
FIREMAN: A Toolkit for FIREwall Modeling and ANalysis

Lihua Yuan
lyuan@ece.ucdavis.edu

Jianning Mai
jnmai@ece.ucdavis.edu

Zhendong Su
su@cs.ucdavis.edu

Hao Chen
hchen@cs.ucdavis.edu

Chen-Nee Chuah
chuah@ece.ucdavis.edu

Prasant Mohapatra
prasant@cs.ucdavis.edu

University of California, Davis

Abstract

Security concerns are becoming increasingly critical in
networked systems. Firewalls provide important defense for
network security. However, misconfigurations in firewalls
are very common and significantly weaken the desired se-
curity. This paper introduces FIREMAN, a static analysis
toolkit for firewall modeling and analysis. By treating fire-
wall configurations as specialized programs, FIREMAN ap-
plies static analysis techniques to check misconfigurations,
such as policy violations, inconsistencies, and inefficien-
cies, in individual firewalls as well as among distributed
firewalls. FIREMAN performs symbolic model checking of
the firewall configurations for all possible IP packets and
along all possible data paths. It is both sound and complete
because of the finite state nature of firewall configurations.
FIREMAN is implemented by modeling firewall rules using
binary decision diagrams (BDDs), which have been used
successfully in hardware verification and model checking.
We have experimented with FIREMAN and used it to un-
cover several real misconfigurations in enterprise networks,
some of which have been subsequently confirmed and cor-
rected by the administrators of these networks.

1. Introduction

Firewall is a widely deployed mechanism for improving
the security of enterprise networks. However, configuring
a firewall is daunting and error-prone even for an experi-
enced administrator. As a result, misconfigurations in fire-
walls are common and serious. In examining 37 firewalls in
production enterprise networks in 2004, Wool found that
all the firewalls were misconfigured and vulnerable, and
that all but one firewall were misconfigured at multiple
places [31]. As another evidence, Firewall Wizards Secu-
rity Mailing List [15] has discussed many real firewall mis-

configurations. The wide and prolonged spread of worms,
such as Blaster and Sapphire, demonstrated that many fire-
walls were misconfigured, because “well-configured fire-
walls could have easily blocked them” [31].

The following script illustrates how easily firewall mis-
configurations can happen:

accept tcp 192.168.0.0/16 any
deny tcp 192.168.1.0/24 any 3127

The second rule is configured to deny all the outbound traf-
fic to a known backdoor TCP port for the MyDoom.A worm,
and is correct by itself. However, if a firewall examines
each rule sequentially and accepts (or rejects) a packet im-
mediately when the packet is matched to a rule, a preced-
ing rule may shadow subsequent rules matching some com-
mon packets. The first rule, which accepts all the outbound
traffic from the local network 192.168.0.0/16, shadows the
second rule and leaves the hole wide open.

Correctly configuring firewall rules has never been an
easy task. In 1992, Chapman [6] discussed many problems
that make securely configuring packet filtering a daunting
task. Some of them, e.g., omission of port numbers in
filtering rules, have been addressed by firewall vendors.
However, many others are yet to be addressed successfully.
Since firewall rules are written in platform-specific, low-
level languages, it is difficult to analyze whether these rules
have implemented a network’s high-level security policies
accurately. Particularly, it is difficult to analyze the inter-
actions among a large number of rules. Moreover, when
large enterprises deploy firewalls on multiple network com-
ponents, due to dynamic routing, a packet from the same
source to the same destination may be examined by a dif-
ferent set of firewalls at different times. It is even more
difficult to reason whether all these sets of firewalls satisfy
the end-to-end security policies of the enterprise.

We propose to use static analysis to discover firewall
misconfigurations. Static analysis has been applied success-



fully to discover security and reliability bugs in large pro-
grams [7,11], where it examines the control-flow and/or the
data-flow to determine if a program satisfies user-specified
properties without running the program. A firewall config-
uration is a specialized program, so it is natural to apply
static analysis to check firewall rules. Compared to test-
ing, static analysis has three major advantages: (1) it can
proactively discover and remove serious vulnerabilities be-
fore firewalls are deployed; (2) it can discover all the in-
stances of many known types of misconfigurations, because
it can exhaustively examine every path in the firewall effi-
ciently; (3) when multiple firewalls are deployed in a com-
plex network topology and are subject to dynamic routing
configurations, static analysis can discover vulnerabilities
resulting from the interaction among these firewalls with-
out the need to configure these routers.

Testing has been proposed to discover firewall miscon-
figurations [3, 21, 27, 30], where a tool generates packets
and examines whether a firewall processes these packets
as intended. However, due to the enormous address space
of packets, one cannot test all possible packets practically.
Al-Shaer and Hamed describe common pairwise inconsis-
tencies in firewall rules and propose an algorithm to detect
these inconsistencise [1, 2]. Our work is inspired by them,
but our tool can detect a much wider class of misconfig-
urations, such as inconsistencies and inefficiencies among
multiple rules and security policy violations, and miscon-
figurations due to the interaction among multiple firewalls.
To the best of our knowledge, our work is the first to apply
rigorous static analysis techniques to real firewalls and to
have found real misconfigurations.

We have implemented our approach in the tool FIRE-
MAN — FIREwall Modeling and ANalysis. FIREMAN
discovers two classes of misconfigurations: (1) violations
of user-specified security policies — For example, allow-
ing incoming packets to reach the TCP port 80 on an in-
ternal host violates the security policies of most networks;
(2) inconsistencies and inefficiency among firewall rules,
which indicate errors or warnings regardless of the security
policies — For example, a rule intended to reject a packet
is shadowed by a preceding rule that accepts the packet.
FIREMAN can discover problems not only in individual
firewalls but also in a distributed set of firewalls that col-
lectively violate a security policy.

We summarize our major contributions as follows:

1. We give a comprehensive classification of firewall mis-
configurations for both single firewalls and distributed
firewalls (Section 3);

2. We present a static analysis algorithm to examine fire-
wall rules for policy violations and inconsistencies
at different levels: intra-firewall, inter-firewall, and
cross-path (Section 4);

3. We provide an implementation of our algorithm in the
tool FIREMAN based on binary decision diagrams
(BDDs). Using FIREMAN, we have discovered pre-
viously unknown misconfigurations in production fire-
walls. (Section 5)

The rest of this paper is organized as follows. Section 2
describes the operational model of firewalls, which lays the
foundation for static analysis and error detection. Section 3
classifies misconfigurations into policy violations, incon-
sistencies, and inefficiencies. Section 4 presents our static
analysis algorithm for checking firewall misconfigurations.
Section 5 describes our implementation and evaluation of
FIREMAN, and the previously unknown misconfigurations
that FIREMAN discovered in production firewalls. Sec-
tion 6 reviews related work and Section 7 concludes this
paper.

2. Modeling Firewalls

2.1. Models for Individual Firewalls

Firewalls from different vendors may vary significantly
in terms of configuration languages, rule organizations and
interaction between lists or chains. However, a firewall gen-
erally consists of a few interfaces and can be configured
with several access control lists (ACLs). Both the ingress
and egress of an interface can be associated with an ACL.
If an ACL is associated to the ingress, filtering is performed
when packets arrive at the interface. Similarly, if an ACL is
associated to the egress, filtering will be performed before
packets leave the interface.

