amechanism

for reliably communicating trust information from server to

client and leveraging properties of the web application to
determine trustworthiness of content automatically. Neither

BEEP nor Mutation Event Transforms addresses these issues.

Noncespaces is also closely related to Content Restrictions

(Markham, 2007), Mozilla’s Content Security Policy (CSP)

(Stammet al., 2010), Script Keys (Markham, 2005), and Brendan

Eich’s proposed <jail> tag (Eich, 2007). Content Restrictions

allow the server to specify certain restrictions on the content

that it delivers, such as: whether scripts may appear in the

document body, header, only externally, or not at all; which

hosts resourcesmay be fetched from; which hosts scriptsmay

be fetched from; etc. Mozilla’s Content Security Policy is an

implementation of Content Restrictions for Firefox with some

additional features. Noncespaces client-side policies are able

to specify most of the same restrictions as Content Restric-

tions and CSP. CSP provides a few features outside the domain

ofNoncespaces. However, Noncespaces canpreventmalicious

content from attacking trusted origins or exfiltrating data to

untrusted domains via forms and links, but CSP cannot.

Content Restrictions andCSP also do not provide amechanism

for differentiating between server-trusted content executing

a script in an approved location or injected content doing the

same. Both Script Keys and Noncespaces provide a way to

differentiate between the two scenarios.

Script Keys prohibits scripts from running unless they

include a server-specified key in their source. The proposed

<jail> tag does just the opposite: it prohibits active content

in the document subtree below it and uses a nonce embedded

in the opening and closing tags to prevent a node-splitting

attack from closing a <jail> tag prematurely. In the limit,

when the script key is changed on every page load, Script Keys

behaves like Noncespaces d the attacker must guess the

randomly generated key for each request to enable their script

to run. To an extent, Noncespaces can be seen as the first

implementation of Content Restrictions, Script Keys, and the

<jail> tag. However, none of these other proposals provide

a means to restrict non-script content with the same level of

precision as Noncespaces. Noncespaces and CSP may be

useful in conjunction with one another allowing specification

of policy constraints at the most natural layer.

ConScript (Meyerovich and Livshits, 2010) enables client-

side policy enforcement for JavaScript code by providing an

Aspect Oriented Programming model for JavaScript. Non-

cespaces’s client-side policy enforcement and ConScript are

orthogonal. Noncespaces determines whether or not a tag or

attribute should be added to the DOM. ConScript constrains

the behavior of scripts after that point. ConScript also only

effects the execution of scripts and thus does not help defend

against non-script attacks.

3.4. Prohibiting anti-patterns

Two main goals of XSS attacks are stealing the victim user’s

confidential information and invoking malicious operations

on the user’s behalf. Noxes provides a client-sideweb proxy to

block URL requests by malicious content using manual and

automatic rules (Kirda et al., 2006). Vogt et al. track the flow of

sensitive information in the browser to prevent malicious

content from leaking such information (Vogt et al., 2007). Both

of these projects defeat only the first goal of XSS attacks. By

contrast, Noncespaces can defeat both goals of XSS attacks

http://dx.doi.org/10.1016/j.cose.2011.12.004
http://dx.doi.org/10.1016/j.cose.2011.12.004

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 6 1 2e6 2 8616
because it prevents malicious content from being rendered.

Internet Explorer 8’s XSS filter (Ross, 2008) attempts to prevent

reflected XSS attacks by disabling scripts that embed certain

substrings seen in an outgoing request. This only prevents

reflected XSS attacks while Noncespaces is also able to

prevent stored XSS attacks. Attackers have also been able to

leverage the semantic gap between the server and the client to

cause IE 8’s XSS filter to create new security vulnerabilities

(Nava and Lindsay, 2010) illustrating the need for and end-to-

end solution such as Noncespaces.

3.5. Leveraging language techniques

SQLCheck (Su andWassermann, 2006) defines a sub-language

of SQL that untrusted user input can safely express. In theory,

the same approach can be employed to prevent XSS attacks;

however, specifying an appropriate subset of (X)HTML is more

difficult because web application security policies cut across

multiple languages (including JavaScript, URIs, and CSS), can

depend on position in the document hierarchy, and may

depend on specific terminal values. Therefore, we believe that

expressing a policy in terms of XPath expressions is more

straightforward for web developers than modifying a unified

grammar for web pages in order to restrict untrusted input to

a suitably safe subset for each web application.

3.6. Static analysis

Numerous papers (Wassermann and Su, 2007, 2008; Xie and

Aiken, 2006; Livshits and Lam, 2005) have employed static

program analysis to detect XSS vulnerabilities. Static analysis

approaches cannot be both sound and complete, forcing

a choice between false positives or missed vulnerabilities. By

favoring a dynamic analysis approach, Noncespaces avoids

loss of precision due to round-trips to the browser and difficult

to support PHP features. Our use of NSmarty to determine

trust classifications is a conservative approximation;

however, if greater precision is needed, our technique can be

integrated with a full information flow tracking system.

3.7. Information flow tracking

A number of different information flow (or taint) tracking

solutions for web applications have appeared in the literature

(Nguyen-Tuong et al., 2005; Venema, 2008; Xu et al., 2006).

Unfortunately, none of the solutions for PHP have seen wide-

spread use. This prompted our development of NSmarty to

simply and conservatively approximate information flow by

leveraginga commonwebapplicationprogrammingparadigm.

The encoding and client-side policy enforcementmechanisms

that Noncespaces provides can use a mature information flow

tracking system as a content classifier, when one arises.

A preliminary version of this work was presented at NDSS

2009 (Van Gundy and Chen, 2009). Since then we have

extended the policy language to support hierarchical trust

classes and XML namespace-specific policy rules, which are

important for handling real-world web applications. During

the research for (Van Gundy and Chen, 2009), we found that it

could be difficult to create complete policies for large web

applications. Therefore, we have implemented a training
mode to facilitate policy development (Section 5.3). Finally, to

demonstrate the effectiveness, usability, and backward

compatibility of Noncespaces, we ported a large web appli-

cation to Noncespaces and conducted a more extensive

security evaluation using a policy developed with our new

training mode (Section 6.1.2).
4. Noncespaces

The goal of Noncespaces is to allow the client to safely display

documents that contain both trusted content generated by

a web application and untrusted content provided by

untrusted users. To eliminate the client-server semantic gap

and to adapt to differing security needs, the browser enforces

a configurable security policy. The policy specifies the browser

capabilities that each type of content can exercise. In thisway,

malicious content injected by an attacker is restricted to the

capabilities allowed to untrusted content by the policy.

If the client is to faithfully enforce a server-specified policy,

the client must be able to determine the trustworthiness of all

content in a document. Therefore, the server must first clas-

sify content into discrete trust classes. The server then must

communicate the content, trust classification, and policy to

the client. Finally, the client can enforce the policy. This

process is depicted in Fig. 2.

Our architecture permits Noncespaces to defeat both

reflected and stored XSS attacks. In both scenarios, untrusted

user input is returned to a victim userdimmediately in the

caseof a reflectedXSSattackor at some later time in the caseof

a stored XSS attack. In either case, as long as the server’s

content classification is conservative, the server faithfully

communicates its classifications to the client, and the client

faithfully enforces the server-specified policy, untrusted

contentwill be confined to the capabilities expressly permitted

to it by the policy, ensuring that XSS attacks will not succeed.

