
Defending Against Sensor-Sniffing Attacks on Mobile
Phones

Liang Cai
University of California

Davis, California
lngcai@ucdavis.edu

Sridhar Machiraju
Sprint Applied Research
Burlingame, California

machiraju@acm.org

Hao Chen
University of California

Davis, California
hchen@cs.ucdavis.edu

ABSTRACT
Modern mobile phones possess three types of capabilities:
computing, communication, and sensing. While these capa-
bilities enable a variety of novel applications, they also raise
serious privacy concerns. We explore the vulnerability where
attackers snoop on users by sniffing on their mobile phone
sensors, such as the microphone, camera, and GPS receiver.
We show that current mobile phone platforms inadequately
protect their users from this threat. To provide better pri-
vacy for mobile phone users, we analyze desirable uses of
these sensors and discuss the properties of good privacy pro-
tection solutions. Then, we propose a general framework for
such solutions and discuss various possible approaches to
implement the framework’s components.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-

cess controls, Information flow controls, Invasive software

General Terms
Design, Security, Human Factors

Keywords
privacy, mobile, sensor, sniffing, microphone

1. INTRODUCTION
Unlike mobile devices in the past, which were designed

for the sole purpose of voice-based communication, today’s
phones are powerful devices that can communicate, com-
pute, and sense. The sensing capabilities of mobile phones
come from the audio, video, and location sensors in the form
of microphones, cameras, and GPS receivers. While these
sensors enable a variety of new applications, they can also
seriously jeopardize user privacy. In particular, if a mobile
device is compromised, an adversary can not only access the
data stored in the device but also record all of the user’s
actions by stealthily sniffing on the sensors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiHeld’09,August 17, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-444-7/09/08 ...$10.00.

We focus on threats to users’ privacy due to unauthorized
sniffing on mobile phone sensors. These threats are differ-
ent from the more traditional attacks on user privacy on
PCs. Those attacks aim at (1) accessing private data or (2)
eavesdropping on users’ operations (e.g., key loggers). The
first type of attacks can be defeated by proper file access
control policies or encryption. The second type of attacks
is effective only when the user is interacting with his PC.
In contrast, appropriate access control on sensors often de-
pends on the context, so a static access control policy with
no regard to the context, which is typical on file systems,
is inadequate. Also, these attacks work even when the user
is not interacting with the mobile phone. As long as the
phone is within the proximity of the user, which is often
the case, the attacker can continuously snoop on the user’s
activities. Such snooping can also help attackers compro-
mise other computing devices. For example, the attacker
can listen to the acoustics of the keyboard to infer typed
passwords [1].

Although PCs can also be equipped with sensors, the
sensor-sniffing problem is much more serious on mobile de-
vices. On PCs, most sensors are optional, add-on periph-
erals. They are not universally available, are not used by
most applications, and can be turned off without affecting
most tasks. In contrast, microphones are universally avail-
able and indispensable on all mobile phones; cameras and
GPS receivers are moving in this direction as well. Mobile
applications use and depend on sensors more extensively.
Moreover, users tend to carry mobile devices wherever they
go. Hence, sensor-sniffing attackers have many more oppor-
tunities to compromise the privacy of mobile users than PC
users.

Prior work has raises privacy concerns about mobile phone
sensors, primarily in the context of location sensing where
location is either read from GPS sensors in mobile phones
or inferred from other sources such as nearby cells [2, 3].
Solutions to mitigate this problem have mainly focused on
defining security policies [4, 5] or privacy rules [6]. Some
commercial software allows tracking employees and children
[7, 8]. To our knowledge, there has been little focus on the
other sensors (particularly microphones and cameras, which
are arguably the most important sensors) on mobile phones
except for scattered reports in non-scientific literature [9].

We start our exploration of sensor-sniffing attacks by de-
veloping an appropriate threat model. Under this threat
model, we show that current mobile phone platforms inade-
quately protect users. We use existing applications to under-
stand and classify legitimate uses of sensors. The complexity

and diversity of such uses pose significant challenges in de-
veloping a single mechanism to detect unauthorized sensor
sniffers. Instead, we develop a general solution framework
and describe how we could implement its various compo-
nents. We take advantage of various unique properties of
the mobile platform to design novel mechanisms for these
components. For instance, we could use the context inferred
from sensors to enforce context-aware access control policies.

