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Abstract. The popularity and utility of smartphones rely on their vi-
brant application markets; however, plagiarism threatens the long-term
health of these markets. We present a scalable approach to detecting sim-
ilar Android apps based on their semantic information. We implement
our approach in a tool called AnDarwin and evaluate it on 265,359 apps
collected from 17 markets including Google Play and numerous third-
party markets. In contrast to earlier approaches, AnDarwin has four
advantages: it avoids comparing apps pairwise, thus greatly improving
its scalability; it analyzes only the app code and does not rely on other
information — such as the app’s market, signature, or description —
thus greatly increasing its reliability; it can detect both full and partial
app similarity; and it can automatically detect library code and remove
it from the similarity analysis. We present two use cases for AnDarwin:
finding similar apps by different developers (“clones”) and similar apps
from the same developer (“rebranded”). In ten hours, AnDarwin detected
at least 4,295 apps that have been the victims of cloning and 36,106 apps
that are rebranded. By analyzing the clusters found by AnDarwin, we
found 88 new variants of malware and identified 169 malicious apps based
on differences in the requested permissions. Our evaluation demonstrates
AnDarwin’s ability to accurately detect similar apps on a large scale.

1 Introduction

As of March 2012, Android has a majority smart phone marketshare in the
United States [15]. The Android operating system provides the core smart phone
experience, but much of the user experience relies on third-party apps. To this
end, Android has an official market and numerous third-party markets where
users can download apps for social networking, games, and more. In order to
incentivize developers to continue creating apps, it is important to maintain a
healthy market ecosystem.

One important aspect of a healthy market ecosystem is that developers are
financially compensated for their work. Developers can charge directly for their
apps, but many choose instead to offer free apps that are ad-supported or contain
in-app billing for additional content. There are several ways developers may lose
potential revenue: a paid app may be “cracked” and released for free or a free
app may be copied, or “cloned”, and re-released with changes to the ad libraries



that cause ad revenue to go to the plagiarist [21]. App cloning has been widely
reported by developers, smart phone security companies and the academic com-
munity [8, 10, 11, 16, 22, 34, 33]. Unfortunately, the openness of Android markets
and the ease of repackaging apps contribute to the ability of plagiarists to clone
apps and resubmit them to markets.

Another aspect of a healthy market ecosystem is the absence of low-quality
spam apps which may pollute search results, detracting from hard-working de-
velopers. Of the 569,000 apps available on the official Android market, 23%
are low-quality [7]. Oftentimes, spammers will submit the same app with minor
changes as many different apps using one or more developer accounts.

To improve the health of the market ecosystem, a scalable approach is needed
to detect similar app for use in finding clones and potential spam. As of Novem-
ber, 2012, there are over 569,000 Android apps on the official Android market.
Including third-party markets and allowing for future growth, there are too many
apps to be analyzed using existing tools.

To this end, we develop an approach for detecting similar apps on a un-
precedented scale and implement it in a tool called AnDarwin. Unlike previous
approaches that compare apps pair-wise, our approach uses multiple clusterings
to handle large numbers of apps efficiently. Our efficiency allows us to avoid the
need to pre-select potentially similar apps based on their market, name, or de-
scription, thus greatly increasing the detection reliability. Additionally, we can
use the app clusters produced by AnDarwin to detect when apps have had simi-
lar code injected (e.g. the insertion of malware). We investigate two applications
of AnDarwin: finding similar apps by different developers (cloned apps) and
groups of apps by the same developer with high code reuse (rebranded apps).
We demonstrate the utility of AnDarwin, including the detection of new variants
of known malware and the detection of new malware.

2 Background

2.1 Android

Android users have access to many markets where they can download apps such
as the official Android market – Google Play [2], and other, third-party markets
such as GoApk [1] and SlideME [3].

Developers must sign an app with their developer key before uploading it
to a market. Most markets are designed to self-regulate through ratings and
have no vetting process which has allowed numerous malicious apps onto the
markets [35]. Google Play has developed a Bouncer service [27] to automatically
analyze new apps. However, its effectiveness for finding similar apps, such as
spam and clones, which may not be malicious, has not been studied.

2.2 Program Dependence Graphs

A Program Dependence Graph (PDG) represents a method in a program, where
each node is a statement and each edge shows a dependency between statements.