We take a modular approach to classifying content. The

server can use a variety of techniques to determine the trust

classes of content, ranging from whitelisting known-good

code to annotating output based on program analysis or

information flow tracking. We present an expedient approach

in Section 5. In this section, we describe our mechanisms for

communicating trust information and policy enforcement.
4.1. Communicating trust information

There are a variety of mechanisms that a server might use to

indicate content trust information to clients. The server could

use a designated attribute to indicate the trust class of an

element. However, malicious content may contain elements

which forge the attributes that designate trusted content.

Alternatively, the server could indicate the trustworthiness of

content by its location in the document, e.g. restricting the

capabilities of all descendants of a specific document node d

a sandbox node (Eich, 2007; Markham, 2007; Jim et al., 2007).

However, malicious content may contain tags that split its

original enclosing node into multiple nodes so that malicious

nodes are no longer descendants of the sandbox node. This is

the node-splitting attack discussed in Section 1.

http://dx.doi.org/10.1016/j.cose.2011.12.004
http://dx.doi.org/10.1016/j.cose.2011.12.004

Fig. 3 e HTML document randomized by Noncespaces. A

random prefix has been applied to trusted HTML content in

a template like that of Fig. 1. The rendered document

contains a node-splitting attack injected by a malicious

user.

Fig. 2 e Noncespaces overview. The server delivers an (X)HTML document annotated with trust class information and

a policy to the client. The client accepts the document only if it satisfies the policy.

Fig. 4 e XHTML document randomized by Noncespaces. A

random namespace prefix has been applied to trusted

XHTML content in the template of Fig. 1. The rendered

document contains a node-splitting attack injected by

a malicious user.

2 A subtlety occurs when two different prefixes, say a and b, are

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 6 1 2e6 2 8 617
Another alternative, inspired by Instruction Set Randomi-

zation (ISR), is to greatly reduce the probability of a successful

attempt to forge trust class information by preventing an

attacker from being able name trusted content. ISR defends

against binary code injection attacks by randomly perturbing

the instruction set of an application. To inject code with

predictable semantics into the application, the attacker must

correctly guess the randomization used. This is very difficult if

the number of possible randomizations is sufficiently large.

The attacker is effectively prevented from injecting code. We

propose a similar technique for (X)HTML. We associate

a different randomization function with each content trust

class. The names of all elements and attributes in a trust

class are remapped according to the associated randomiza-

tion function so that no injected content can correctly name.

(X)HTML elements or attributes in other trust classes.

For example, let the randomly chosen string r617 denote

trusted content. We can defeat XSS attacks against the

document from Fig. 1 by annotating it. For HTML documents,

we can prefix trusted tags and attributes with our random

identifier as shown in Fig. 3. For XHTML documents, we can

preserve the original XML semantics of the document while

annotating by using our random identifier as an XML name-

space prefix1 as shown in Fig. 4.
1 To permit mixing of XML languages in a single document, XML
namespaces (Bray et al., 2006a) can be used to designate elements
and attributes by namespace URI and local name. The URI for the
language is bound to a prefix using the xmlns attribute. The prefix
is then used to qualify the local names of elements and attributes
from that language. E.g. <p:a xmlns:p¼’http://www.w3.org/

1999/xhtml’> designates an XHTML <a> element.
As illustrated by the embedded node-splitting attack, the

attacker cannot inject malicious content and cause it to be

interpreted as trusted because he does not know the random

prefix. He also cannot escape from the enclosing paragraph

element, because he does not know the random prefix and

therefore cannot embed a closing tag with this prefix. (In the

HTML document, the <script> element is the child of an

<r617p> element, not a <p> element. In the XHTML docu-

ment, when a closing tag tries to close an open tag but the

prefixes of the two tags do not match, the XML parser will fail

with an error2.)

To prevent an attacker from guessing (namespace)

prefixes, we choose the prefixes uniformly at random every

time a response is rendered d hence the term Noncespaces.

Given a prefix space of appropriate size, knowing the random

prefixes in one instance of the document does not help an

attacker predict prefixes in future instances of the document.

There is an additional complication, however. Naı̈vely

prohibiting all untrusted content will not work because most

modern web applications are designed to accept some

amount of rich content from users. Though we can use
associated with the same URI. In this case, is “<a:foo></b:

foo>” valid? Even though <a:foo> and <b:foo> are semanti-
cally equivalent, XML matches opening and closing tags lexically
(Bray et al., 2006b). Thus “<a:foo></b:foo>” is not well-formed
regardless of how a and b are bound. All XHTML compliant
browsers we have tested exhibited this behavior. This implies
that Noncespaces needs to randomize only namespace prefixes,
but not the URIs to which the prefixes are associated.

http://dx.doi.org/10.1016/j.cose.2011.12.004
http://dx.doi.org/10.1016/j.cose.2011.12.004

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 6 1 2e6 2 8618
randomization to ensure integrity of trust class information,

a policy that places appropriate constraints on rich content

provided by untrusted users is still necessary for our solution

to be useful in practice. Therefore, we provide a mechanism

for the server to specify a policy for the client to enforce when

rendering the document.

Noncespaces adds three HTTP protocol headers to each

HTTP response:

� X-Noncespaces-Version: [0-9]þ\.[0-9]þ communicates the

version of the Noncespaces policy and semantics that

should be used, in case future changes are required.

� X-Noncespaces-Policy: URI denotes the URI of the policy

for the current document. If the client does not have the

policy in its cache, a compliant client must first retrieve the

policy and validate the document before rendering.

� X-Noncespaces-Context: TrustClass ¼ Rand (TrustClass

¼ Rand)*

Both TrustClass and Rand reduce to Name. To prevent an

attacker from guessing the namespace prefixes in an (X)

HTML document, the server must use different randomized

prefixes each time it serves the document. This header

maps the random identifiers used in the (X)HTML document

delivered by the response to the trust class names used in

the policy. This allows clients to cache the policy because

the server can provide the same policy file to all the requests

for the (X)HTML document.
Fig. 5 e Grammar for Noncespaces Client-side policy

language.
4.1.1. Compatibility with caching
At first glance, response caching may appear to pose

a problem for Noncespaces. Noncespaces requires that an

attacker must not be able to predict the value of prefixes in

future document instances. Local caches, caching proxies,

and content delivery networks (CDNs) save a single response

andmay deliver it multiple times. Indeed, if it were possible to

inject malicious content into a response after learning the

prefix values chosen when the document was rendered, an

attacker could defeat our encoding mechanism. Also, if

a cache delivers a Noncespaces-encoded document without

its associated headers, clients will not be able to interpret the

response correctly.

To prevent an attacker from injecting content after

learningwhich prefixeswere chosen, we ensure that HTTP/1.1

compliant caches will only respond with complete

Noncespaces-encoded responses. Only content injected by an

attacker at the time the document was rendered, before the

attacker learns the prefix values, will be included in any single

response. Even if that response is subsequently rendered

multiple times, it does not provide additional opportunities

for an attacker to inject content.