Our contributions are threefold. First, we examine the
privacy implications of powerful sensing capabilities in mo-
bile phones. Second, we demonstrate the significant chal-
lenges in alleviating the sensor-sniffing problem. Third, we
develop a general framework for preserving privacy and iden-
tify a few promising first-cut approaches for its components.
Even though we are far from achieving a complete privacy-
preserving solution for mobile phones, our work aims at
spurring further research into this important area. The con-
tinued popularity of mobile phones will be seriously jeopar-
dized if users start to view them as untrustworthy.

2. PROBLEM SCOPE

2.1 Problem Definition
We consider attacks that violate user privacy by sniffing

on the sensors on mobile phones. Typical sensors include
the microphone, camera, and GPS receiver.1 Focusing on
these sensors, particularly microphone and camera, we il-
lustrate that sensor-sniffing attacks pose challenges that are
quite different from those posed by general malware. We
also do not consider attacks that sniff on traditional input
devices, such as the keyboard and mouse. The reason is that
these attacks have been investigated extensively on desktop
computers, and we expect the defenses developed apply to
mobile phones as well. We also do not consider attacks that
steal confidential files for the same reason as above.

2.2 Threat Model
We define the threat model of sensor-sniffing attacks as

follows. The threat model defines the capabilities of attack-
ers, which are necessary for evaluating our proposed solu-
tions.

• We assume that attackers are able to install malicious
software on mobile devices. The attackers can achieve
this by exploiting software vulnerabilities (e.g., drive-
by download) or tricking users into installing untrusted
code.

• We assume that attackers have no physical access to
the compromised mobile devices and can receive the
captured sensor data only via voice or data channels,
such as outgoing phone calls, SMS, MMS, and TCP
connections.

• When we investigate defense approaches, we will dis-
cuss how to implement the defense mechanisms in the
operating system, on the assumption that attackers
cannot compromise the operating system. However,

1Other possible sensors on mobile phones include accelerom-
eters, which are increasingly popular, and other more eso-
teric sensors, such as thermometers and barometers. At-
tackers can sniff on these sensors to violate users’ privacy as
well. However, for a focused discussion, we target the most
prevalent sensors today — microphone, camera, and GPS.

this assumption is not a fundamental requirement of
our approach. If the operating system is vulnerable,
we could move the defense mechanisms into the virtual
machine monitor where available or the firmware.

3. CURRENT USES AND PROTECTION OF
SENSORS

In this section, we describe how legitimate applications
use mobile phone sensors in different ways and why they
can complicate protection mechanisms. Then, we show that
popular smart phones protect their sensors inadequately.

3.1 How Applications Use Sensors
To prevent malicious use of sensors, we need to understand

how legitimate applications may use sensors. We classify
legitimate uses of sensors into three categories, based on
how prominent a role sensors play in the applications.

3.1.1 Dominated by Sensors
In this category, the main function of the application is

to capture the input of the sensor. For example, the mi-
crophone provides input to the telephony, VoIP, and voice
recorder applications; the camera provides input to photo
and video capture applications. Such an application turns
on a sensor at start up and turns it off at completion. The
user is aware that the application is using the sensor contin-
uously.

3.1.2 Supported by Sensors
In this category, sensors provide auxiliary input to appli-

cations, but the main function of the application is not to
capture sensor input. For instance, a voice-dialing applica-
tion reads the user’s voice from the microphone, recognizes
the phone number, and then dials the number. [10] uses
camera-equipped mobile phones to interact with real-world
objects. Some applications may also send the captured data
back to a remote server. For example, the Android appli-
cation CompareEverywhere[11] can capture the barcode im-
age of a product and compare its price with those in nearby
stores using an online database. In these cases, the appli-
cation need not turn on the sensor throughout its lifetime,
but the user knows when the sensing starts and ends.