There are two types of dependencies: data and control. A data dependency edge
between statements s1 and s2 exists if there is a variable in s2 whose value
depends on s1. For example, if s1 is an assignment statement and s2 references
the variable assigned in s1 then s2 is data dependent on s1. A control dependency
between two statements exists if the truth value of the first statement controls
whether the second statement executes.

2.3 Code Clones and Reuse Detection

Many approaches have been developed over the years to detect code clones [20,
23, 25, 26]. A code clone is two or more segments of code that have the same
semantics but come from different sources. Finding and eliminating code clones
has many software engineering benefits such as increasing maintainability and
improving security, as vulnerabilities in clones only need to be found and patched
once. Plagiarism and code clone detection share the same common goal: detect-
ing reused code. However, code clone detection is largely focused on intra-app
reuse, while plagiarism detection focuses on inter-app reuse, where the apps have
separate code bases and have been identified as having different authors.

Tools that detect code clones generally fall into one of four categories: string-
based, token-based, tree-based and semantics-based with semantics-based detec-
tion being potentially the most robust and often the most time consuming. Early
approaches considered code as a collection of strings, usually based on lines, and
reported code clones based on identical lines [9]. More recently, DECKARD [23]
and its successor [20] use the abstract syntax tree of a code base to create vectors
which are then clustered to find similar subtrees.

3 Threat Model

Our goal is to find Android apps that share a nontrivial amount of code, pub-
lished by either the same or different developers. We determine similarity based
on code alone and do not use meta data such as market, developer, package
or description for any purpose other than analyzing the results of AnDarwin’s
clusters of similar apps. We consider only similarities between the DEX code of
apps. We choose to leave native code to future work as only a small percentage
(7%) of the 265,359 apps we analyzed include native code.

4 Methodology

AnDarwin consists of four stages as depicted in Figure 1. First, it represents each
app as a set of vectors computed over the app’s Program Dependence Graphs
(Section 4.1). Second, it finds similar code segments by clustering all the vectors
of all apps (Section 4.2). Third, it eliminates library code based on the frequency
of the clusters (Section 4.3). Finally, it detects apps that are similar, considering
both full and partial app similarity (Section 4.4).
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Fig. 1: Overview of AnDarwin.

We base the first two stages of AnDarwin on the approaches of Jiang et
al. [23] and Gabel et al. [20] to find code clones in a scalable manner. AnDarwin
uses these results to detect library code and, ultimately, to detect similar apps.

4.1 Extracting Semantic Vectors

The first stage of AnDarwin represents each app as a set of semantic vectors as
follows. First, AnDarwin computes an undirected PDG of each method in the
app using only data dependencies for the edges (as control dependencies edges
may be easier to modify). Each PDG is then split into connected components as
multiple data-independent computations may occur within the same method. We
call these connected components semantic blocks since each captures a building
block of the method and represents semantic information stored in the PDG.
Finally, AnDarwin computes a semantic vector to represent each semantic block.
Each node in the semantic block represents a statement in the method and has a
type corresponding to that statement. For example, a node representing an add
might have the type binary operation. To capture this information, semantic
vectors are calculated by counting the frequency of nodes of each type in the
semantic block. Continuing the above example, a semantic block with just x adds
would have an x in the dimension corresponding to binary operations. AnDarwin
uses a total of 20 node types, however, we could easily use more node information
such as which binary operation is being performed to increase the precision of our
vectors without dramatically increasing the complexity (Section 4.5). Semantic
blocks with fewer than 10 nodes are discarded because they usually represent
trivial and uncharacteristic code.



4.2 Identifying Similar Code

When two semantic blocks are code clones, they share the majority of their
nodes and, thus, their semantic vectors will be similar. Therefore, we can identify
code clones by finding near-neighbors of semantic vectors. While not all near-
neighbors will be code clones, this technique works well in practice (Section 5).

To determine all the near-neighbors, we could attempt to compute similarity
pairwise between all the semantic vectors. However, this approach is quadratic
in the number of vectors which is computationally prohibitive given that there
can easily be millions of vectors. Instead, we leverage Locality Sensitive Hashing
(LSH), which is an algorithm to efficiently find approximate near-neighbors in
a large number of vectors [5]. LSH achieves this by hashing vectors using many
hash functions from a special family that have a high probability of collision
if the vectors are similar. To identify near-neighbors, LSH first hashes all the
vectors with the special hash functions and then looks for near-neighbors among
the hash collisions. This allows LSH to identify approximate clusters of similar
vectors (code clones) which AnDarwin will use to detect similar apps.