An HTTP/1.1 compliant cache will not combine portions of

multiple responses into a single response unless it can ensure

that the entity’s octet representation has not changed.

(Fielding et al., 1999) Choosing new random prefixes every

time a document is rendered ensures that the octet repre-

sentation of the entity will differ, with high probability, in

every response. This ensures that a cache will not provide

additional opportunities to inject content by combining

multiple responses.
HTTP/1.1 also requires caches to store all end-to-end

headers with each cache entry and to include them in any

response formed from that cache entry. This ensures that

clients will receive the headers necessary to interpret each

Noncespaces-encoded response whenever such a response is

served by a cache.
4.2. Policy specification

A Noncespaces policy specifies the browser capabilities that

content in a given trust class can invoke. A grammar for our

policy language is given in Fig. 5. We designed the policy

language to be similar to a firewall configuration language.

Comments begin with an # character and extend to the end of

the line. A minimal policy consists of a sequence of allow/

deny rules. Each rule applies a policy decisiondallow or

denyd to a set of document nodes matched using an XPath

expression. We have employed the XPath language because it

was specifically designed for querying content from hierar-

chical documents. This allows constraints to be placed on

elements, attributes, values, and position of nodes in the

document hierarchy. Noncespaces provides basic functions

for string normalization and additional boolean functions for

matching based on trust class or whether an attribute value

has changed from the default specified by the language (Fig. 6).

For example, the XPath expression //a can be used to match

all anchor elements descending from the document’s root

node (//). //@href will match all href attributes in the

document. namespace declarations bind a namespace prefix

to an XML namespace URI for use in XPath expressions.

The trustclass and order commands are used to define

the hierarchy of trust classes. The optional trustclass

command declares a trust class. A sequence of order

commands encode the partial ordering between trust classes.

This allows policy authors to specify any lattice relation over

trust classes.

When checking that a document conforms to a policy, the

client considers each rule in order and matches the XPath

expression against the nodes in the document’s Document

Object Model. When an allow rule matches a node, the client

permits the node and will not consider the node when eval-

uating subsequent rules. When a deny rule matches a node,

the client determines that the document violates the policy

and will not render the document. To provide a fail-safe

default, if any nodes remain unmatched after evaluating all

rules, we consider those nodes to be policy violations (i.e. all

http://dx.doi.org/10.1016/j.cose.2011.12.004
http://dx.doi.org/10.1016/j.cose.2011.12.004

Fig. 6 e XPath functions provided by Noncespaces.

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 6 1 2e6 2 8 619
policies end with an implicit deny //*j//@*). In the event that

a policy author wishes to override the default behavior in

order to specify a blacklist policy, he can specify allow

//*j//@* as the last rule to allow all as of yet unmatched

nodes. Fig. 7 gives the algorithm for checking a policy.

Example policies are provided in Figs. 8 and 9. The policy in

Fig. 8 is a policy for XHTML documents that specifies two trust

classes, trusted and untrusted. There are no restrictions on

which tags and attributes can appear in trusted content. Only

tags and attributes that correspond to BBCode are allowed in

untrusted content: stylistic markup, links to other HTTP

resources, and images. Note that lines 17e18 only permit link

and image tags to specify URLs for the (non-script) HTTP

protocol.

Fig. 9 demonstrates the language’s flexibility for more fine-

grained policies. Lines 1e2 declare that the namespace

prefixes x and m used in the following patterns refer to XHTML

and MathML content, respectively. Lines 4e7 declare multiple

trust classes and line 8 defines the ordering between them.

The policy provides four trust classes. In order of decreasing

trust they are: (1) static: static web application content, (2)

developer: dynamic content written by developers, (3) auth:

dynamic content written by authenticated users, and (4)

unauth: dynamic content written by unauthenticated users.

In this web application, the capabilities of each trust class are

a superset of the capabilities of all less-trusted classes. Line 11
Fig. 7 e Document validation algorithm. This algorithm

determines whether a document satisfies a Noncespaces

policy.
allows static elements and attributes from any XML name-

space to appear in the document.

In this policy, wemake the simplifying assumption that all

default attributes added by the XML parser are safe. Therefore,

line 12 allows all default attributes from any XML namespace.

Lines 15e17 allow dynamic XHTML <script> tags and href

attributes to be created by developers. Lines 20e23 allow trust

classes greater than or equal to auth to specify links and

images that reference an absolute HTTP URL. Finally, lines

26e27 allow all trust classes to specify various text presenta-

tion markup and MathML content.

This policy illustrates several strengths of our policy

language. By using ns:isspecified() on line 12 to allow all

default attributes, we avoid having to explicitly allow every

default attribute that the XML parser might add to each

element. Each of the rules beginning from line 20 illustrates

how the ability to make comparisons between trust classes

saves the policy writer from having to explicitly enumerate

every trust class that is permitted to specify a particular

element or attribute. Line 27 allows any trust class to specify

any MathML element by qualifying a wildcard with the

MathML namespace prefix (m). Also, because trust classes

form a lattice, there is always a unique lowest trust class. In

the event that a server-side bug causes some content to

escape classification, the browser can automatically place

that content into the lowest trust class. (Each of these items

represents an improvement over the policy language origi-

nally presented in (Van Gundy and Chen, 2009).)

Though our examples employ XML, XPath can be usedwith

HTML documents as well. Even though HTML documents
Fig. 8 e Example Noncespaces policy. This policy restricts

untrusted content to BBCode.

http://dx.doi.org/10.1016/j.cose.2011.12.004
http://dx.doi.org/10.1016/j.cose.2011.12.004

Fig. 9 e Example multi-level Noncespaces policy. This policy illustrates multiple levels of trust, multiple XML languages, and

use of custom XPath functions provided by Noncespaces.

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 6 1 2e6 2 8620
need not be well-formed, browsers translate HTML into

a Document Object Model representation that can be used to

service XPath queries. We prefer this policy mechanism to

more complex ones like event-based policies or dynamic

information flow tracking for several reasons. Because it is not

Turing complete, it is easier to reason about the effects of

a policy making incorrect policy specification less likely.

Enforcing policy at the syntax (Document Object Model) level

also has advantages. It makes implementation less intrusive,

facilitating adoption across multiple browsers and making it

possible to retrofit legacy browsers without requiring internal

modifications by using our proxy implementation described in

Section 5.2.
4.3. Client enforcement

When receiving a Noncespaces-encoded response from

a server, the web browser must ensure that the document is

well-formed and conforms to the policy before rendering it.

This requires the browser to retrieve the policy from the web

server if it doesn’t already have an unexpired copy in its cache.

The overhead involved in policy retrieval should be minimal

given that most web pages are assembled from multiple

requests.We also expect it to be common for a single, seldom-

changing policy to be used for each web application.