Each ACL consists of a list of rules. Individual rules
can be interpreted in the form 〈P, action〉, where P is a
predicate describing what packets are matched by this rule
and action describing the corresponding action performed
on the matched packets. Packets not matched by the cur-
rent rule will be forwarded to the next rule until a match is
found or the end of the ACL is reached. At the end of an
ACL, the default action will be applied. This is similar to
an “if-elif-else” construct in most programming languages.
Implicit rules vary on different firewall products. On Cisco
PIX firewall and routers, the implicit rule at the end of an
ACL denies everything. On Linux Netfilter, the implicit rule
is defined by the policy of the chain.

Note that what we have described is the so-called “first-
matching” ACLs. Some firewalls e.g. BSD Packet Filter,
use last-matching ACLs, in which the decision applied to
a packet is determined by the last matched rule. An ACL
using last-matching can be converted to first-matching form
by re-ordering. In this paper, we assume every ACL uses
first-matching.

Traditional stateless firewalls treat each packet in isola-
tion and check every packet against the ACL, which is com-



putation intensive and often the performance bottleneck.
Modern stateful firewalls can monitor TCP 3-way hand-
shake and build an entry in the state table. If the firewall
matches a packet to an ESTABLISHED flow, it can accept
it without checking the ACL, thus significantly reduce the
computation overhead. However, the ACLs still determine
whether a state can be established in the first place. There-
fore, the correct configuration of ACLs is important even
for stateful firewalls.

Format Action for Matched Packets
〈P, accept〉 accept the packet
〈P, deny〉 deny the packet
〈P, chain Y〉 goto user chain “Y”
〈P, return〉 resume calling chain

Table 1: Firewall rule formats.

Depending on the available “actions” and rule execution
logic, we classify firewalls into two typical models: (1) the
simple list model, which is represented by Cisco PIX fire-
wall and router ACLs and (2) the complex chain model,
which is represented by Linux Netfilter. Firewalls using
the simple list model allow only “accept” and “deny” ac-
tions. The complex chain model, in addition to “accept”
and “deny”, also supports calling upon another user-defined
chain or “return.” We use rule graphs to model the control-
flow of ACLs. As can be seen in Section 4.1, the rule graph
of ACLs using the simple list model is just itself. The rule
graphs for ACLs using the complex chain model are similar
to control-flow graphs in programming languages.

<X1, accept>

<X2, accept>

<Xk, drop>

<Xn, accept>

implicit drop all

start

(a) Simple List
Model

Built−In Chain X User−Chain Y

start

X 1 drop

X 2 return

X k

policy action

Chain Y

X k+1

Y 1

accept

X n drop

accept

Y 2 return

Y k accept

Y n drop

end

(b) Complex Chain Model

Figure 1: Model of individual firewalls.

2.1.1 Simple List Model

Figure 1a depicts the simple list model of an ACL. Since
only “accept” or “deny” actions (first two forms shown in
Table 1) are allowed, any packet will traverse the list in or-
der until a decision is made on each packet. An implicit
rule at the end of the list will match the rest of the packets
and apply the default action to these remaining packets. We
make the implicit rule explicit by appending them to the end
of the list.

2.1.2 Complex Chain Model

The Linux-based firewall implementation, Netfilter [29],
has a more complicated grammar for the rules, which may
take any of the four forms shown in Table 1. In addition to
“accept” or “deny,” the action field can call upon another
user-defined chain for further processing. The user-defined
chain can also choose to “return” to the next rule of the
calling chain. One can view the action of calling a user-
defined chain as a function call and the corresponding “re-
turn” as a function return. This feature, similar to the use
of functions in programming languages, facilitates reusable
configurations and improves firewall efficiency.

Figure 1b depicts a typical firewall using the chain-based
model. The built-in chain “X”, which is the starting point,
can call upon a user-defined chain “Y” for further process-
ing. Chain “Y” can either explicitly return to the calling
chain “X” when certain predicate is satisfied or the end of
chain “Y” is reached. Other chains may call chain “Y” as
well.

2.2. Network of Firewalls

In a typical network environment, multiple firewalls are
often deployed across the network in a distributed fashion.
Although firewalls are configured independently, a network
depends on the correct configuration of all related firewalls
to achieve the desired end-to-end security behavior. By
“end-to-end security behavior,” we refer to the decision on
whether a packet should be allowed to reach a protected net-
work. It can be from one side of a Virtual Private Network
(VPN) to another side of the VPN. It can also be from the
untrusted Internet to the trusted secured intranet.

Take Figure 2 for example. An enterprise network is con-
nected to the Internet through two different ISPs and fire-
walls W and X are deployed to guard the Demilitarized
Zone (DMZ). Services such as Web and email that must
allow public access are more vulnerable (hence less trust-
worthy) and normally put in the DMZ. Further inside, the
internal network is guarded by additional firewalls Y and
Z. In general, firewalls Y and Z will have a tighter security
policy. Important applications and sensitive data are often



W0

X1

Y0

X0

Z0Internal Network

Z

X

Y

Internet

ISP B

ISP A

eth1

eth1

eth0

eth0eth0

eth1

eth0

W

DMZ

eth1

eth2

eth2

Figure 2: Network of firewalls.

running inside the internal trusted networks, and only lim-
ited accesses are allowed.

Since there exists multiple paths from the Internet to the
internal network, the filtering action taken depends on the
path a packet actually traverses. Although a packet does not
actually choose its data path, the dynamics of the underlying
routing plane may assign different paths for the same set of
packets at different time. Ideally, firewalls should perform
consistently regardless of the underlying routing decisions.
To guarantee reachability of desired packets, the adminis-
trator must ensure that none of the firewalls on the path de-
nies them. On the other hand, the administrator must ensure
that no potential path allows prohibited packets to access the
protected network.

3. Misconfigurations

A firewall does not provide security in its own right. The
way the firewall is configured determines the overall secu-
rity effectiveness. In this section, we discuss firewall mis-
configurations and classify them. Section 3.1 discusses pol-
icy violations, which can be checked against well-defined
policies. Not all misconfigurations can be caught by policy
definitions. In Section 3.2, we discuss inconsistent config-
urations and how to use these to infer misconfigurations.
Section 3.3 discusses some inefficient configurations that
are not errors, but may still adversely affect the firewall per-
formance.

The sample scripts used in this paper are written in the
format of: <action, protocol, src ip, src port, dst ip, dst
port> where src ip and src port denote respectively source
IP address and source port number. Similarly, dst ip and

dst port refer to destination IP address and port number re-
spectively. Both source and destination ports are optional.
The IP addresses used in this paper are written in private IP
address blocks on purpose only to avoid exposing address
information.

3.1. Policy Violations

Administrators often have a high-level policy describing
what should be prohibited (blacklists) or ensured (whitelist)
access to the network. It is crucial that firewall configura-
tions exactly reflect the security policy. Any nonconform-
ing configurations may result in undesired blocking, unau-
thorized access, or even the potential for an unauthorized
person to alter security configurations. Therefore, a firewall
must be verified against the policy.

Although policy definition is subjective to individual in-
stitutions, the network security community has some well-
understood guidelines on firewall configurations. From an
external auditor’s point of view, Wool [31] studied 37 con-
figurations of Check Point’s FireWall-1 product and noticed
12 common firewall configuration errors. Among them, al-
lowing “any” destination on outbound rules, “any” service
on inbound rules happens to 90% of the configurations. Al-
lowing NetBIOS and Portmapper/Remote Procedure Call
service is also a common class of errors that exposes the
network to very insecure services. A major number of fire-
walls are not configured correctly to provide proper protec-
tion. Approximately 46% of the firewalls are not configured
with a stealth rule to hide itself, and above 70% of them are
open to insecure management protocols or external man-
agement machines. All these “errors” affect the security of
the entire network and must be carefully checked.