Since semantic blocks of vastly different sizes are unlikely to be code clones,
we can improve the scalability further by grouping the vectors based on their
magnitudes [23]. To ensure that code clones near the group boundaries are not
missed, we compute groups such that they overlap slightly. LSH can then cluster
each group quickly as each individual group is much smaller than the set of all
vectors. Moreover, each LSH computation is independent which allows all the
groups to be run in parallel. This also has the added benefit that we can tailor
the clustering radius for each group to the magnitude of the vectors within the
group — potentially allowing us to detect more code clones.

4.3 Excluding Library Code

A library is a collection of code that is designed to be shared between many apps.
In Android, libraries are embedded in apps which makes it difficult to distinguish
app code from library code. This is problematic because app similarity detec-
tion tools should not consider library code when analyzing apps for similarity.
Prior approaches [16, 33] identified libraries using white lists and manual efforts;
however, these approaches are inherently not scalable and prone to omission. In
contrast, AnDarwin automatically detects libraries by leveraging the results of
its clustering of similar code (Section 4.2).

A library consists of many semantic blocks which are mapped to semantic
vectors by AnDarwin. When an app includes a library it inherits all the semantic
vectors derived from library code. Therefore, when the semantic vectors are
clustered and AnDarwin maps features to apps, features from library code will
appear in many more apps. This is also the case for boilerplate code and any
common compiler constructs which tend to occur in many apps. To exclude these
uncharacteristic features, AnDarwin ignores any feature that appears in more
than a threshold number of apps.



4.4 Detecting Similar Apps

The previous sections describe how AnDarwin creates features by clustering
semantic vectors and how characteristic features are selected. AnDarwin deter-
mines app similarity based on these characteristic features using two approaches,
one for full app similarity and the other for partial app similarity.

Full App Similarity Detection For full app similarity detection, AnDar-
win represents each app as a set of features. In the simplest case, two very similar
apps will have mostly or completely overlapping feature sets. Dissimilar apps’
feature sets, on the other hand, should have little to no overlap. This is captured
in the Jaccard Index of their two feature sets FA and FB , which reduces the
problem of finding similar app to that of finding similar sets.

J(A,B) =
|FA ∩ FB |
|FA ∪ FB |

(1)

Partial App Similarity Detection The above approach successfully finds
apps that share most of their code but it is not robust enough to find clones
that share only a part of their code. For example, consider an app and a copy
of it that has added many methods and also removed many original methods to
maintain a similar size. Although the app feature sets of these two apps agree
on many features, their Jaccard Index may be low. To detect partial similarity,
for each feature not excluded in the previous section, AnDarwin computes the
set of apps that contain the feature. If two features have similar app sets, as
determined by the Jaccard Index, these two features are shared by the same set
of apps. If enough features share the same set of apps, AnDarwin has discovered
a non-trivial amount of code sharing of non-library code. Therefore, by creating
clusters of features based on their app sets, AnDarwin can detect partial app
similarity by finding similar sets.

Finding Similar Sets Both full and partial app similarity detection require
finding similar sets. As in Section 4.2, we could attempt to compute similarity
pairwise between all the sets, however, this is again computationally prohibitive.
Fortunately, this can be approximated efficiently using MinHash [12, 13].

MinHash was originally developed at Alta Vista to detect similar websites
when represented as a set of features. To understand how MinHash works, first
consider the binary matrix representation of the sets for full app similarity de-
tection where columns are apps and rows are features. Let h(A) be the MinHash
of an app, A, and let it be defined as the first row of the matrix (going top-to-
bottom) that is a one for the column corresponding to A. Then, if we were to
create a random permutation of the rows of the binary matrix, for two apps, A
and B, the probability that h(A) = h(B) is the same as the Jaccard Index of the
two app feature sets [30]. Rather than using just one permutation which may
not find that two similar sets have the same MinHash value, many permutations
and MinHash values can be calculated — creating a MinHash signature vector.
These signature vectors are calculated for each app and can be clustered using



LSH (see Section 4.2). Therefore, MinHash allows AnDarwin to efficiently detect
both full and partial app similarity.