Client-side enforcement of the policy is necessary because

it avoids possible semantic differences between the policy

checker and the browser, which might lead the browser to

interpret a document in a way that violates the policy even

though the policy checker has verified the document.
5. Implementation

5.1. Server implementation

Noncespaces requires the server to identify untrusted content

in web pages. The server may choose any approach from

whitelisting trusted content statically to determining

untrusted content dynamically by program analysis or infor-

mation flow tracking. In our prototype implementation, we

choose an approach that leverages a popular web application

development paradigm to conservatively classify content

with low overhead. The Model-View-Controller (Burbeck,

1992) design pattern advocates separating presentation from

business logic. Many modern web applications employ

a template system that inserts the dynamic values which

business logic computes into static templates that decide the

presentation of the web page. Since web developers author

templates, content in templates can be trusted. By contrast,

dynamic values may, and often do, come from untrusted

sources. We consider dynamic values to be untrusted. This

approach requires that JavaScript be placed in templates to be

recognized as trusted content. This requirement is reasonable

because most scripts can be specified statically. Scripts may

then use DOM interaction to query for dynamic inputs.

Treating all dynamic values as untrusted is safe, but it

might be too conservative in some situations. Consider the

following template used to toggle the visibility of a dynamic

menu: <a onclick¼’toggle(”{id}”)’>. The toggle(id)

function accepts a string parameter indicating the HTML id of

the element to operate on. Because the value of the onclick

http://dx.doi.org/10.1016/j.cose.2011.12.004
http://dx.doi.org/10.1016/j.cose.2011.12.004

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 6 1 2e6 2 8 621
attribute contains a template variable (id), it is treated as

a dynamic (untrusted) value. If the policy denies all untrusted

onclick attributes, the client will reject this document, even

when the generated JavaScript code conforms to the devel-

oper’s intentions. There are several straightforward solutions

to this problem. Our use of a configurable policy allows

a policy writer to explicitly whitelist safe, untrusted content

through constraints on attribute values. For instance, the

policy could allow untrusted onclick attributes which

conform to the intended format: toggle(”[A-Za-z0-9]þ”).

Another alternative is for certain untrusted content to be

whitelisted within the web application after ensuring either

proper sanitization or ensuring that it contains no malicious

input by program analysis or information flow tracking. We

would then consider an XHTML construct to be trusted if it is

either static or on the whitelist.

5.1.1. NSmarty
To automatically annotate the content ofweb pages generated

from templates, we modified the Smarty Template Engine,

a popular template engine for the PHP language. The Smarty

language is a Turing-complete template language that allows

dynamic inclusion of other templates. A Smarty template

consists of free-form text interspersed with template tags

delimited by { and }. A template tag either prints a variable or

invokes a function. To use Smarty, a PHP program invokes the

Smarty template engine, passes a template (or templates) to

the engine, and assigns values to the variables referenced in

the template. The template engine will then generate a docu-

ment based on the template and the dynamic values provided.

For our prototype implementation, we apply randomiza-

tion to XHTML documents. To randomize XML namespace

prefixes in Smarty templates, we must be able to recognize

static XHTML constructs in the template. Since the Smarty
Fig. 10 e Implementing Noncespaces within Smarty. This figur

engine.
language allows Smarty tags to appear anywhere in

a template, e.g. in element and attribute names, we must

restrict the Smarty language to be able to determine all static

XHTML elements and attributes. Hence, we specified a subset

of the Smarty language, which we call NSmarty. NSmarty

prohibits template tags from appearing in element names or

attribute names. Through these modest restrictions, we

ensure that we can correctly identify all the statically specified

XHTML tags and attributes.

The Smarty template engine operates in two phases. The

first time it encounters a template, it compiles the template

into PHP code and caches it. On each request, the cached PHP

code will run to render the output document. We provide

a preprocessor that is invoked by Smarty before it compiles

each template. Our preprocessor inserts PHP code that

replaces static XML namespace prefixes with randomly

generated prefixes each time the document is rendered. The

process is depicted in Fig. 10.

To preserve the semantics of the generated document, we

map each static prefix to a random prefix bound to the same

namespace URI as the static prefix (note that different prefixes

may be bound to the same URI or the same prefix may be

bound to different URIs at different points in the document).

However, since the Smarty (and also our NSmarty) language is

Turing-complete, it is infeasible to determine the scope of

each static prefix at compile time. This implies that it is also

infeasible to determine the URI that each static prefix repre-

sents. Therefore, wemap each unique static prefix to a unique

random prefix. If the original document without prefix

randomization is well-formed and all XHTML appearing in

dynamic content is well-formed, the new document with

prefix randomization will also be well-formed and will be

semantically equivalent to the original document. If dynamic

content contains non-well-formed XHTML, our prefix
e illustrates the operation of our modified smarty template

http://dx.doi.org/10.1016/j.cose.2011.12.004
http://dx.doi.org/10.1016/j.cose.2011.12.004

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 6 1 2e6 2 8622
randomization algorithm may create non-well-formed docu-

ments. We prevent this from occurring by verifying that each

document remains well-formed after prefix randomization.

Figs. 1 and 4 show an original XHTML template and the

rendered document after prefix randomization, respectively.

Fig. 11 shows the pseudocode for prefix randomization.

Because NSmarty takes advantages of XML namespaces,

the server should serve Noncespaces documents with the

application/xhtmlþxml content type. Serving the docu-

ment as XML provides other benefits, discussed below.
Fig. 11 e XML Namespace prefix randomization algorithm.

This algorithm prepends randomly chosen prefixes to all

static XML elements and attributes within a document.
5.2. Client implementation

The client validates each document against its policy before

rendering to ensure safety. We implemented our policy vali-

dator as a client-side proxy that mediates communication

between the browser and the server. Our proxy forwards

requests from the web browser to the appropriate server.

When it receives a Noncespaces-encoded response from the

server, the proxy attempts to validate the document against

the specified policy. If the document conforms to the policy,

the proxy forwards it to the client. If the document violates the

policy, fails to parse, or some other error occurs, such as the

policy being malformed or inaccessible, the proxy returns an

error document indicating the problem to the web browser.

We chose a proxy implementation to provide a rapid proof

of concept and incremental deployability for any browser that

supports the use of an HTTP proxy. Also, until adoption of

Noncespaces is sufficiently widespread, a Noncespaces

enabled server can protect incompatible clients by employing

our proxy in a reverse proxy configuration. UsingNoncespaces

in this configuration is reminiscent of SWAP (Wurzinger et al.,

2009) and is subject to shortcomings we outline in Section 3.

Performing policy validation in a proxy, instead of within

the browser, has several disadvantages. Using a proxy

increases the response latency experienced at the browser.

Also, because the policy validator does not have access to the

browser’s DOM, parsing differences between the validator and

the browser may provide opportunities for attack. Our

NSmarty implementation targets XHTML served as appli-

cation/xhtmlþxml to help mitigate this problem. The

stricter parsing requirements of XML means that the proxy is

less susceptible to parsing ambiguities than would be the case

with HTML. We do not view requiring XHTML 1.0 compliance

as a shortcoming of our prototype. Most modern browsers

(with the notable exception of Microsoft Internet Explorer) are

XHTML compliant. The restrictions imposed by XHTML are

not onerous; they merely require documents to follow

a simple, well-defined format. However, the prefix randomi-

zation technique that we have presented has one subtle

incompatibility with XHTML that is easy to work around.