Another source of input for the blacklist is the bogon
list [9], which describes IP blocks or port numbers not cur-
rently allocated by IANA and RIRs plus those reserved for
private or special use. Attackers often use these IP blocks
or ports for DoS attacks, spamming or hacking activities.
Most firewall administrators would want to ensure that traf-
fic from/to these IP blocks or port numbers are neither ex-
plicitly nor implicitly accepted to reach their networks.

3.2. Inconsistencies

Firewall configurations represent the administrator’s in-
tention, which should be consistent. Therefore, inconsisten-
cies are often good indicators of misconfigurations. Unlike
policy violations, for which there are well-defined refer-
ences (blacklists and whitelists) to compare against, check-
ing for inconsistencies is solely based on the configuration
files and does not need external input. Inconsistencies hap-
pen at three levels: intra-firewall, inter-firewall, and cross-
path.



3.2.1 Intra-firewall Inconsistencies

1. deny tcp 10.1.1.0/25 any
2. accept udp any 192.168.1.0/24
3. deny tcp 10.1.1.128/25 any
4. deny udp 172.16.1.0/24 192.168.1.0/24
5. accept tcp 10.1.1.0/24 any
6. deny udp 10.1.1.0/24 192.168.0.0/16
7. accept udp 172.16.1.0/24 any

Table 2: Sample script 1.

1. Shadowing: refers to the case where all the pack-
ets one rule intends to deny (accept) have been ac-
cepted (denied) by preceding rules. This often re-
veals a misconfiguration and is considered an “error.”
A rule can be shadowed by one preceding rule that
matches a superset of the packets. In Table 2, rule
4 is shadowed by rule 2 because every UDP packet
from 172.16.1.0/24 to 192.168.1.0/24 is accepted by
rule 2, which matches any UDP packets destined to
192.168.1.0/24. Alternatively, a rule may also be
shadowed by a set of rules collectively. For example,
rule 5 is shadowed by the combination of rules 1 and
3. Rule 1 denies TCP packets from 10.1.1.0/25, and
rule 3 denies TCP packets from 10.1.1.128/25. Col-
lectively, they deny all TCP packets from 10.1.1.0/24,
which are what rule 5 intends to accept.

2. Generalization: refers to the case where a subset of
the packets matched to this rule has been excluded by
preceding rules. It is the opposite of shadowing and
happens when a preceding rule matches a subset of this
rule but takes a different action. In Table 2, rule 7 is
a generalization of rule 4 because UDP packets from
172.16.1.0/24 and to 192.168.1.0/24 form a subset
of UDP packets from 172.16.1.0/24 (rule 7), yet the
decision for the former is different from the later.

3. Correlation: refers to the case where the current rule
intersects with preceding rules but specifies a differ-
ent action. The predicates1 of these correlated rules
intersect, but are not related by the superset or subset
relations. The decision for packets in the intersection
will rely on the order of the rules. Rules 2 and 6 are
correlated with each other. The intersection of them is
“udp 10.1.1.0/24 192.168.1.0/24,” and the preceding
rule determines the fate of these packets.

Generalization or correlation may not be an error but a
commonly used technique to exclude part of a larger set

1In this context, we view a predicate as both a set of matching packets
and a logical predicate specifying this particular set. We use these two
interpretations interchangeably.

from certain action. Proper use of these techniques could
result in fewer number of rules. However, these techniques
should be used very consciously. ACLs with generaliza-
tions or correlations can be ambiguous and difficult to main-
tain. If a preceding rule is deleted, the action for some pack-
ets in the intersection will change. On a large and evolv-
ing list of rules, it may be difficult to realize all the related
generalizations and correlations manually. Without a pri-
ori knowledge about the administrators intention, we cannot
concretely tell whether this is a misconfiguration. There-
fore, we classify them as “warnings.”

3.2.2 Inter-Firewall Inconsistencies

X0 1. deny tcp any 10.1.0.0/16
2. accept tcp any any

X1 1 accept any any any
Z0 1. deny tcp any 10.0.0.0/8

2. accept tcp any any
3. deny udp any 192.168.0.0/16

W0 1. deny tcp any 10.0.0.0/8
2. accept tcp any any
3. deny udp any 192.168.0.0/16

Y 0 1. accept tcp any any
2. accept udp 172.16.0.0/16 192.168.0.0/16

Table 3: Sample script 2.

Inconsistencies among different firewalls might not be
errors. When a few firewalls are chained together, a packet
has to survive the filtering action of all the firewalls on its
path to reach its destination. Therefore, a downstream fire-
wall can often rely on upstream firewall to achieve policy
conformance and can be configured more loosely. On the
other hand, a downstream firewall at the inner perimeter
often needs a tighter security policy. Consider the topol-
ogy in Figure 2 with the configuration scripts in Table 3,
packets destined to 10.0.0.0/8 but not to 10.1.0.0/16, e.g.,
10.2.0.0/16, will be accepted by X0 (rule 2) and therefore
have access to the DMZ. However, they are denied by Z0
(rule 1) to protect the internal network.

Without input from the administrator, the only inter-
firewall inconsistency we, as tool writer, can classify as
an “error” is shadowed accept rules. By explicitly allow-
ing certain predicates, we infer that the administrator in-
tends to receive these packets. For example, in Table 3,
rule 2 of Y 0 accepts UDP packets from 172.16.0.0/16 to
192.168.0.0/16, yet these packets are filtered by W0 (rule
3) at the upstream. To the downstream users, this may man-
ifest as a connectivity problem.



3.2.3 Cross-Path Inconsistencies

As discussed in Section 2.2, there could exists multiple
data paths from the Internet to the same protected network.
Cross-path inconsistency refers to the case where some
packets denied on one path are accepted through another
path. It depends on the underlying routing table whether
these anomalies are exploitable. However, attacks that af-
fect routing protocols do exists and an attacker needs to
succeed only once. Cross-path inconsistencies may also be
taken for intermittently disrupted services. Packets origi-
nally reaching the network may switch over to another path
that denies such packets because of routing changes.

Consider again the topology in Figure 2 with the con-
figuration scripts in Table 3, paths X → dmz → Z and
W → dmz → Y both deny “udp any 192.168.0.0/16,”
which probably should not be allowed to reach the internal
network. Yet one may also notice that these packets can leak
into the internal network through the path X → dmz → Y .
This path may not always be available since the actual path
is determined by the underlying routing protocol. However,
routing is designed to be adaptive to link failures and heavy
load. In addition, it is relatively easy to inject false routing
messages [8]. A safe firewall configuration should not rely
on that, and should assume that all paths are topologically
possible.

Checking cross-path inconsistencies based on active test-
ing is very difficult. It may disrupt the production network
since routing tables must be altered to test different sce-
narios. Manually auditing such anomalies is also difficult.
Even for a network of moderate size, the number of possible
paths between two nodes can be large.

3.3. Inefficiency

A firewall needs to inspect a huge number of packets.
Therefore, it is difficult not to be concerned with firewall
efficiency. A lot of work has been dedicated to improve the
firewall speed through better hardware and software designs
and implementations. To administrators, the most practical
way to improve firewall efficiency is through better config-
uration of the firewall.

An efficient firewall configuration should require the
minimum number of rules, use the least amount of mem-
ory, and incur the least amount of computational load while
achieving the same filtering goals. Although inefficiency
does not directly expose a vulnerability, a faster and more
efficient firewall will encourage firewall deployment and
therefore make the network safer. In addition, the efficiency
of a firewall can determine a network’s responsiveness to
Denial-of-Service (DoS) attacks.