The output of MinHash is a list of pairs of sets that are similar which we
combine to create clusters of similar sets. To do so, we initialize a union-find
data structure, which enables fast cluster merging and element lookup, with
each set in a cluster by itself. We then process each pair, (X,Y ) and merge the
two clusters that contain X and Y if they are not already in the same cluster.
By merging clusters in this way, the average similarity of sets within each cluster
is decreasing with each pair processed. For example A may be similar to B, B to
C, and C to D but this does not mean that A must be similar to D. We believe
this is an acceptable trade off and leave alternative approaches to future work.

4.5 Time Complexity

In this section, we examine the total time complexity of AnDarwin. Let N be the
number of apps analyzed. Then, the complexity of extracting semantic vectors
is trivially O(N ∗ m), where m is the average number of methods per app (m
is independent of N). The complexity of identifying similar code with LSH is:
O(d

∑
g∈G |g|ρ log |g|) [23]. Where d is the dimension of the semantic vectors (20),

G is the set of vector groups, |g| is the size of the vector group (|g| <= N ∗m)
and 0 < ρ < 1. This produces at most O(N ∗ m) clusters when there are no
code clones at all. Finally, the complexity of MinHash is: O(n log n) where n is
the number of sets. For full app similarity detection where there is one set per
app, n = N , and for partial app similarity detection where there is one set per
code clone, n <= N ∗m. Therefore, the total time complexity of AnDarwin is
linearithmic, O(N logN), in the number of apps analyzed.

5 Evaluation

We have implemented our approach in a tool called AnDarwin. AnDarwin uses
dex2jar [29] version 0.9.8 to convert DEX byte code to Java byte code. To build
the PDGs required to represent apps as a set of semantic vectors, AnDarwin
uses the T. J. Watson Libraries for Analysis (WALA) [14]. WALA supports
building PDGs from Java byte code, eliminating the need for decompilation.
Once AnDarwin has converted all the apps and represented them as sets of
semantic vectors, AnDarwin uses the LSH code from [5] to cluster the semantic
vectors to create features. These clustering results are then used to create the
feature sets and app sets described in Section 4.4. Finally, to detect full and
partial app similarity, AnDarwin uses MinHash, which we implemented based
on [30].

We crawled 265,359 apps from 17 Android markets including the official
market and numerous third-party markets (Table 1).



Market Apps Market Apps Market Apps

Google Play 224,108 SlideME 16,479 m360 15,248

Brothersoft 14,749 Android Online 10,381 1Mobile 9,777

Gfan 7,229 Eoemarket 5,515 GoApk 3,243

Freeware Lovers 1,428 AndAppStore 1,301 SoftPortal 1,017

Androidsoft 613 AppChina 404 ProAndroid 370

AndroidDownloadz 245 PocketGear 227

Table 1: Market origins of the apps analyzed by AnDarwin. Since some apps
appear on multiple markets, the total apps in the table is slightly more than the
total 265,359 apps analyzed.

5.1 Semantic Vectors

There are a total of 87,386,000 methods included in the 265,359 apps. These
methods produced a total of 90,144,000 semantic vectors, meaning that on aver-
age a method has 1.03 connected components. Among the 90,144,000 semantic
vectors, there are 4,825,000 distinct vectors. The average size of these 4,825,000
vectors is 77.87 nodes. The largest has 17,116 nodes. When we manually investi-
gated the largest method, we found that the app builds a massive 5-dimensional
array using hard coded values depending on different flags. Although perhaps
not the best coding style, this large semantic vector does represent valid code
that could be copied.

5.2 Code Features

In total, AnDarwin found 87,386,000 methods included in the 265,359 apps that
are clustered into 3,085,998 distinct features by LSH. 133,753 (4.3%) of these
features are present in more than 250 apps and thus are not used in either full or
partial app similarity detection. We selected this threshold based on the following
insight: only features from library code tend to map to methods that share the
same method signatures. Therefore, if the ratio of the number of apps a feature
appears in to the number of distinct method signatures for that feature is large,
it is highly likely that the feature represents library code. To select a library code
threshold, we select a value and then count the number of excluded features for
which this ratio is large and evaluate whether the threshold is acceptable. Using
a ratio of four, we selected the threshold such that at least 50% of the excluded
features exhibit this trait. We note that this threshold may be easily tweaked
depending on false positive and false negative requirements.