While some browsers (such as Opera (Opera Browser) under-

stand XHTML attributes that have been qualified with a prefix

bound to the XHTML namespace, XHTML Modularization 1.1

(Austin et al., 2008) specifies that most XHTML attributes

should not be qualified. For browsers that do not support

qualified attributes, we can use a client-side JavaScript stub to

unqualify attributes randomized by Noncespaces after the

document has been validated.
5.3. Policy training mode

In order to protect any web application effectively, Non-

cespaces requires a security policy. To create awhitelist policy

manually, a policy developer must enumerate all outputs that

should be permitted by the policy. This can be difficult for web

applications with a significant amount of dynamic content.

The developer can either attempt to statically infer all possible

outputs from the application source or she can run the appli-

cation in order to observe possible outputs. Achieving

completeness is a challengewith either approach. The Turing-

completeness of common template languages can make it

impossible to statically determine all possible outputs. Like-

wise, output observed from running an application will not

reflect any application features not exercised by the developer.

Even given a complete view of application output, the

developer must write rules which accurately capture

permitted outputs and then test the web application with the

resulting policy to ensure that the policy is general enough to

allow full use of the web application. Whenever a policy

violation is encountered the developermust eithermodify the

policy to allow theoffendingdocument structure ormodify the

web application to conform to the existing policy. Performing

theseactionsbyhandcanbevery tediousand timeconsuming.

To facilitate rapid policy development, we have imple-

mented a training mode for our client-side proxy that helps

the developer create a whitelist policy for their application by

automating many of these steps. The developer provides

a seed policy, an incomplete policy that they would like to

serve as a basis for the policy generated by our training

system. The developer then exercises web application func-

tionality in a trusted environment to provide a reasonably

complete view of the web application output. Whenever the

proxy encounters a document node that is not permitted

under the current policy, it generates a rule to allow that node

and adds it to the current policy. In this way, when the

developer finishes exercising the full-range of application

functionality, the proxy can return a policy allowing all of the

content encountered. This combines, into a single activity, the

separate steps of determining possible application outputs,

writing rules to permit them, testing the policy, writing rules

http://dx.doi.org/10.1016/j.cose.2011.12.004
http://dx.doi.org/10.1016/j.cose.2011.12.004

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 6 1 2e6 2 8 623
to remedy incompleteness, and subsequent re-testing of the

policy.

Beginning training from a seed policy allows a policy to be

incrementally updated after changes are made to the appli-

cation by supplying the current policy as the seed policy and

re-running the application test suite. An empty seed policy

corresponds to a deny by default policy and rules will be

generated to allow every document node encountered.

Exercising the application can be automated by running

existing functionality and quality assurance tests in an inte-

gration testing environment. If automated tests aren’t avail-

able, the developer can manually interact with the web

application. Common test automation tools (Sahi; Selenium

IDE) can be used to create an automated test suite from

a one-time manual interaction.

When the proxy encounters content not permitted by the

policy, it must derive policy rules to allow the content. This is

safe because training occurs in a trusted environment.

Therefore, the output will not contain anymalicious content.

When creating a rule to remedy a policy violation, our

system must make a tradeoff between being too restrictive

and too permissive. If our system attempted to find a maxi-

mally-restrictive set of rules allowing only observed

behavior, the learned policy would prohibit legitimate

outputs not seen during training. Instead our training mode

generates simple rules allowing the node in question to

appear anywhere in the document. The generated rules

must be reviewed by the developer to ensure that they

conform to the intended security policy. We believe that this

is an acceptable tradeoffdguidance from the developer is

already necessary because our system cannot know the

developer’s intended security policy. In practice, we find that

the training mode allows us to quickly derive a policy that

permits large classes of innocuous XHTML content while

highlighting security-sensitive content that was not present

in the stub policy.

5.4. Deployment

It is easy to retrofit existing web applications with Non-

cespaces. The developer writes an appropriate policy and,

when necessary, revises the Smarty templates such that they

are also valid NSmarty templates.

If the developer wishes to enforce a static-dynamic policy,

where all static content in the Smarty template is trusted and

all dynamic content is untrusted, no further modification is

necessary. Noncespaces will randomize all the static name-

space prefixes. Because no namespace prefixes in the dynamic

content will be randomized, they cannot invoke any capabil-

ities reserved for trusted content.
6. Evaluation

To evaluate the effectiveness and overhead of Noncespaces

we conducted several experiments. We evaluated the security

of Noncespaces to ensure that it is able to prevent a wide

variety of XSS attacks. Our performance evaluation measures

the costs of Noncespaces from both the client’s and server’s

points of view.
6.1. Security

6.1.1. TikiWiki case study
We tested Noncespaces against six XSS exploits targeting two

vulnerable applications. The exploits were crafted to exhibit

the various forms that an XSS attack may take (Van Gundy

and Chen, 2009). The applications used in this evaluation

were a version of TikiWiki (TikiWiki CMS/Groupware) with

a number of XSS vulnerabilities and Trustify, a custom web

application that we developed to cover all the major XSS

vectors.

We began by developing policies for each application.

Because TikiWiki was developed before Noncespaces existed,

it illustrates the applicability of Noncespaces to existing

applications. We implemented a straightforward 37-rule,

static-dynamic policy that allows unconstrained static

content but restricts the capabilities of dynamic content to

that of BBCode (similar to Fig. 8). We also had to add

exceptions for trusted content that TikiWiki generates

dynamically by design, such as names and values of form

elements, certain JavaScript links implementing collapsible

menus, and custom style sheets based on user preferences.

For Trustify, our customweb application, we implemented

a policy that does not take advantage of the static-dynamic

model. Instead, the policy takes advantage of Noncespaces’s

ability to thwart node splitting attacks to implement an

ancestry-based sandbox policy similar to the noexecute policy

described in BEEP (Jim et al., 2007). This policy denies common

script-invoking tags and attributes from any namespace (e.g.,

<script> and onclick) that are descendants of a <div> tag

with the class ¼ ”sandbox” attribute. (Note: the policy does

not attempt to be exhaustive. It does not enumerate non-

standard browser-specific tags and attributes.) To allow the

rules to apply to elements and attributes in any namespacewe

use the common XPath idiom of matching by each node’s

local-name(). The 22 line policy is given in Fig. 12.

For each of the exploits we first verified that each exploit

succeeded without Noncespaces enabled. We then enabled

Noncespaces and verified that all exploits were blocked as

policy violations.

6.1.2. LifeType case study
To gainmore insight into thework involved in porting existing

applications to Noncespaces, we ported LifeType, a popular

blog application, to work with Noncespaces. LifeType is

a mature, full-featured blog application consisting of 155 K

lines of PHP and XHTML code. Enabling Noncespaces required

changes to only 180 lines of code. The majority of code

changes occurred in LifeType’s HTTP header handling. These

changes were necessary because Noncespaces needs to

include its own headers before any content is sent to the

client.