3.1.3 Using Context Provided by Sensors
In the previous two categories, the user initiates the sens-

ing by the applications. By contrast, context-aware com-
puting [12, 13] automatically detects the user’s context by
sensing continuously. For example, [14] proposes to use the
camera as a light sensor. [15] describes how to use the micro-
phone to detect the ambient noise level to adjust the ringer
volume accordingly. Recently, [16] demonstrated how to in-
fer the distance of two smart phones using their speakers
and microphones. In all these applications, sensors provide
contextual information specific to the environment. As such,
users may not be aware that the sensor is recording contin-
uously.

3.2 Why a Hardware Switch Won’t Work
One might propose a simple hardware switch to turn on

and off sensors. It might work well with the first category
of applications. Since they turn on the sensors throughout
their lifetime, we could combine the hardware switch with

the buttons that start the applications. The advantage of
this solution is that no extra work is required from users.
However, this approach does not work well with the sec-
ond category of applications. Since the sensor need not be
turned on throughout the application’s lifetime, the hard-
ware switch cannot be combined with the application-start
buttons. Therefore, the phone would need extra buttons.
Moreover, it requires extra work from the user – e.g., switch-
ing on the microphone to start voice-dialing and switching
it off when he is finished – which can be annoying. Finally,
it would be infeasible to design a hardware sensor switch
for the third category of applications, since they require the
sensors to remain on at all times.

3.3 Limitations of Current Systems
Current mobile operating systems, such as Windows Mo-

bile[17], Symbian[18], BlackBerry[19], and Google Android[20],
provide certain mechanisms for protecting sensors, but these
mechanisms are inadequate.
Certification: Among today’s systems, the most widely-
used security solutions are based on certification. These so-
lutions encourage users to install and use applications only
if they have been certified by a trusted source. Although
widely adopted by mainstream mobile platforms, the limi-
tations of certification are obvious: (1) It merely raises the
bar for malware developers without providing real security
assurance. Moveover, even if the certification authority can
verify that an application satisfies its privacy policy, its pri-
vacy policy may differ significantly from the user’s desirable
policy. (2) Certification can be circumvented when users are
tricked into installing malware bundled with an otherwise
compelling application such as a game. (3) Applications
are often certified based on organizational trust relationship
rather than technical verification.
Reference Architecture: Reference architectures[21, 22]
apply traditional OS security mechanisms — such as sand-
boxing, run-time monitoring, and integrity verification —
to the mobile platform. For example, Google Android re-
quires each application to list all the privileges that it needs
(including accessing hardware and network connection) in a
manifest file and detects any violations in runtime. How-
ever, this does not solve the sensor-sniffing problem be-
cause it continues to rely on user knowledge and diligence
to grant/deny access.

To help us understand the ease of writing sensor-sniffers,
we experimented with one of the above mobile platforms.
We used a mobile smartphone with built-in Assisted GPS
module and a 2.0 megapixel camera. We easily developed a
program that periodically records 30 seconds of sound, takes
a picture, and reads location information from the GPS.
The program stores the recorded data in a file and later
uploads it to an FTP server. The phone notifies the user of
this program’s activities only when the program dials up to
establish a network connection. However, the program could
avoid suspicion by waiting for another program to establish
a network connection and then using that connection to send
out the recorded data.

Recent work [23] has also shown the feasibility of sniffing
the video sensor by building a video capture malware with
specific trigger algorithm and infection methods. It shows
that such malware can be implemented with limited use of
power, CPU, and memory, thereby making detection hard
as well.

4. DESIGN OF A DEFENSE SYSTEM
Given the variety of ways in which legitimate applications

can use sensors, we believe that a single solution cannot
be a complete defense. Instead, we believe that a general
framework that can accommodate several design choices is
more appropriate. Before we present the framework and its
key components, we first discuss the properties desired for
an ideal solution.

4.1 Desirable Properties
An ideal solution must reliably prevent malicious pro-

grams from sniffing phone sensors without imposing unac-
ceptable burdens on users. Specifically, it must possess the
following properties:

• Security: The solution must be able to prevent mali-
cious programs from reliably accessing protected sen-
sors.