5.3 App Complexity

Overall, AnDarwin found that a large number of apps are not very complex.
Figure 2a shows the number of features per apps for the 265,359 apps before
common feature exclusion. On average, apps have 2,045 features and the largest



(a) Before common feature exclusion (b) After common feature exclusion

Fig. 2: Distribution of the number of features per app on logarithnic scale

app has 23,918 features. Once libraries are excluded, the number of apps with at
least one feature drops to 231,184. Figure 2b shows that the average complexity
drops dramatically once common features are excluded. The average number of
features for these apps is 148, with the largest app having 7,908 features.

This is interesting from a software development point of view because it
suggests that through libraries and good API design, most Android apps don’t
have to be very complex in order to perform their function.

5.4 Full App Similarity Detection

Using full app similarity detection (Section 4.4), AnDarwin found 28,495 clusters
consisting of a total of 150,846 distinct apps. Figure 3a shows the sizes of the
clusters. As expected, the majority of clusters consist of just two apps. Surpris-
ingly, some clusters are much larger, the largest of which consists of 281 apps.
We will investigate these clusters in Section 6.2.

To evaluate the quality of the clusters, we compute intra-cluster app similar-
ity based on the average Jaccard Index (Equation 1) between each pair of apps.
For each cluster C, we compute the similarity score, Sim(C), as:

Sim(C) = avg{(A,B) ∈ C : J(A,B)} (2)

The similarity scores are between 0 and 1, where a score close to 1 indicates
that all apps in the cluster have almost identical feature sets. Figure 3b shows
the cumulative distribution of the similarity scores of the 28,495 clusters. It
shows that almost no clusters have similarity scores below 0.5, and more than
half of the clusters have similarity scores of over 0.80. This demonstrates the
effectiveness of AnDarwin in clustering highly similar apps.



(a) Histogram of the cluster sizes on logarithmic scale (b) Cumulative distribution function of Sim(C)

Fig. 3: Full App Similarity Detection.

5.5 Partial App Similarity Detection

Using partial app similarity detection, AnDarwin found 11,848 clusters consist-
ing of 88,464 distinct apps. Figures 4a and 4b show the sizes and similarity of
these clusters, respectively. As partial app similarity is designed to detect app
pairs that share only a portion of their code, we cannot measure them with
Equation 1. Consider the scenario where an attacker copies an app but adds
an arbitrarily large amount of code. In this case, Equation 1 will be small even
though the original and clone share all of the original app’s features. Therefore,
for each cluster C, we compute the similarity score, Simp(C), as:

Simp(C) = avg{(A,B) ∈ C :
|FA ∩ FB |

min(|FA|, |FB |)
} (3)

Figure 4b shows the cumulative distribution function of Simp(C) for the
partial app similarity detection clusters. Comparing Figure 3b to Figure 4b,
we observe that some clusters based on partial app similarity have low intra-
cluster similarity scores while almost no cluster based on full app similarity has
similarity scores below 0.5. On the surface, this might suggest that partial app
similarity produces lower quality clusters. However, this in fact shows the power
of partial app similarity. When a cluster has a low similarity score, it indicates
that the common features among the apps in this cluster are relatively small
compared to the app sizes, so full app similarity detection cannot identify these
common features.

5.6 Performance

We evaluated AnDarwin’s performance on a server with quad Intel Xeon E7-
4850 CPUs (80 logical cores with hyper threading) and 256GB DDR3 memory.



(a) Histogram of the cluster sizes on logarithmic scale (b) Cumulative distribution function of Simp(C)

Fig. 4: Partial App Similarity Detection.

Using 75 threads, it took 4.47 days to extract semantic vectors (Stage 1) from all
265,359 apps (only 109 seconds per thread to process each app). We note that
this stage only occurs once for each app, regardless of changes to subsequent
stages and can be parallelized to any number of servers to reduce the total time.

The next most expensive stages are the LSH clustering in Stage 2 (Sec-
tion 4.2) and the two MinHash-based clusterings in Stage 4 (Section 4.4). LSH
clusters all 4,825,000 distinct vectors in just over 49 minutes. This time could be
reduced to seven minutes if we were to run all the groups in parallel, rather than
serially (as done in our current implementation). Full app similarity detection
runs in just over 35 minutes. In total, it takes under ten hours to complete full
app similarity detection including all the database operations and data trans-
formations. On its own, partial app similarity detection took seven hours but
this is expected as it clusters 2,952,245 sets whereas full app similarity detection
only clusters 265,359. Interestingly, this time estimates how long it would take to
run MinHash for full app similarity detection on 2,952,245 apps. Both MinHash
times could be improved by using more than our single server.