We developed a static-dynamic policy for LifeType that

attempts to restrict untrusted content to a minimal set of

capabilities. Using our proxy’s training mode, it took approx-

imately 4 hrs to exercise a significant portion of LifeType’s

functionality and tomanually refine generated rules that were

overly general. We then went through our functionality

exercise again to ensure that we did not prohibit any legiti-

mate behavior.

http://dx.doi.org/10.1016/j.cose.2011.12.004
http://dx.doi.org/10.1016/j.cose.2011.12.004

Fig. 12 e Example sandbox policy. This ancestry-based sandbox policy prohibits potential script-invoking tags and

attributes that are descendants of a <div> node with the class ¼ ”sandbox” attribute.

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 6 1 2e6 2 8624
To test the effectiveness of our LifeType policy, we intro-

duced XSS vulnerabilities into the application. We used the

XSS Cheat Sheet (RSnake, 2008) to craft 100 XSS exploits.

We then tested each exploit in Opera 9.273 Before applying

Nonce-spaces, 50 of the exploits were successful. The

remaining 50 exploits were unsuccessful against Opera

because they exploit functionality unique to some other

browser (such as executing JavaScript by invoking the mocha:

protocol scheme present in older Netscape versions). After

we applied Nonce-spaces, Noncespaces blocked 98 of the 100

exploits as either policy violations or XHTML parsing errors.

These results give us confidence in our policy’s ability to

recognize exploits while allowing intended behavior and in

Noncespaces’s ability to block exploits that target multiple

browsers. Since Nonce-spaces processes exploitable web

pages before the browser renders them, many exploits that

would have been incompatible with the browser were

blocked by Noncespaces before they reached the browser.

Neither of the two exploits that were not blocked resulted in

a successful XSS attack: one was rendered as text, the other

as a comment. That neither exploit caused a policy violation

does not indicate a limitation of our approach. Our browser-

agnostic prototype proxy implementation targets XHTML

compliant browsers, as discussed previously. Neither exploit

was valid XHTML.

The latter exploit is an Internet Explorer conditional

comment (Microsoft Developer Network (MSDN), 2007).

XHTML compliant browsers will render the comment as

a comment and ignore its contents. However, Internet

Explorer interprets the comment as HTML code if the specified

conditions are met. This exploit illustrates how non-
3 We used Opera for our evaluation due to its native support for
namespace qualified attributes.
standards-compliant behavior can lead to security vulnera-

bilities and confirms our preference for eventual in-browser

implementation. Only a Noncespaces-aware browser can

ensure complete mediationdthat all content interpreted as

HTML code is checked for conformance to the policy. Table 1

summarizes the results.
6.2. Performance

Our performance evaluation seeks to measure the overhead

of Noncespaces in terms of response latency and server

throughput. Our test infrastructure consisted of the appli-

cations that we used for our security evaluation running in

a VMware virtual machine with 512 MB RAM running

Fedora Core 3, Apache 2.0.52, and mod_php 5.2.6. The

virtual machine ran on an Intel Pentium 4 3.2 GHz machine

with 1 GB RAM running Ubuntu 7.10. Our client machine

was an Intel Pentium 4 2 GHz machine with 256 MB RAM

running Ubuntu 8.10 Server. These results represent an

upper bound on performance penalty as we have spent no

effort optimizing our Noncespaces prototype. In each test

we used ab (ab - Apache HTTP server benchmarking tool) to

retrieve an application page 1000 times. We varied the

number of concurrent requests between 1, 5, 10, and 15,

and the configuration of the client and server between the

following:

� Baseline: measures original web application performance

before applying Noncespaces.

� Randomization Only: measures impact of Noncespaces

randomization on server without policy validation on

client-side.

� Full Enforcement: measures the end-to-end impact of

Noncespaces.

http://dx.doi.org/10.1016/j.cose.2011.12.004
http://dx.doi.org/10.1016/j.cose.2011.12.004

Table 1 e Security analysis results. This table summarizes the results of our security analysis of Noncespaces-enabled
LifeType using a policy developed with our new training mode.

Total exploits Failed exploits Successful exploits

Blocked by Noncespaces Incompatible with Browser

Without Noncespaces 100 e 50 50

With Noncespaces 100 98 2 0

Fig. 13 e Noncespaces performance results. Performance results for Noncespaces-enabled TikiWiki and LifeType

applications. Each graph groups response (or throughput) times by the number of concurrent requests. Within each group,

the bars correspond to the following configurations from left to right: Baseline (Noncespaces disabled), randomization only

(no policy validation), and full enforcement (randomization and policy checking). The bars depict the mean value, asterisks

the median, and the vertical line segments show the mean plus or minus the standard deviation. The value of the standard

deviation is shown by label above each line segment.

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 6 1 2e6 2 8 625

http://dx.doi.org/10.1016/j.cose.2011.12.004
http://dx.doi.org/10.1016/j.cose.2011.12.004

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 6 1 2e6 2 8626
We ran three trials with each test configuration against

both the TikiWiki and Lifetype applications.4 We report the

mean, median, and standard deviation of results over all

trials. The server virtual machine was rebooted between tests.

The target page was prefetched once before the test to warm

up the systems’ caches to prevent any one-time costs (such as

compiling the NSmarty templates) from skewing our results.

Our results are shown in Fig. 13.

The graphs of response latency show that enabling Non-

cespaces randomization on the server increased response

time by (at most) 14% for TikiWiki and 20% for LifeType.

Enabling the policy checking proxy resulted in response times

that were (at most) 32% higher than the baseline response

time for TikiWiki and 80% higher for LifeType. Though the

overhead may appear significant at first glance, during inter-

active use latency typically increased by no more than 0.6 s.

We also examine the effect of Noncespaces on server

throughput. With randomization enabled throughput is

reduced by about 10% for TikiWiki and 20% for LifeType. After

enabling policy checking, the throughput of both TikiWiki and

LifeType decreases by an additional 3% for higher numbers of

concurrent requests. Because policy checking is performed

on the client side the effect of policy checking on server

throughput is minimized when multiple clients make

requests simultaneously.
7. Conclusion

We have presented Noncespaces, a technique for preventing

XSS attacks. The core insight of Noncespaces is that if the

server can reliably identify and annotate untrusted content,

the client can enforce flexible policies that prevent XSS

attacks while safely allowing rich user-contributed content.

The core technique of Noncespaces uses randomized (X)HTML

tags to identify and annotate untrusted content, similar to the

use of Instruction Set Randomization to defeat injected binary

code attacks. Noncespaces is simple. The server need not

sanitize any untrusted content. This avoids all the difficulties

and problems with sanitization. Once the server annotates

a node as untrusted, no malicious content in the node may

escape the node or raise its trust classification. Noncespaces-

aware clients can reliably prevent all the attacks that the

policy prohibits, and even Noncespaces-unaware clients can

prevent node-splitting attacks. We implemented a prototype

of Noncespaces for a web application template system and on

a proxy at the client side. Experiments show that the overhead

of our prototype Noncespaces implementation is moderate.
Funding

This research is partially supported by the National Science

Foundation through grants CNS 0644450 and 1018964, and by

an AFOSR MURI award. Neither source played a direct role in
4 We do not report performance results for Trustify. We devel-
oped Trustify for our security evaluation to exhibit all forms of
XSS vulnerability vectors. It is not representative of realistic web
application workloads.
the design or implementation of our system, authoring this

paper, nor the decision to submit it for publication.
Conflict of interest

Both authors maintain that, to the best of their knowledge,

they are free of potential conflicts of interest due to employ-

ment, funding, financial interests, or other factors.
Acknowledgments

Wewould like to thank: Francis Hsu for his assistancewith the

figures in this paper and valuable help proofreading, Zhen-

dong Su and his research group for critical input during the

early stages of this work, and the anonymous reviewers for

their helpful comments.
r e f e r e n c e s

ab - Apache HTTP server benchmarking tool. http://httpd.
apache.org/docs/2.2/programs/ab.html; 2010. [accessed
20.03.11].