• Usability: Ideally, the solution should require no user
intervention. This way, the security solution incurs
no usability cost to the user. If user intervention is
unavoidable, the user should be able to make informed
security decisions and should not have to make such
decisions too often. The decisions should not disrupt
the user’s work flow.

• Backward and Forward Compatibility: The solu-
tion should require no or minimal modification to ex-
isting applications. Existing applications that access
sensors should continue functioning. Since we cannot
predict future applications, we should also avoid re-
stricting how future applications may use the sensors.
Therefore, the solution should allow diverse ways of
using the sensors.

• Performance: The solution should have small over-
head and should not considerably degrade the perfor-
mance of the OS or applications.

• Versatility: Mobile devices have a plethora of hard-
ware, software, and user interfaces. The solution should
apply to these various devices.

4.2 Framework of the defense system
Our proposed framework consists of three modules: pol-

icy engine, interceptor, and user interaction. (Figure 1).
Since our threat model excludes the case where attackers
can physically access the mobile device, the framework ei-
ther protects sensors from unauthorized access or prevents
sensory data from leaving the device via the network. The
policy engine determines whether to allow each access, based
on the input from user interaction and application monitor-
ing/profiling. The interceptor enforces the decision by the
policy engine. Next, we discuss how we can implement these
modules using known mechanisms.

4.2.1 Policy Engine and Application monitoring
The framework will have good usability if its policy engine

makes its decisions based mainly on application monitoring
and profiling without requiring much user intervention. We
explore several such policy options.

Whitelisting and blacklisting.
We could whitelist all the applications that legitimately

require access to the sensors. For example, the telephony ap-
plication and voice dialing application require access to the

Figure 1: The framework for defending against

sensor-sniffing attacks consists of three modules:

policy engine, interceptor, and user interaction.

microphone and the navigator application requires access to
the GPS sensor. Alternatively, we could blacklist all the
known malicious applications. The lists may be created and
maintained by the device manufacturer, OS provider, net-
work operator, and user. Both the whitelisting and black-
listing approaches run into problems when the user installs
new applications because they require the user to decide
whether to trust the new applications, which is a daunting
task. We may safely whitelist applications in Section 3.1.1
and 3.1.2. For the applications described in Section 3.1.3,
we may have to use the more sophisticated approach below.

Information flow tracking.
The threat model in Section 2.2 assumes that the attacker

cannot access the mobile device physically. Therefore, the
attacker must retrieve sniffed sensor data via the network.
This implies that we can allow all the applications that do
not access the network to access the sensors. For instance,
an application that adjusts the ring volume according to the
background noise level does not access the network, so we
can allow it to access the microphone.

The above approach, however, cannot prevent two collud-
ing applications from sending out sensory data. For exam-
ple, one application reads from the sensor and writes the
data into a file, and then the other application reads the
file and sends the data to the network. To prevent such an
attack, we would need information flow tracking. We can
treat all the data read from the sensors as tainted, track the
flow of tainted data, and prevent tainted data from leaving
for the network.

However, taint-based information flow tracking has its
own shortcomings. The biggest one is the performance degra-
dation. Also, since dynamic analysis cannot track implicit
information flow accurately [24], a malicious program could
defeat tainting tracking. Finally, some applications may
need to access both the sensor and the network legitimately.
For example, an application may take pictures and upload
them to a server.

4.2.2 User interaction
Policy decision without user intervention is desirable but

sometimes infeasible. In this case, the system needs to notify
the user and ask for the user’s decision. Note that the design
of user interaction on the mobile phone is different from
other systems.

User authorization.
The system can ask the user if he authorizes an access to

a sensor. Traditionally, researchers do not expect ordinary
users to make correct access control decisions, because these
users do not understand the system enough. In contrast,
we argue that we can rely on ordinary users to make in-
formed decisions on access control to certain sensors. This
is because although ordinary users may not understand op-
erating system resources, such as the file system and sockets,
they do understand the purposes of the microphone, cam-
era, and GPS device. Therefore, in many cases, an ordinary
user can decide whether an application requires legitimate
access to a sensor (In contrast, ordinary users may not be
able to answer whether application X needs to access file
Y.) Particularly, it should appear obvious to users that ap-
plications in Section 3.1.1 and 3.1.2 need legitimate access
to sensors. The system can ask the user for access control
decisions via common approaches such as dialog boxes. The
system should take care to prevent malicious applications
from spoofing such dialog boxes.