5.7 Accuracy

Full App Similarity Detection To measure the false positive rate of An-
Darwin’s full app similarity detection, we leverage DNADroid [16], a tool that
robustly compares Android apps pairwise for code reuse. DNADroid uses sub-
graph isomorphism to detect similarity between the PDGs of two apps. In the
author’s evaluation of DNADroid, it had an experimental false positive rate of
0%, making it an ideal tool for evaluating AnDarwin’s accuracy.

Unfortunately, DNADroid is too computationally expensive to apply to all
the pairs of apps AnDarwin found. Instead, we randomly selected 6,000 of the
28,495 clusters and then randomly selected one app from each cluster to compare



against all other apps in the cluster. This resulted in a total of 25,434 pairs which
it took DNADroid 83 hours to analyze.

DNADroid assigns each app in a pair a coverage value which indicates how
much of the app’s PDG nodes appear in the other app. To assess AnDarwin, we
use the maximum of these two coverage values for each pair. DNADroid found
that 96.28% of the clusters had 70% of the max coverage values over 50%(equal
to the Jaccard Index used by AnDarwin) and 95.50% of the clusters had 90%
of them over the threshold. Using the 70% criteria, this gives full app similarity
detection a false positive rate of just 3.72% at the cluster level.

We do not attempt to measure the false negative rate of AnDarwin as there
is no feasible way to find ground truth, e.g., all the similar apps in our collection
of 265,359 apps.

Partial App Similarity Detection Unfortunately, DNADroid and its cov-
erage values are inappropriate for evaluating the accuracy of partial app simi-
larity detection. DNADroid considers apps as a whole and calculates similarity
based on the matched portion to the size of the whole app. If DNADroid were
used to verifying partial app similarity detection, we would incorrectly report a
false positive in the case where two apps share a part of their code but not a
significant (over the DNADroid coverage threshold of 50%) amount of their total
code. Again, due to the lack of ground truth, we do not attempt to measure the
false positive or false negative rate of partial app similarity detection.

6 Findings

6.1 Clone Victims

One use case of AnDarwin is finding clones on a large scale. Clones are different
apps (not different versions of the same app) that are highly similar but have
different owners. We determine ownership using two identifiers associated with
each app we crawl: 1) the developer account name plus the market name and
2) the public key fingerprint of the private key that digitally signed the app.
Assuming that a developer’s account and her private key are not compromised,
no two apps with different owners can share both of these identifiers. Therefore,
we assume apps have different owners if they do not share either identifier.

Definitively counting the number of clones is non-trivial as it requires knowing
which apps are the originals. Instead, we estimate the number of apps that are
the victims of cloning. Each app belongs to at most one cluster and each app
in a cluster is similar to at least one other app in the cluster. Therefore, each
cluster is a family of similar apps which must have a victim app, the original
app, even if we have not crawled the victim app. Then, the number of victims
is at least equal to the number of clusters where there is more than one owner,
as determined by the two identifiers above. Using just the full app similarity
clusters, which were vetted in Section 5.7, AnDarwin found that at least 4,295
apps have been the victims of cloning.



6.2 Rebranded Apps

Using full app similarity detection, AnDarwin found 764 clusters containing more
than 25 apps. Our investigation of these large clusters found a trend that some
developers rebrand their apps to cater to different markets. The idea of rebrand-
ing is not a new concept – it has been widely used on the web (e.g. WordPress
blogs). For example, one cluster consists of weather apps each targeting a dif-
ferent city. Similarly, we found clusters for news, trivia, books, radio stations,
wallpapers, puzzles, product updates and even mobile banking apps. Some of
these rebrandings are as trivial as just swapping the embedded images.

To estimate the number of rebranded apps, we use the owner identifiers
described in Section 6.1 to map each app to an owner. If at least 25 apps in a
cluster have the same owner, we consider those apps to be rebranded. Using this
metric, 599 of the 764 clusters with at least 25 apps include rebranded apps. In
total, we found 36,106 rebranded apps.