Austin D, Peruvemba S, McCarron S, Ishikawa M, Birbeck M.
XHTML modularization 1.1 [accessed 20.03.11]. W3C; 2008.
Technical Report.

Barrantes EG, Ackley DH, Forrest S, Palmer TS, Stefanovi�c D,
Zovi DD. Randomized instruction set emulation to disrupt
binary code injection attacks. In: Proceedings of the 10th ACM
conference on computer and communications security (CCS
2003). Washington D.C., USA: ACM; 2003. p. 281e9.

Boyd SW, Keromytis AD. SQLrand: preventing SQL injection
attacks. In: Proceedings of the 2nd applied cryptography and
network security (ACNS) conference; 2004. p. 292e302.

Bray T, Hollander D, Layman A, Tobin R. Namespaces in XML 1.0
[accessed 20.03.11]. 2nd ed. W3C; 2006a. Technical Report.

Bray T, Paoli J, Sperberg-McQueen CM, Maler E, Yergeau F.
Extensible markup language (XML) 1.0 [accessed 20.03.11]. 4th
ed. W3C; 2006b. Technical Report.

Burbeck S. How to use model-view-controller (MVC) [accessed
20.03.11], http://st-www.cs.uiuc.edu/users/smarch/st-docs/
mvc.html; 1992.

CERT Coordination Center. CERT advisory CA-2000-02 malicious
HTML tags embedded in client web requests [accessed
20.03.11], http://www.cert.org/advisories/CA-2000-02.html;
2000.

Chen S, Xu J, Sezer EC, Gauriar P, Iyer RK. Non-control-data
attacks are realistic Threats. In: USENIX security
symposium. USENIX the advanced computing systems
association. Baltimore, MD, USA: USENIX Association; 2005.
p. 177e92.

CWE/SANS. Top 25 most dangerous software errors [accessed
20.03.11], http://cwe.mitre.org/top25/; 2010.

Eich B. JavaScript: mobility & ubiquity. In: Barthe G, Mantel Y,
Müller P, Myers AC, Sabelfeld A, editors. Mobility, ubiquity and
security. Dagstuhl, Germany: Internationales Begegnungs-und
Forschungszentrum für Informatik (IBFI); number 07091 in
Dagstuhl seminar proceedings; 2007.

Erlingsson Ú, Livshits B, Xie Y. End-to-end web application
security. In: Proceedings of the 11th USENIX workshop on hot
topics in operating systems. USENIX the advanced computing

http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://www.cert.org/advisories/CA-2000-02.html
http://cwe.mitre.org/top25/
http://dx.doi.org/10.1016/j.cose.2011.12.004
http://dx.doi.org/10.1016/j.cose.2011.12.004

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 6 1 2e6 2 8 627
systems association. San Diego, CA: USENIX Association; 2007.
p. 1e6.

Fielding R, Gettys J, Mogul J, Frystyk H, Masinter L, Leach P, et al.
Hypertext Transfer Protocol e HTTP/1.1; 1999.

Genshi. Python toolkit for generation of output for the web
[accessed 20.03.11], http://genshi.edgewall.org/; 2008.

Jim T, Swamy N, Hicks M. Defeating scripting attacks with
browser-enforced embedded policies. In: Proceedings of the
international World Wide Web conference (WWW). Banff,
Alberta, Canada: ACM; 2007. p. 601e10.

Kc GS, Keromytis AD, Prevelakis V. Countering code-injection
attacks with instruction-set randomization. In: CCS ‘03:
Proceedings of the 10th ACM conference on computer and
communications security. Washington D.C., USA: ACM; 2003.
p. 272e80.

Kirda E, Kruegel C, Vigna G, Jovanovic N. Noxes: a client-side
solution for mitigating cross site scripting attacks. In:
Proceedings of the ACM symposium on applied computing
(SAC); 2006. p. 330e7. Dijon, France.

Kirkegaard C, M�rller A. Static analysis for Java Servlets and
JSP. In: Proceedings of the 13th international static
analysis Symposium, SAS ’06. LNCS, vol. 4134. Springer-
Verlag; 2006. p. 336e52. Full version available as BRICS RS-
06-10.

Livshits VB, Lam MS. Finding security vulnerabilities in Java
applications with static analysis. In: USENIX security
symposium. USENIX the advanced computing systems
association. Baltimore, MD, USA: USENIX Association; 2005. p.
271e86.

Markham G. Script Keys. Last accessed: Mar 20, 2011, http://www.
gerv.net/security/script-keys/; 2005.

Markham G. Content restrictions. Last accessed: Mar 20, 2011,
http://www.gerv.net/security/content-restrictions/; 2007.

Meyerovich LA, Livshits B. ConScript: specifying and
enforcing fine-grained security policies for JavaScript in
the browser. In: IEEE Symposium on security and privacy.
Berkeley, CA, USA: IEEE Computer Society; 2010. p. 481e96.

Microsoft Developer Network (MSDN). About conditional
comments. Last accessed: Mar 20, 2011, http://msdn.
microsoft.com/en-us/library/ms537512.aspx; 2007.

MITRE Corporation. Vulnerability type distributions in CVE
[accessed 20.03.11], http://cwe.mitre.org/documents/vuln-
trends/index.html; 2007.

San Diego, CA Nadji Y, Saxena P, Song D. Document structure
integrity: a robust basis for cross-site scripting Defense. In:
Proceedings of the 16th annual network and distributed
system security symposium (NDSS); 2009. p. 17e36.

Nava EV, Lindsay D. Abusing Internet Explorer 8’s XSS filters
[accessed 20.03.11], http://p42.us/ie8xss/Abusing_IE8s_XSS_
Filters.pdf; 2010.

Nguyen-Tuong A, Guarnieri S, Greene D, Shirley J, Evans D.
Automatically hardening web applications using precise
tainting. In: Proceedings of the 20th IFIP international
information security conference (SEC 2005); 2005. p. 372e82.
Chiba, Japan.

Opera Browser. http://www.opera.com/browser/; 2008. [accessed
20.03.11].

Robertson W, Vigna G. Static enforcement of web application
integrity through strong typing. In: USENIX security
Symposium. USENIX the advanced computing systems
Association. Montreal, Canada: USENIX Association; 2009. p.
283e98.

Ross D. IE8 security part IV: the XSS filter [accessed 20.03.11],
http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-
part-iv-the-xss-filter.aspx; 2008.

RSnake. XSS (cross site scripting) cheat sheet [accessed 20.03.11],
http://ha.ckers.org/xss.html; 2008.