Sensor-In-Use notification.
Traditionally, when a system allows a malicious applica-

tion to access sensitive data, the confidentiality of the data
may be violated immediately. However, in the case of sensor-
sniffing attacks, the consequence of allowing malicious ap-
plications to access sensors is not as severe. This is because
when the malicious application acquires permission to access
a sensor, there is no confidential data at the sensor yet (we
assume that the operating system does not cache sensory
data). Therefore, when a user cannot make an informed ac-
cess control decision, the system can allow the access but
notify the user continuously, e.g., via a flashing icon or mes-
sage box on the screen or intermittent beeps. This notifi-
cation keeps the user aware that an application is reading
from a sensor so that the user might decide to avoid sensi-
tive speech, view, or locations. Some PC operating systems
notify users of sensor activities, such as WebCam. These no-
tifications are typically unobtrusive and are therefore easily
overlooked by users. As such, this solution is inadequate for
mobile phone sensors, where the privacy violation caused
by sensor sniffing is much more severe. We need further
research on human computer interaction to find a proper
tradeoff between unobtrusiveness and privacy protection.

4.2.3 Interceptor
The interceptor interposes between the application and

the sensors, and/or between the application and the net-
work. It enforces the policy decision on accessing sensors
and the network. When the policy prohibits an application
from accessing the network, the interceptor simply denies
such access. In contrast, when the policy prohibits an ap-
plication from accessing the sensor, there are two simple
options for enforcement.

The first option is locking. On OSes where the sensor
interface provides exclusive access, such as Windows Mobile
where both the microphone and camera can be accessed ex-
clusively by an application, we can lock the sensors. For ex-
ample, the interceptor can be a daemon program that opens
the protected sensor. When a legitimate program requires
access to the sensor, the daemon closes the sensor to re-
linquish its lock. The advantage of this approach is that it
requires no modification to the OS. The disadvantage is that
it may be susceptible to a race condition, where both a le-
gitimate and malicious application compete for the released
sensor.

To avoid the race condition above, we can use the second
option of blocking. We modify the access control to the
sensors so that the OS may block access to protected sensors
until the user authorizes the access. The disadvantage is
that if the user mistakenly denies access or is unavailable
for making a decision, the sensory data is lost. Such false
positives may be unacceptable where the sensory data is
critical.

The above discussion applies traditional lock-and-release
semantics to sensor access control. However, it may not be
the only or the optimal solution. In the next section, for
example, we will show that we could control access based
on user context, such as the location. We will also discuss a
semantics based on fail-safe encryption of sensory data.

5. NOVEL SOLUTIONS BY LEVERAGING
MOBILE PLATFORM

In Section 4.2, we discussed how we can use known ap-
proaches to defend against sensor-sniffing attacks. Each
approach satisfies only some of the desirable properties in
Section 4.1. This is unsurprising, since we face similar chal-
lenges as the general problem of malware detection.

However, there are important distinctions between sensor-
sniffing attacks and general malware attacks. With sensors
on mobile platforms, for example, when the user cannot de-
cide whether a program is trusted, he can let the system
notify him if the program accesses the microphone (so that
he will not talk about sensitive information when the notifi-
cation is on). By contrast, this allow but notify approach is
inappropriate for defending against general malware attacks
because once the system allows the malware to read a file,
the confidentiality of the file may be violated immediately.
The unique aspects of mobile platforms also provide us with
opportunities to investigate novel defense mechanisms. We
provide three such examples.

Context-aware application profiling.
A unique aspect of the mobile platform is that it can look

at the user’s context (environment or intention) to determine
whether to allow an untrusted program to access sensors.
By contrast, such context is largely irrelevant to the general
malware defense problem, e.g.:

• Location tagging: If the mobile device is equipped
with GPS, the user can tag certain locations with spe-
cific policies. For example, the user may tag a con-
ference room with the policy that no application is
allowed to use the microphone or camera.