A surprising example of app rebranding is a cluster of mobile banking apps.
This cluster contains 109 distinct apps that share a common package name
prefix. Searching by this prefix, we found 175 apps on the Google Play Store,
which includes 80 of the 109 apps present in our clusters. Interestingly, several
of the apps were available on both 1Mobile and Play, and two of the apps are
signed by a different key than the other 107 apps.

6.3 New Variants of Known Malware

Once malware has been discovered, it is important to use this knowledge to
identify variants of the malware in an automated way. We hypothesize that by
analyzing the clusters produced by AnDarwin containing known malware we
may automatically discover new variants of those malware. Using the malware
dataset from [35], we found 333 apps were clustered with known malware and
were not included in the malware dataset.

We uploaded these 333 apps to VirusTotal [4], a website for running a suite
of anti-virus software on files. It recognized 136 as malware, with 88 never hav-
ing been uploaded to VirusTotal before. Among the 136 malware, approximately
20 are variants of the DroidKungFu family [24]. Approximately another 20 are
identified as belonging to various malware families described in [35]. The remain-
ing apps are identified as adware that contains either AirPush or AdWo. These
advertising libraries show ads even when the app is not running [31] and have
been known to have misleading ad campaigns [32]. These results demonstrate
AnDarwin’s utility for discovering new variants of malware.

6.4 New Malware Detection in Clones

Zhou et al. [35] found that 86.0% of their malware samples were repackaged ver-
sions of legitimate apps with additional malicious code, aiming to increase their
chances of being installed by providing useful functionality. Since malware often
requires many more permissions than regular apps, we hypothesize that we may



detect new malware by searching for apps that require more permissions than
the others in the same cluster. Intuitively, apps that are clustered together have
similar code and for some to require more permissions is suspicious. To inves-
tigate this hypothesis, we searched for apps that require excessive permissions
as follows (using clusters from both full and partial app similarity detection).
First, for each cluster, we compute the union of the permissions required by
all its apps. Then, we identify apps that require at least 85% of the permission
union. Finally, if the apps identified in the previous step are fewer than 15% of
the total apps in the cluster, we mark these apps as suspicious. Using this crite-
rion, we found 608 suspicious apps. 16 of these apps overlap with the malware
dataset from [35] and 1 overlaps with the previous section.

As before, we uploaded these apps to VirusTotal and it identified 243 as
malware. Furthermore, 169 of these had never been seen before. This repre-
sents a lower bound on the actual number of malware in the suspicious apps as
we did not investigate the suspicious apps for new malware which may not be
identified by VirusTotal. The identified malware is from known families such as
DroidKungFu [24], BaseBridge [19] and Geinimi [28]. By searching for apps with
excessive permissions, AnDarwin identified known malware as suspicious with-
out prior knowledge of their existence. This result demonstrates that AnDarwin
is an effective tool for identifying suspicious apps for more detailed analysis.

7 Discussion

7.1 Adversarial Response

A specific use case of AnDarwin is to find plagiarized apps in a scalable manner.
Based on our implementation details, plagiarists may attempt to evade detection
using obfuscation. Some of these obfuscation techniques are effective against
AnDarwin, however, they are difficult to perform automatically.

Futile Obfuscations AnDarwin is robust against all transformations that
do not alter methods’ PDGs, which is the basis for our similarity detection. This
includes, but is not limited to, (1) syntactical changes such as renaming pack-
ages, classes, methods and variables, (2) refactoring changes such as combining
or splitting classes and moving methods between classes, and (3) method re-
structuring such as splitting methods with multiple connected components into
separate methods and reordering code segments within a method that are data
and control independent.

AnDarwin is also robust against code addition. A plagiarist may add a few
methods or a new library to their plagiarized app. Since the original and the
plagiarized app still share a core of similar code, AnDarwin would still detect
them using partial app similarity detection.

Potentially Effective Obfuscations AnDarwin is less robust against ob-
fuscations that dramatically alter methods’ PDGs. For example, plagiarists may
be able to alter app methods to mimic the semantic vectors of library code or
use PDG node splitting to increase the distance between the original semantic



vector and the plagiarized one. Additionally, plagiarists could artificially join
connected components within methods using dead code to increase the distance
between the semantic vectors or split each connected component into a set of
very small methods that are too small to be considered by AnDarwin. Ultimately,
plagiarists could reimplement the original app.