Sahi http://sahi.co.in/; 2011. [accessed 20.03.11].
Samy. Technical explanation of the MySpace worm [accessed
20.03.11], http://web.archive.org/web/20060208182348/namb.
la/popular/tech.html; 2006.

Selenium IDE. http://seleniumhq.org/projects/ide/; 2011.
[accessed 20.03.11].

Shezaf O. The universal XSS PDF vulnerability [accessed 20.03.11],
http://www.owasp.org/images/4/4b/OWASP_IL_The_
Universal_XSS_PDF_Vulnerability; 2007.

Smarty Template Engine. http://www.smarty.net/; 2008.
[accessed 20.03.11].

Stamm S, Sterne B, Markham G. Reining in the web with content
security policy. In: Proceedings of the 19th international World
Wide Web conference (WWW). Raleigh, North Carolina, USA:
ACM; 2010. p. 921e30.

Su Z, Wassermann G. The Essence of command injection
attacks in web applications. In: Proceedings of the 33rd ACM
SIGPLAN-SIGACT symposium on principles of programming
languages. Charleston, South Carolina, USA: ACM; 2006. p.
372e82.

Tang S, Grier C, Aciicmez O, King ST. Alhambra: a system for
creating, enforcing, and testing browser security policies. In:
Proceedings of the 19th International World Wide Web
conference (WWW). Raleigh, North Carolina, USA: ACM; 2010.
p. 941e50.

Ter LouwM, Venkatakrishnan VN. Blueprint: robust prevention of
cross-site scripting attacks for existing browsers. In: IEEE
symposium on security and privacy. Berkeley, CA, USA: IEEE
Computer Society; 2009. p. 331e46.

The Open Web Application Security Project. Cross-site scripting
(XSS) [accessed 20.03.11], http://www.owasp.org/index.php/
Cross-site_Scripting_%2528xSS%2529; 2010.

TikiWiki CMS/groupware. http://info.tikiwiki.org/tiki-index.php;
2010. [accessed 20.03.11].

San Diego, CA Van Gundy M, Chen H. Noncespaces: using
randomization to enforce information flow tracking and
thwart cross-site scripting attacks. In: Proceedings of the 16th
Annual network and distributed system security symposium
(NDSS); 2009. p. 55e67.

Venema W. Taint support for PHP [accessed 20.03.11], http://wiki.
php.net/rfc/taint; 2008.

Vogt P, Nentwich F, Jovanovic N, Kirda E, Kruegel C. Vigna G
cross-site scripting prevention with dynamic data tainting
and static analysis. In: Proceedings of the network and
distributed system security symposium (NDSS); 2007. San
Diego, CA.

Wassermann G, Su Z. Sound and precise analysis of web
applications for injection vulnerabilities. In: Proceedings of
the ACM SIGPLAN 2007 conference on programming language
design and implementation. San Diego, CA: ACM Press; 2007.
p. 32e41. New York, NY, USA.

Wassermann G, Su Z. Static detection of cross-site scripting
vulnerabilities. In: Proceedings of the 30th international
conference on software engineering. Leipzig, Germany: ACM;
2008. p. 171e80.

Wurzinger P, Platzer C, Ludl C, Kirda E, Kruegel C. SWAP:
mitigating XSS attacks using a reverse proxy. In: Proceedings
of the 2009 ICSE workshop on software engineering for secure
systems. Washington, DC, USA: IEEE Computer Society; 2009.
p. 33e9.

Xie Y, Aiken A. Static Detection of security vulnerabilities in
scripting languages. In: USENIX security symposium. USENIX
the advanced computing systems association. Vancouver,
B.C., Canada: USENIX Association; 2006. p. 179e92.

Xu W, Bhatkar S, Sekar R. Taint-Enhanced policy enforcement:
a Practical approach to defeat a wide range of attacks. In:
USENIX security symposium. USENIX the advanced
computing systems Association. Vancouver, B.C., Canada:
USENIX Association; 2006. p. 121e36.

http://genshi.edgewall.org/
http://www.gerv.net/security/script-keys/
http://www.gerv.net/security/script-keys/
http://www.gerv.net/security/content-restrictions/
http://msdn.microsoft.com/en-us/library/ms537512.aspx
http://msdn.microsoft.com/en-us/library/ms537512.aspx
http://cwe.mitre.org/documents/vuln-trends/index.html
http://cwe.mitre.org/documents/vuln-trends/index.html
http://p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf
http://p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf
http://www.opera.com/browser/
http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-iv-the-xss-filter.aspx
http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-iv-the-xss-filter.aspx
http://ha.ckers.org/xss.html
http://sahi.co.in/
http://web.archive.org/web/20060208182348/namb.la/popular/tech.html
http://web.archive.org/web/20060208182348/namb.la/popular/tech.html
http://seleniumhq.org/projects/ide/
http://www.owasp.org/images/4/4b/OWASP_IL_The_Universal_XSS_PDF_Vulnerability
http://www.owasp.org/images/4/4b/OWASP_IL_The_Universal_XSS_PDF_Vulnerability
http://www.smarty.net/
http://www.owasp.org/index.php/Cross-site_Scripting_%252528xSS%252529
http://www.owasp.org/index.php/Cross-site_Scripting_%252528xSS%252529
http://info.tikiwiki.org/tiki-index.php
http://wiki.php.net/rfc/taint
http://wiki.php.net/rfc/taint
http://dx.doi.org/10.1016/j.cose.2011.12.004
http://dx.doi.org/10.1016/j.cose.2011.12.004

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 6 1 2e6 2 8628
Matthew Van Gundy is a Ph.D. candidate in Computer Science at
the University of California, Davis. He received his B.S. in
Computer Engineering from the University of California, Santa
Barbara in 2005. His research focus is computer security including
privacy preserving technologies, censorship resistance, informa-
tion flow security, and web security.
Hao Chen is an associate professor of Computer Science at the
University of California, Davis. He received his Ph.D. in Computer
Science from the University of California, Berkeley in 2004. His
primary research interest is computer security, particularly web
security, wireless security, and privacy. He won the NSF CAREER
award in 2007.

http://dx.doi.org/10.1016/j.cose.2011.12.004
http://dx.doi.org/10.1016/j.cose.2011.12.004

	Noncespaces: Using randomization to defeat cross-site scripting attacks
	1. Introduction
	2. Threat model
	3. Related work
	3.1. Randomization
	3.2. Preserving document structure integrity
	3.3. Client-side policy enforcement
	3.4. Prohibiting anti-patterns
	3.5. Leveraging language techniques
	3.6. Static analysis
	3.7. Information flow tracking

	4. Noncespaces
	4.1. Communicating trust information
	4.1.1. Compatibility with caching

	4.2. Policy specification
	4.3. Client enforcement

	5. Implementation
	5.1. Server implementation
	5.1.1. NSmarty

	5.2. Client implementation
	5.3. Policy training mode
	5.4. Deployment

	6. Evaluation
	6.1. Security
	6.1.1. TikiWiki case study
	6.1.2. LifeType case study

	6.2. Performance

	7. Conclusion
	Funding
	Conflict of interest
	Acknowledgments
	References