1. accept tcp 192.168.1.1/32 172.16.1.1/32
2. accept tcp 10.0.0.0/8 any
3. accept tcp 10.2.1.0/24 any
4. deny tcp any any
5. deny udp 10.1.1.0/26 any
6. deny udp 10.1.1.64/26 any
7. deny udp 10.1.1.128/26 any
8. deny udp 10.1.1.192/26 any
9. deny udp any

Table 4: Sample script 3.

3.3.1 Redundancies

Redundancy refers to the case where if a rule is removed,
the firewall does not change its action on any packets. Re-
ducing redundancy can reduce the total number of rules, and
consequently reduce memory consumption and packet clas-
sification time [24].

A rule can be considered redundant if the preceding rules
have matched a superset of this rule and specifies the same
action. For example, in Table 4, rule 3 is redundant since
rule 2 has already specified the same action for all packets
that match rule 3. A rule can also be made redundant by
the subsequent rules. Rules 5, 6, 7 and 8 are all redundant
because if we remove them, these packets are still going to
be denied by rule 9. In fact, for firewalls with a “deny all”
policy implicitly appended to the end of an ACL, we do not
need rules 4− 9 altogether.

Redundant accept or deny rules are “errors” within the
same firewall. This is, however, not true in distributed fire-
walls. A packet must be accepted on all the firewalls on
its path to reach the destination. Redundant accept rules on
different firewalls, such as the second rules of X0 and Z0
in Table 3, are both necessary. Redundant deny rules on
different firewalls are unnecessary, but are often considered
good practice to enhance security. This redundancy pro-
vides an additional line of defense if the outer-perimeter is
compromised.

3.3.2 Verbosities

Verbosity refers to the case where a set of rules may be sum-
marized into a smaller number of rules. For example, rules
5, 6, 7, and 8 in Table 4 can be summarized into a single
rule “deny udp 10.1.1.0/24 any.” Verbosity often happens
in practice when administrators build up the filter list over
a period of time. Such cases are frequently observed in the
real configurations we have collected.



4. Analysis Framework of FIREMAN

In this section, we present the framework of FIREMAN
that consists of two phases. First, FIREMAN parses a fire-
wall configuration into an compact representation based on
the operational semantics of a firewall. An ACL is trans-
lated into a rule graph and distributed firewalls, with ad-
ditional information about network topology, are translated
into an ACL-tree. We then check for anomalous configura-
tions based on the rule graph and ACL-tree.

4.1. Parsing and Flow Graph Analysis

The purpose of this phase is twofold. First, a produc-
tion network may consist of firewall products from differ-
ent vendors, each with their own configuration languages
and operation models. Our parser translates firewall config-
uration files originally written in their own languages into
a uniform internal representation. Second, and more im-
portantly, based on the configuration, network topology and
routing information, we perform control-flow analysis to
find all possible rule paths packets may go through. Each
path represents a list of filtering operations packets may re-
ceive.

4.1.1 Rule Graph of Individual ACLs

For firewalls using the simple list model, there is no possi-
bility of branching and the rule graph is the same list. For
firewalls using the complex chain model, branching can be
caused by calling “chain Y” and “return” from it. To handle
such branching, we introduce 〈P, pass〉 to indicate that only
packets matching this predicate will remain in this path. For
a 〈P, chain Y〉 rule, we insert 〈P, pass〉 before going to
“chain Y”. We also insert 〈¬P, pass〉 for the path that does
not jump to “chain Y”. Figure 3 visualizes all the four pos-
sible rule paths the ACL of Figure 1b could have.

Recursive function calls should be avoided since this
could create loops. Loops can be easily prevented by en-
suring that no rules appear twice on a rule path. Earlier
versions of Netfilter deny a packet when it is found to be
in a loop. But it is probably better to avoid this problem at
configuration time. After eliminating loops, the rule graph
can be constructed by linearization.

We denote the input to an ACL as I , which is the collec-
tion of packets that can possibly arrive at this access list. For
an ACL using the complex chain model, the rule graph may
give n rule paths from the input to the output. For each of
the n rule paths, we traverse the path to collect information.

For the jth rule 〈Pj , actionj〉 in this rule path, we define
the current state as 〈Aj , Dj , Fj〉, where Aj and Dj denote
the network traffic accepted and denied before the jth rule,
respectively; Fj denotes the set of packets that have been

rule path 1 rule path 2 rule path 3 rule path 4

input

<X1, drop>

<X2, pass>

policy action

input

<X1, drop>

<not X2, pass>

<Xk, pass>

<Y1, accept>

<Y2, pass>

<Xk+1, accept>

<Xn, drop>

policy action

input

<X1,drop>

<not X2, pass>

<Xk, pass>

<Y1, accept>

<not Y2, pass>

<Yk, accept>

<Yn, drop>

<Xk+1, accept>

<Xn, drop>

policy action

input

<X1, drop>

<not X2, pass>

<not Xk, pass>

<Xk+1, accept>

<Xn, drop>

policy action

Figure 3: Rule graph of the ACL in Figure 1b.

diverted to other data paths. We use Rj to denote the col-
lection of the remaining traffic that can possibly arrive at the
jth rule. Rj can always be found using the input I and the
current state information, as shown in Equation 1.

Rj = I ∩ ¬(Aj ∪Dj ∪ Fj) (1)

For the first rule of an ACL, we have the initial value of
A1 = D1 = F1 = ∅ and R1 = I . After reading each rule,
we update the state according to the state transformation
defined in Equation 2 until the end of each rule path. A state
transform “Si, r ` Si+1” means if we read in rule r at state
Si, we will result in state Si+1. Note that R is automatically
updated when < A,D,F > changes.


〈A,D, F 〉, 〈P, accept〉 ` 〈A ∪ (R ∩ P ), D, F 〉
〈A,D, F 〉, 〈P, deny〉 ` 〈A, D ∪ (R ∩ P ), F 〉
〈A,D, F 〉, 〈P, pass〉 ` 〈A, D, F ∪ (R ∩ ¬P )〉

(2)

At the end of rule path pathi, we can determine the pack-
ets accepted and denied through this path to be Apathi and
Dpathi , respectively. Since any packet can take only one
path, packets accepted by this ACL is the union of those
accepted on all paths, as shown in Equation 3. In addition,
since the default action of an ACL matches all packets, all



packets will be either accepted or denied (Equation 4).
AACL =

⋃
i∈path

Apathi

DACL =
⋃

i∈path

Dpathi

(3)

{
AACL ∪DACL = IACL

RACL = ∅
(4)

4.1.2 ACL Graph of Distributed Firewalls

In the network of distributed firewalls, a packet will go
through a series of ACLs to reach the destination. In this
case, it needs to survive the filtering of all the ACLs on
the path. On the other hand, a well-engineered network of-
ten has multiple paths and uses dynamic routing to improve
performance and reliability. As a result, a packet could tra-
verse different ACL paths at different times.

Given the topology as a directed graph, one can deter-
mine all the possible paths from one node to another. Since
ACLs are associated with individual interface and a direc-
tion, one can build a tree of ACLs. Based on the infor-
mation of network connectivity, one can compute the ACL
tree rooted at a destination using either DFS or BFS algo-
rithms. This tree graph reveals all the ACL paths packets
may traverse to reach the destination. Note that we choose
to be blind about the underlying routing and assume all the
paths that are topologically feasible could be taken. This is
because routing is designed to be dynamic and adaptive to
link failures and loads. And firewall configuration should
behave correctly and consistently regardless of the underly-
ing routing dynamics.