• Activity inference: One useful context information
in detecting sensor-sniffing is user activity. For in-
stance, after a legitimate voice application opens the

microphone device, we expect the user to speak soon.
By contrast, when a malicious application opens the
microphone device surreptitiously, there may not be
voice activity. Therefore, the presence of voice soon
after the opening of the microphone likely indicates
that the user is aware of the use of the microphone.
Using voice activity detection (VAD) technology[25],
we need not notify users of such legitimate use of the
microphone.

The advantage of the context-aware approach is that it
requires no user interaction. However, this approach, es-
pecially activity inference, is often imprecise. Moreover,
context-based access control may apply only to certain sen-
sors such as the microphone. For example, it would be dif-
ficult to determine in what context to allow a navigator ap-
plication to access the GPS sensor.

Leveraging existing user interaction.
A well-understood user interaction mechanism in phones

is that of the voice calling application. The user presses the
talk button to initiate a phone call and the hangup button
to terminate the call. We could use these two buttons as
the user’s authorization and de-authorization to access the
microphone. In this case, the system requires no extra work
from the user and has excellent backward compatibility.

Ensuring both security and reliable sensory data

capture through encryption.
From the security point of view, when the user does not

know whether an application can access a sensor, he should
deny such access. However, when this decision is wrong, the
sensory data is lost forever. This dilemma might encourage
users to always authorize access, which is a security risk. To
ensure both security and reliable capture of sensory data, we
could use encryption. In this approach, all applications can
access the sensors; however, the sensory data is encrypted
unless the OS determines that the application is benign. If
a legitimate application does not receive authorization at
the time when it reads the sensory data, it may save the
encrypted sensory data so that the user may decrypt the
data and re-feed it to the application later. The disadvan-
tage of this approach is that the application may need to be
rewritten if it desires to save encrypted sensory data. Note
that if the application receives proper authorization when
it accesses the sensor, no modification to the application is
necessary.

6. CONCLUSION
With the rapid proliferation of mobile devices and appli-

cations, the problem of privacy violations based on sensors
of mobile devices is likely to become serious. We used ex-
isting and emerging applications to highlight the challenges
facing the detection and elimination of such sensor-sniffing
malware. We found that existing mobile operating systems
provide little protection against such attacks. We enumerate
the requirements of an ideal privacy-preserving solution and
proposed a framework that consists of three key modules:
user interaction, policy engine, and interceptor. For each
module, we explored different mechanisms and discussed
their advantages and limitations. In particular, we discussed
several novel mechanisms, such as context awareness, that
the mobile platform enables.

Though we proposed several first-cut solutions, the prob-
lem of designing practical and effective countermeasures is
far from being solved. All the approaches we discussed in
the paper have their own drawbacks. Approaches based on
user authorization are based on the assumption that the use
of the sensors should be perceptible by users. However, new
sensors and applications might violate this assumption. Ap-
proaches based on exploiting existing user interactions (e.g.,
phone ringing) may not work with applications that are al-
ways on.

Based on our previous discussion, we believe that it is very
challenging, if not infeasible, to eliminate the sensor-sniffing
threat completely. However, we are cautiously optimistic
that a user-friendly solution, which works effectively in most
circumstances, can be devised. Designing such a solution re-
quires research into mobile user behavior, algorithms for au-
tomatic context inference, and operating system primitives
such as information flow.

7. REFERENCES
[1] Li Zhuang, Feng Zhou, and Doug Tygar. Keyboard

Acoustic Emanations Revisited. In Proc. of ACM

CCS, November 2005.

[2] Maya Gadzheva. Privacy concerns pertaining to
location-based services. Int. J. Intercultural

Information Management, 1(1), 2007.

[3] Calvert L. Bowen and Thomas L. Martin. A survey of
location privacy and an approach for solitary users.
Hawaii Intl. Conf. on System Sciences, 0:163c, 2007.