The subversions listed above are difficult for most similarity detection tools
to detect, including AnDarwin. Fortunately, all these subversions require sub-
stantial effort on the part of the plagiarists as it would be difficult for tools to
do this automatically. Further, such a tool would require intimate knowledge of
the targeted app to ensure that the plagiarized app still functions correctly.

7.2 Probability of a False Positive

In this section, we examine the probability that two dissimilar apps are clustered
together by full app similarity detection. Consider two similar apps that share n
features. Assuming that features are independent, which is the case when library
code is excluded, then:

Pr[share n features] = Pr[share feature]n = Pr[share close SV]n (4)

Where “close SV” means two semantic vectors that will be clustered together
by LSH or are identical. Now, consider the case where two apps are not similar,
but are clustered together anyway. This means they must still agree on n features,
where each of these n agreements is a false positive which we shall refer to as
a feature collision. Feature collisions can occur in two ways: (1) semantic vector
collision and (2) non-code clone semantic blocks generating “close” semantic
vectors. Fortunately, even if the probability of a feature collision is very high,
there has to be n feature collisions in order to have a false positive. We have found
that, on average, apps contain 148 features after excluding common features.
Therefore, in order for two unrelated apps to have a Jaccard Index above our
threshold of 50%, there must be approximately 100 feature collisions. Even if
the probability of a feature collision was 95%, the probability of a false positive
with this many features would be less than one percent.

8 Related Work

There have been several approaches proposed recently to find similar Android
apps. Closest to AnDarwin is [34]. They use a heuristic based on how tightly
classes within the app are coupled (using its call graph) to split apps into pri-
mary and rider sections. Then, they represent the primary section as vectors
which they cluster in linearithmic time. This heuristic allows [34] to detect some
partial app similarity, however, it would be easy for a plagiarist to circumvent
these heuristics by adding dead code to the call graph to artificially couple un-
related classes. In contrast, AnDarwin’s partial app similarity does not rely on
heuristics. Additionally, while AnDarwin’s features represent the functionality



of methods of an app and are thus difficult to change, [34]’s features include the
app’s permissions, the Android API calls used and several other features, all of
which may be easily changed. [34] can also detect commonly injected code by
clustering the rider sections, however, they use the same features and heuris-
tics which are easily changed and circumvented, respectively. All other related
work described below compares applications pairwise, yielding significant scal-
ability problems. Additionally, neither [34] nor any other related work provides
the ability to robustly find partial app similarity, as AnDarwin does.

Androguard [6] currently supports two methods of similarity detection: com-
paring apps using the SHA256 hashes of methods and basic blocks and using
the normal compression distance of pairs of methods between apps. DEXCD [18]
detects Android clones by comparing similarities in streams of tokens from An-
droid DEX files. DroidMOSS [33] computes a series of fingerprints for each app
based on the fuzzy hashes of consecutive opcodes, ignoring operands. Apps are
then compared pairwise for repackaging by calculating the edit distance between
the overall fingerprint of each app. DNADroid [16] compares apps based on the
PDGs of their methods. Juxtapp [22] disassembles each app and creates k-grams
over the opcodes inside the app’s methods. Next it hashes the k-grams to create
features which are used to represent each app and then computes similarity by
comparing sets of these features between pairs of apps. All of these approaches
except DNADroid are vulnerable to plagiarism that involves moderate amounts
of adding or modifying statements, though DNADroid’s comparison is compu-
tationally expensive.

9 Conclusion

We present AnDarwin, a tool for finding apps with similar code on a large
scale. In contrast with earlier approaches, AnDarwin does not compare apps
pairwise, drastically increasing its scalability. AnDarwin accomplishes this using
two stages of clustering: LSH to group semantic vectors into features and Min-
Hash to detect apps with similar feature sets (full app) and features that often
occur together (partial app). We evaluated AnDarwin on 265,359 apps crawled
from 17 markets. AnDarwin identified at least 4,295 apps that have been cloned
and an additional 36,106 apps that are rebranded. From the clusters discovered
by AnDarwin, we found 88 new variants of malware and could have discovered
169 new malware. We also presented a cluster post-processing methodology for
finding apps that have had similar code injected. AnDarwin has a low false pos-
itive rate — only 3.72% for full app similarity detection. Our findings indicate
that AnDarwin is an effective tool to identify rebranded and cloned apps and
thus could be used to improve the health of the market ecosystem.
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