For a large and well-connected graph, the number of
paths can be large. For the portions of network that are
not involved in packet filtering, and therefore do not inter-
fere with the firewall configurations, we use abstract virtual
nodes as representations. This approach can greatly reduce
the complexity of the graph but can still keep the relevant
information. For the network illustrated in Figure 2, we use
three abstract virtual nodes “outside”, “DMZ” and “inside”
to indicate the untrusted Internet, DMZ and trusted internal
network, respectively. Data paths between these three vir-
tual nodes are often the primary concern of firewall admin-
istrators. Note that this paper uses the traffic from “outside”
to “inside” for discussion. Our algorithm is general enough
to consider traffic between any two points in the network.

Figure 4 shows the ACL tree built for Figure 2. For any
given ACL tree graph, ACLs are either in series, parallel, or
a combination of them. For a set of n ACLs in series (par-
allel), packets need to survive the filtering decision of all
(any) of them. Therefore, the accepted set of packets is the
intersection (union) of these ACLs accepted independently.

W0 W0X0

X1

X0

X1

Outside Outside OutsideOutside

Z0Y0

Inside

Figure 4: ACL tree.
Serial Parallel

A =
⋂

acl∈n

Aacl A =
⋃

acl∈n

Aacl

D =
⋃

acl∈n

Dacl D =
⋂

acl∈n

Dacl

Figure 5: Equations for ACLs in serial or parallel.

Based on Equations listed in Table 5, we can analyze
firewall rules in the context of networks and distributed fire-
walls. Consider Figure 4 as an example. We assume the in-
put from “outside” to be Ω, the entire set of possible pack-
ets. This is more conservative than what happens in reality.
However, we believe this is justified for security reasons
since “outside” is beyond the control of local administra-
tion.

One can determine that IY 0, the input for Y 0, is IY 0 =
AW0 ∪ (AX0 ∩ AX1). The entire set of packets that can
reach the internal network from the Internet is

A =AW0 ∪ (AX0 ∩AX1) ∩AY 0

∪AW0 ∪ (AX0 ∩AX1) ∩AZ0

=AW0 ∪ (AX0 ∩AX1) ∩AY 0 ∪AZ0

(5)

4.2. Checking for Anomalies

Based on the rule graph, we perform local checks for in-
dividual firewall. Distributed firewall checks are based on
both the ACL-tree and rule graph. We describe the algo-
rithms below in detail.

4.2.1 Local Check for Individual Firewalls

FIREMAN performs local check for individual ACLs with-
out considering the interaction with other firewalls in the
network. Since a firewall can rely on the filtering action of
other firewalls to achieve policy conformance, local checks
focus on checking inconsistency and inefficiency. The local
check is performed after parsing each rule, and just before
updating the state as defined in Equation 2.



The input to an ACL is the entire set (I = Ω), and A1 =
D1 = F1 = ∅. We process each rule in sequence based on
its type:

For 〈P, accept〉 rules:

1. Pj ⊆ Rj ⇒ good: This is a good rule. It defines an
action for a new set of packets, and it does not overlap
with any preceding rules.

2. Pj ∩ Rj = ∅ ⇒ masked rule: This is an “error”. This
rule will not match any packets and action defined here
will never be taken.

(a) Pj ⊆ Dj ⇒ shadowing: This rule intended to
accept some packets which have been denied by
preceding rules. This contradiction reveals a mis-
configuration.

(b) Pj∩Dj = ∅ ⇒ redundancy: All the packets have
been accepted by preceding rules or will not take
this path.

(c) else ⇒redundancy and correlation: Part of the
packets for this rule have been denied. Others
are either accepted or will not take this path.
Rule j itself is redundant since it will not match
any packets. Some preceding rule has correlation
with rule j also.

3. Pj * Rj and Pj ∩Rj 6= ∅ ⇒ partially masked rule:

(a) Pj ∩ Dj 6= ∅ ⇒ correlation: Part of the packets
intend to be accepted by this rule have been de-
nied by preceding rules. This raises a “warning”.

(b) ∀x < j,∃ 〈Px, deny〉 such that Px ⊆ Pj ⇒ gen-
eralization: Rule j is a generalization of rule x
since rule x matches a subset of the current rule
j but defined a different action. This is a “warn-
ing”.

(c) Pj∩Aj 6= ∅ and ∀x < j,∃〈Px, accept〉 such that
Px ⊆ Pj ⇒ redundancy: If rule 〈Px, accept〉 is
removed, all the packets that match Px can still
be accepted to the current 〈Pj , accept〉. There-
fore, rule 〈Px, accept〉 is redundant. This is an
“error”.

Similarly for 〈P, deny〉 rules:

1. Pj ⊆ Rj ⇒ good.

2. Pj ∩Rj = ∅ ⇒ masked rule.

(a) Pj ⊆ Aj ⇒ shadowing: This rule intended to
deny some packets which have been accept by
preceding rules. This could be a serious security
violation.

(b) Pj ∩ Aj = ∅ ⇒ redundancy: All the packets
have been denied by preceding rules or will not
take this path.

(c) else ⇒ redundancy and correlation: Part of pack-
ets for this rule have been accepted. Others are
denied or will not take this path.

3. Pj * Rj and Pj ∩Rj 6= ∅ ⇒ partially masked rule.

(a) Pj ∩ Aj 6= ∅ ⇒ correlation: Part of the pack-
ets intend to be denied by this rule have been ac-
cepted by earlier rules.

(b) ∀ x < j,∃ 〈Px, accept〉 such that Px ⊆ Pj ⇒
generalization: Rule j is a generalization of rule
x since rule x matches a subset of the current rule
j but defined a different action.

(c) Pj ∩Aj 6= ∅ and ∀ x < j,∃〈Px, deny〉 such that
Px ⊆ Pj ⇒ redundancy: If rule 〈Px, deny〉 is
removed, all the packets that match Px can still
be denied by the current rule. Therefore, rule
〈Px, deny〉 is redundant. This is an “error”.

4.2.2 Checks for Distributed Firewalls

After passing the local checks, FIREMAN will perform dis-
tributed checks for network of firewalls. Such a check is
performed based on the ACL-tree derived in Section 4.1.2.
We start from the top level ACLs of the tree and go down-
wards level by level. At the top level, input to an ACL is
the entire set (I = Ω), and A1 = D1 = F1 = ∅. Starting
from the second level, we use Equations in Table 5 to derive
the I set to the ACL. Based on the input I , we again traverse
through rules in the ACL based on the same transformations
defined in Equation 2.

For 〈P, accept〉 rules:

1. P ⊆ I ⇒ good: This is not a redundancy as in the
case of local checks. A packet need to be accepted by
all firewalls on its path to reach destination.

2. P ⊆ ¬I ⇒ shadowing: This rule is shadowed by up-
stream ACLs. It tries to accept some packets that are
blocked on all reachable paths. This kind of inconsis-
tency can manifest as connectivity problems which are
difficult to troubleshoot manually.

For 〈P, deny〉 rules:

1. P ⊆ I ⇒ raised security level?: This probably reveals
a raised security level. In the case of Figure 2, certain
packets might be allowed to access the DMZ but not
the internal network. Therefore, ACLs W0, X1 and
X0 will accept these packets but ACL Y 0 will deny
them.



2. P ⊆ ¬I ⇒ redundancy?: This is probably a redun-
dancy since the packets to be denied will not reach this
ACL anyway. However, multiple lines of defense are
often encouraged in practice to increase overall secu-
rity level. This should be performed with caution by
the administrator.