[4] Norman Sadeh, Jason Hong, Lorrie Cranor, Ian Fette,
Patrick Kelley, Madhu Prabaker, and Jinghai Rao.
Understanding and capturing peopleÂŠs privacy
policies in a people finder application. Proc. of the

Ubicomp Workshop on Privacy, 2007.

[5] Jason Cornwell, Ian Fette, Gary Hsieh, Madhu
Prabaker, Jinghai Rao, Karen Tang, Kami Vaniea,
Lujo Bauer, Lorrie Cranor, Jason Hong, Bruce
McLaren, Mike Reiter, and Norman Sadeh.
User-controllable security and privacy for pervasive
computing. In Proc. of HotMobile, 2007.

[6] John Morris and Jon Peterson. Who’s watching you
now? IEEE Security and Privacy, 5(1):76–79, 2007.

[7] Trackem. http://www.solutionsintomotion.com/.

[8] Wherify Wireless. http://www.wherifywireless.com.

[9] Eric Bangeman. FBI using cell phone microphones to
eavesdrop. December 2006. http://arstechnica.com/
news.ars/post/20061203-8343.html.

[10] Michael Rohs and Beat Gfeller. Using
camera-equipped mobile phones for interacting with
real-world objects. In Advances in Pervasive

Computing, pages 265–271, 2004.

[11] Jeffery Sharkey. CompareEverywhere.
http://compare-everywhere.com/.

[12] Hans w. Gellersen, Albrecht Schmidt, and Michael
Beigl. Multi-sensor context-awareness in mobile
devices and smart artifacts. volume 7, pages 341–351,
2002.

[13] Guanling Chen and David Kotz. A survey of
context-aware mobile computing research. Technical
report, Hanover, NH, USA, 2000.

[14] Alex Olwal. Lightsense: enabling spatially aware
handheld interaction devices. volume 0, pages
119–122, Los Alamitos, CA, USA, 2006. IEEE
Computer Society.

[15] Chris Mitchell. Adjust Your Ring Volume For Ambient
Noise. In MSDN Magazine, 2007. http://msdn.
microsoft.com/en-us/magazine/cc163341.aspx.

[16] Chunyi Peng, Guobin Shen, Yongguang Zhang, Yanlin
Li, and Kun Tan. Beepbeep: a high accuracy acoustic
ranging system using cots mobile devices. In SenSys,
2007.

[17] Security Model for Windows Mobile 5.0 and Windows
Mobile 6. February 2008.
http://go.microsoft.com/fwlink/?LinkId=118667.

[18] Symbian Platform Security Model. August 2008.
http://wiki.forum.nokia.com/index.php/Symbian_

Platform_Security_Model.

[19] BlackBerry Enterprise Solution: Security Technical
Overview. 2008. http:
//www.blackberry.com/knowledgecenterpublic/

livelink.exe/BlackBerry_Enterprise_Solution_

Security_Technical_Overview.pdf.

[20] Security and permissions in android. 2008. http:
//code.google.com/android/devel/security.html.

[21] Lieven Desmet, Wouter Joosen, Fabio Massacci,
Katsiaryna Naliuka, Pieter Philippaerts, Frank
Piessens, and Dries Vanoverberghe. A flexible security
architecture to support third-party applications on
mobile devices. In Proc. of ACM workshop on

Computer security architecture, 2007.

[22] Xinwen Zhang, Onur Aciicmez, and Jean-Pierre
Seifert. A trusted mobile phone reference
architecturevia secure kernel. In Proc. of STC, 2007.

[23] Nan Xu, Fan Zhang, Yisha Luo, Weijia Jia, Dong
Xuan, and Jin Teng. Stealthy video capturer: a new
video-based spyware in 3g smartphones. In Proc. of

WiSec, 2009.

[24] Andrei Sabelfeld and Andrew C. Myers.
Language-based information-flow security. IEEE

JSAC, 21(1):5–19, 2003.

[25] J. Ramı́rez, J. M. Górriz, and J. C. Segura. Voice

Activity Detection: Fundamentals and Speech

Recognition System Robustness, pages 1–22. I-Tech
Education and Publishing, Vienna, Austria, 2007.