4.2.3 Checks at the Root of the ACL Tree

The root of the ACL tree is the destination, which is also
the network we want to secure. Assume the root has m
children, and child j gives input to the root as Ij . We want
to ensure that all the inputs are the same. Otherwise, this is
a “cross-path inconsistency” as discussed in Section 3.2.3.

∀j ∈ m, Ij = I (6)

Policy conformance is checked by comparing the input I
to the root of the ACL tree with the blacklist and whitelist.
Since firewalls can rely on others to achieve policy confor-
mance, checking at the root allows us to make the judge-
ment based on the complete information of the entire ACL
tree.

• I ∩blacklist 6= ∅ ⇒ policy violation: The firewalls ac-
cept some packets forbidden by the stated policy. This
is a security violation.

• whitelist * I ⇒ policy violation: The firewalls deny
some protected packets. This causes disrupted service.

4.3. Formal Properties and Discussions

With respect to our definitions of misconfigurations in
Section 3, we have a soundness and completeness theorem
for our analysis.

Theorem 1 (Soundness and Completeness) Our check-
ing algorithm is both sound and complete:

• If the algorithm detects no misconfigurations, then
there will not be any misconfigurations (soundness).

• Any misconfiguration detected by the algorithm is a
real misconfiguration (completeness).

We can achieve both soundness and completeness (i.e.,
neither false negatives nor false positives) because firewalls
are essentially finite-state systems. We perform symbolic
model checking covering every path and every packet, that
is we are doing exhaustive testing in an efficient manner.

Our algorithm is sound and complete with respect to our
classification of misconfigurations. However, certain mis-
configurations viewed as errors by one administrator may
not be viewed as errors by others. The concrete judgments
for these cases depends on the intention of the particular

administrator. There are cases where we cannot make con-
crete judgments and can only raise “warnings.” These cases
include, for example, correlations and generalizations for
intra-firewall checks, and raised security level and redun-
dancy for inter-firewall checks. This happens because we,
as tool writers, do not know the intention of the admin-
istrator. This intention gap, however, does not affect our
claim that the algorithm is sound and complete. Our tool
raises “warnings” and leaves the decision to the administra-
tor, who surely knows his/her own intention.

5. Implementation and Evaluation

5.1. BDD Representation of Firewall Rules

Updating state information for firewall rules and ACL
graphs requires an efficient representation of the predicates
of individual rules or any collection of the predicates. In ad-
dition, we must be able to implement efficient set operations
with this representation. FIREMAN uses binary decision
diagrams (BDDs) [4] to represent predicates and perform
all the set operations. The BDD library used in FIREMAN
is BuDDy [22], which provides efficient dynamic memory
allocation and garbage collection.

BDD is an efficient data structure which is widely used
in formal verification and simplification of digital circuits.
A BDD is a directed acyclic graph that can compactly and
canonically represent a set of boolean expressions. The
predicates of firewall rules describe constraints on certain
fields of the packet header. We can represent them com-
pactly and compute them efficiently using BDDs. For ex-
ample, a source IP block 128.0.0.0/8 can be represented as
x1x

′
2x

′
3x

′
4x

′
5x

′
6x7x

′
8, whose corresponding BDD is shown

in Figure 6a. In a BDD graph, the non-terminal vertices
represent the variables of the boolean function, and the two
terminal vertices represent the boolean values 0 and 1. To
check if another source IP block is a subset of this IP block
requires only a single bdd_imp (i.e., ⇒, the logical implica-
tion) operation.

Performing set operations such as intersection, union
and not on BDDs is also straightforward using BuDDy. Fig-
ure 6c presents the union of source IP 128.0.0.0/8 (Fig-
ure 6a) and 192.0.0.0/8 (Figure 6b). Note that BDDs can
automatically summarize the two IP blocks and produce a
canonical form for the union.

5.2. Building Blacklist

FIREMAN checks for policy violations based on given
blacklist and whitelist. Although policy definitions are
subjective to individual institutions, there are some well-
understood guidelines we believe that most administrators
would want to observe. Therefore, FIREMAN checks for a



sip8

sip7

sip6

sip5

sip4

sip3

sip2

sip1

10

(a) Source IP 128.0.0.0/8.

sip8

sip7

sip6

sip5

sip4

sip3

sip2

sip1

10

(b) Source IP 192.0.0.0/8.

sip8

sip7

sip6

sip5

sip4

sip3

sip1

10

(c) Source IP 128.0.0.0/8 or
192.0.0.0/8.

Figure 6: Using BDDs to represent and operate on firewall rules.

list of default policies based on our understanding of com-
mon requirements. The actual users of FIREMAN can mod-
ify the blacklist and whitelist to suite their own policy-level
decisions.

The default blacklist of FIREMAN is built based on the
bogon list [9] and 12 common mistakes pointed out by
Wool [31]. For each IP block B listed on the bogon list,
we read them as “deny any B any” and “deny any any B”
rules to indicate that packets with either source IP in B or
destination IP in B should be denied.

Most rules listed in [31] can be encoded into the black-
list as well. Insecure or external access to firewall manage-
ment can be encoded as “deny tcp any firewall telnet” which
prevents telnet access to the firewall or “deny any external
firewall” which prevents external access to the firewall. In-
secure services like NetBios and Portmapper/Remote Pro-
cedure Call can be encoded as “deny any any any netbios”
which prevents access to NetBios.

As discussed in Section 4.2.3, the blacklist describes pro-
hibited behaviors and FIREMAN checks the firewall con-
figurations against each item defined in the blacklist. The
current implementation of FIREMAN does not define a de-
fault whitelist and this check is thus omitted. However, it
is easy to write a list of predicates and FIREMAN can read
them as “accept” rules and use it to compare against the in-
put set I at the root of ACL tree.

5.3. Misconfigurations Discovered

Obtaining production firewall configuration scripts is not
easy because they contain sensitive security information.

Table 5 lists the configuration files that we were able to ob-
tain to test FIREMAN: PIX1 is for a Cisco PIX firewall
used at an enterprise network; BSD1 is using OpenBSD
packet filter at a campus network; and PIX2 is used by
another enterprise network. Both PIX1 and BSD1 are ac-
tively used in production. All the script excerpts presented
here have been modified to private IP address blocks. In Ta-
ble 5, the columns “P ”, “C”, and “E” list respectively the
number of policy violations, the number of inconsistencies,
and the number of inefficiencies detected for each firewall
configuration.

Firewall Product #ACLs #rules P C E

PIX1 PIX 6.03 7 249 3 16 2
BSD1 BSD PF 2 94 3 0 0
PIX2 PIX 6.03 3 36 2 0 5

Table 5: Configuration files and misconfigurations.

5.3.1 Policy Violations (P )

Policy violations are observed on all three configurations.
BSD1 explicitly denied 10.0.0.0/8, 172.16.0.0/12 and
192.168.0.0/16. In addition, the administrator commented
that he/she wanted to deny all unroutable packets. There-
fore, we infer that BSD1 is tasked to deny all unroutable
packets. However, FIREMAN reveals that other unallo-
cated IP address blocks such as 2.0.0.0/8 and 5.0.0.0/8,
are implicitly allowed by rules like “accept udp any any port
domain, ntp.”



A similar problem is identified in PIX1. Only two of
the three private IP blocks are explicitly denied. It is inter-
esting to note that while most administrators will not hesi-
tate to block private IP address blocks, they may be reluctant
to setup rules to filter unallocated IP address blocks as dis-
cussed in Section 3.1. FIREMAN can be configured to read
the latest bogon file every time it runs so that the bogon list
is up to date. It can be used to enforce the policy to block
all unroutable IP blocks.

Some of the 12 errors pointed by Wool [31] are observed
on these three configurations. In particular, none of the
three firewalls pays special attention to secure the firewall
itself. They are not configured with a stealth rule to hide it-
self or limit the access to internal addresses and secure pro-
tocols. The default blacklist in FIREMAN has a rule which
denies any packets to the firewall itself not from internal
network (“deny any !internal_IP firewall_IP”). FIREMAN
diagnoses this problem by noting that the conjunction of in-
put to the root of the ACL tree (I) and the blacklist is not
empty.

Our results agree well with Wool’s observation that
firewall configurations often do not conform to well-
understood security policies. In addition, FIREMAN is
fully automated and does not require an experienced fire-
wall/security expert to diagnose the problems.

5.3.2 Inconsistencies (C)

1. accept icmp any 10.2.53.192/32
2. accept icmp any 10.2.54.3/32
3. accept icmp any 10.2.53.249/32
4. accept icmp any 10.2.53.250/32
5. deny icmp any 10.2.53.0/24 echo
6. deny icmp any 10.2.53.0/24 traceroute
7. deny icmp any 10.2.54.0/24 echo
8. deny icmp any 10.2.54.0/24 traceroute
9. accept icmp any any

Table 6: Inconsistencies found in PIX1.

FIREMAN reported 8 correlations and 8 generalizations
on one of the ACL in PIX1 which contains 141 rules. The
rules causing the alarms are listed in Table 6. Rules 1–4 are
accepting icmp access to individual hosts, and rules 5–8 are
blocking icmp echo and traceroute to their networks. There-
fore rules 1,3, and 4 are correlated with rules 5 and 6, and
similarly, for rule 2 and rules 7, 8. Rule 9 is a generalization
of rules 1–8.

This script probably does not have any misconfigura-
tions. As discussed, correlations and generalizations can
often be tricks used by administrators to represent rules ef-
ficiently.

5.3.3 Inefficiencies (E)

FIREMAN noted 5 redundancies in PIX2. As shown in
Table 7, rules 2 and 3 will not match any packets because
they are matching a subset of those matched by rule 1. In
addition, rule 4 is a generalization of rules 1, 2 and 3. One
could keep only the rule 4 and achieve the same effect.

1. accept ip 192.168.99.0/24 192.168.99.0/24
2. accept ip 192.168.99.56/32 192.168.99.57/32
3. accept ip 192.168.99.57/32 192.168.99.56/32
4. accept ip 192.168.99.0/24 any

Table 7: Inefficiencies found in PIX2.

Another redundancy FIREMAN caught is in PIX1,
which explicitly denies 10.0.0.0/8 and 192.168.0.0/16 in
some of its ACLs. However, since these two rules are the
last two rules in the ACL, and the default action of PIX is
to deny anything remaining, these two rules are unneces-
sary and reported as redundancy. Private communication
with the administrator confirmed this observation, and the
redundant rules will be removed.

5.4. Performance and Scalability

The complexity of intra-firewall checking is determined
by the complexity of checking each rule and the number of
rules in a configuration. Our algorithm performs the usual
set operations, conjunction, disjunction, and complementa-
tion, on the A, D, and F sets for each rule. Our implemen-
tation (cf. Section 5) uses binary decision diagrams (BDDs)
to represent these sets canonically for efficient processing.
On firewalls using the simple list model, our algorithm tra-
verses each rule exactly once, so the total running time is
O(n), where n is the number of rules. This is witnessed
in Figure 7, which shows that the average time required to
check an ACL is proportional to its length for synthetically
generated ACLs of different lengths. For example, it took
FIREMAN less than 3 seconds to check an 800-rule ACL.
Our algorithm scales better than Al-Shaer’s [2], which com-
pares two rules at a time and has a complexity of O(n2).

For firewalls using the complex chain model, we can
achieve O(n) time complexity with the following optimiza-
tions: (1) storing the state information and reusing it; and
(2) merging the state information whenever possible. Next,
we discuss in more detail these optimizations together with
distributed firewall checking.

For distributed firewalls, the number of paths from “out-
side” to “inside” may be exponential. For example, for
a graph with m nodes and an average outdegree k, there
can be O(km) simple paths in the worst-case. As fire-
walls often reside on normal routers, m and k may be large.



0 100 200 300 400 500 600 700 800

ACL Rule length
0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
 (

se
co

n
d
s)

Figure 7: Performance on checking individual firewalls.

4 6 8 10 12 14 16 18 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

k=3

4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

S
e
co

n
d
s k=4

4 6 8 10 12 14 16 18 20

Number of Firewalls
0

200

400

600

800

1000

1200

k=5

Figure 8: Performance on checking distributed firewalls.

Since checking each path separately would not scale, FIRE-
MAN uses the following techniques to improve its scalabil-
ity. First, FIREMAN avoids unnecessary nodes and branch-
ing. Since firewalls and ACLs are rarely deployed in the
network core, FIREMAN can reduce the number of nodes
by combining a network of routers without ACLs into a sin-
gle abstract virtual node. For instance, FIREMAN treats
the DMZ in Figure 2 as a single node. Second, FIREMAN
merges the paths where possible using Equations in Table 5
from Section 4. For example, consider the ACL tree in Fig-
ure 4. Instead of traversing

outside → W0 → Z0 → inside

and
outside → X0 → X1 → Z0 → inside

separately, FIREMAN merges the two paths at Z0. Finally,
FIREMAN saves intermediate results for reuse later. In Fig-
ure 4, FIREMAN checks the ACLs W0, X0 and X1 only
once because the left and the right branches are symmet-
ric. When an ACL appears multiple times in an ACL tree,
FIREMAN rechecks the ACL while traversing the tree only
if the ACL receives different input sets on different paths.

In Figure 8, we randomly generated a network of m fire-
walls, where each firewall connects to k other firewalls.
When either m or k was small, distributed checking fin-
ished within seconds. When m > 15 and k > 5, distributed
checking took several minutes. Even in the worst case with
m = 20 and k = 5 (which we think is rare in enterprise
networks), FIREMAN completed in under 20 minutes. Be-
cause FIREMAN runs offline, we believe that FIREMAN
is scalable enough to check most distributed firewalls effec-
tively.

6. Related Work

There are numerous studies on network topology, IP con-
nectivity [5, 18, 28], and router configurations [10, 13, 14,
25]. Maltz et al. [26] reverse engineered routing design in
operational networks using static analysis on dumps of the
local configuration state from each router. These config-
uration files were automatically processed to abstract rout-
ing process graphs, route pathway graphs and address space
structures. With these abstractions, network structure and
routing operation in a global view were retrieved for further
analysis. The subsequent work by the same authors [16]
presented a unified modeling of packet filters and routing
protocols to characterize reachability of a network. Our
work makes another step towards understanding how dis-
tributed firewalls, as one of the “packet transformers” in the
network, influence end-to-end behavior.

Firmato and Fang [3, 27] are a set of management and
analysis tools that interact with users on queries about fire-
wall rules. Lumeta [30] improved the usability of Fang



by automating the queries to check if firewalls are config-
ured according to user expectations. Both tools take a min-
imum network topology description and firewall configu-
rations as input to build an internal representation of fire-
wall rules which users can query. Such tools are essentially
lightweight testing tools and do not offer the advantage of
full coverage as static analysis tools do. Our goal is differ-
ent and focus on checking for misconfigurations.

Guttman and Herzog [19, 20] proposed formal model-
ing approach to ensure network-wide policy conformance.
They used BDDs to model “abstract packet”. Their goal
was to verify that filters in a network implement a high-
level policy, rather than to look for internal inconsistencies
in the policies.

The work closest to ours is “Firewall Policy Advisor” by
Al-Shaer and Hamed [1,2]. Our classification of misconfig-
urations is inspired by them, but are more general and com-
plete. The key distinction of FIREMAN is its capability to
evaluate firewall configurations as a whole piece, not just
limited to relation between two firewall rules. In addition
to inconsistencies, FIREMAN also checks for policy vio-
lations and inefficiencies. Furthermore, FIREMAN works
on any network topology and requires only a linear traver-
sal through the rules. Our experiment running FIREMAN
captured all misconfigurations in their sample scripts [2]

Gouda and Liu [17] devised a firewall decision diagram
(FDD) to assist the design of firewalls, in order to reduce
the size of configuration while maintaining its consistency
and completeness. Their focus is on the efficiency of a sin-
gle firewall. They also proposed to design multiple versions
of the same firewall and check the equivalence among the N
versions using FDD [23]. Eronen and Zitting [12] described
an expert system based on Eclipse, a constraint logic pro-
gramming language to render Cisco router access lists.

Hazelhurst et al. [21] proposed to use BDD to represent
firewall rules and access lists. Their goal was to achieve fast
lookup through better hardware router implementation us-
ing BDDs. We chose BDD to represent not only individual
rules but also the collective behavior of whole set of rules.
Our focus is on checking the security properties of firewall
rules on existing architectures.

7. Conclusions

In this paper, we have presented a novel static analysis
approach to check firewall configurations. First, we have
proposed a framework for modeling individual and dis-
tributed firewalls. Second, we have designed a static analy-
sis algorithm to discover various misconfigurations such as
policy violations, inconsistencies and inefficiencies, at vari-
ous levels including intra-firewall, inter-firewall, and cross-
path. Our technique is based on symbolic model checking,
using binary decision diagrams to compactly represent and

efficiently process firewall rules. Compared to other related
research, our method is scalable and offers full-coverage of
all possible IP packets and data paths. Our analysis algo-
rithm is both sound and complete, thus has no false nega-
tives and false positives.

We have implemented our approach in a toolkit called
FIREMAN, which uses BDDs to represent firewall rules.
Inspecting misconfigurations is fast, scalable and requires a
minimum amount of memory. In our experiments, FIRE-
MAN was able to uncover misconfigurations on firewalls
running in production environment. We believe FIREMAN
is a useful and practical tool for network administrators as
well as personal firewall users.

8. Acknowledgment

This work was supported in part by NSF grant NeTS-
NBD #0520320. We would like to thank Monica Chow,
Alex Liu, David Molnar, Daniel Oxenhandler, Ashwin Srid-
haran, Jimmy Su for their helpful feedback on draft versions
of this paper. We would also like to thank the anonymous
reviewers for their valuable comments.

References

[1] E. Al-Shaer and H. Hamed. Firewall policy advisor for
anomaly detection and rule editing. In Proc. IEEE/IFIP In-
tegrated Management Conference (IM’2003), March 2003.

[2] E. Al-Shaer and H. Hamed. Discovery of policy anoma-
lies in distributed firewalls. In Proc. IEEE Infocomm, Hong
Kong, Mar 2004.

[3] Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool. Firmato:
A novel firewall management toolkit. In Proc. 20th IEEE
Symposium on Security and Privacy, 1999.

[4] R. E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Trans. Computers, 35(8), 1986.

[5] CAIDA. Skitter tool.
http://www.caida.org/tools/measurement/skitter.

[6] D. B. Chapman. Network (in)security through IP packet fil-
tering. In Proceedings of the Third Usenix Unix Security
Symposium, pages 63–76, Baltimore, MD, September 1992.

[7] H. Chen, D. Wagner, and D. Dean. Setuid demystified. In
Proceedings of the Eleventh USENIX Security Symposium,
San Francisco, CA, 2002.

[8] W. R. Cheswick, S. M. Bellovin, and A. D. Rubin. Firewalls
and Internet Security: Repelling the Wily Hacker. Addison-
Wesley, 2003.

[9] T. Cymru. The Team Cymru Bogon List v2.5 02 AUG 2004.
http://www.cymru.com/Documents/bogon-list.html, 2004.

[10] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg,G. Hjalm-
tysson, and J. Rexford. The cutting edge of IP router config-
uration. In ACM HotNets, 2003.

[11] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: A general approach to inferring
errors in systems code. In Proceedings of ACM Symposium
on Operating Systems Principles (SOSP), October 2001.



[12] P. Eronen and J. Zitting. An expert system for analyzing fire-
wall rules. In Proc. 6th Nordic Worksh. Secure IT Systems,
2001.

[13] N. Feamster. Practical verification techniques for wide-area
routing. In ACM SIGCOMM HotNets-II, 2003.

[14] N. Feamster and H. Balakrishnan. Detecting BGP con-
figuration faults with static analysis. In 2nd Symposium
on Networked Systems Design and Implementation (NSDI),
Boston, MA, May 2005.

[15] Firewall wizards security mailing list.
http://honor.icsalabs.com/mailman/listinfo/firewall-wizards.

[16] G. Xie, J. Zhan, D. Maltz, H. Zhang, A. Greenberg, and J.
Rexford. On static reachability analysis of IP networks. In
IEEE INFOCOM, 2005.

[17] M. G. Gouda and X.-Y. A. Liu. Firewall design: consistency,
completeness and compactness. In Proc. ICDCS 24, Mar
2004.

[18] R. Govindan and H. Tangmunarunkit. Heuristics for Internet
Map Discovery. In IEEE INFOCOM, 2000.

[19] J. D. Guttman. Filtering postures: Local enforcement for
global policies. In Proc. IEEE Symp. on Security and Pri-
vacy, 1997.

[20] J. D. Guttman and A. L. Herzog. Rigorous automated net-
work security management. International Journal of Infor-
mation Security, 4(1-2), 2005.

[21] S. Hazelhurst, A. Attar, and R. Sinnappan. Algorithms for
improving the dependability of firewall and filter rule lists.
In DSN ’00: Proceedings of the 2000 International Confer-
ence on Dependable Systems and Networks, 2000.

[22] J. Lind-Nielsen. Buddy version 2.4.
http://sourceforge.net/projects/buddy, 2004.

[23] A. X. Liu and M. G. Gouda. Diverse firewall design. In Proc.
IEEE International Conference on Dependable Systems and
Networks (DSN-04), Florence, Italy, June 2004.

[24] A. X. Liu and M. G. Gouda. Complete redundancy detection
in firewalls. In Proc. 19th Annual IFIP Conference on Data
and Applications Security, 2005.

[25] R. Mahajan, D. Wetherall, and T. Anderson. Understanding
BGP Misconfiguration. In ACM SIGCOMM, 2002.

[26] D. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjalmtysson, and
A. Greenberg. Routing design in operational networks: A
look from the inside. In Proc. SIGCOMM’04, 2004.

[27] A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall anal-
ysis engine. In Proc. IEEE Symposium on Security and Pri-
vacy, 2000.

[28] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP
topologies with Rocketfuel. In ACM SIGCOMM, 2002.

[29] Netfilter. Linux netfilter. http://www.netfilter.org.
[30] A. Wool. Architecting the Lumeta firewall analyzer. In Proc.

10th USENIX Security Symposium, Washington, D.C., 2001.
[31] A. Wool. A quantitative study of firewall configuration er-

rors. IEEE Computer, 37(6), 2004.


