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ABSTRACT
Many Android applications are distributed for free but are
supported by advertisements. Ad libraries embedded in the
app fetch content from the ad provider and display it on the
app’s user interface. The ad provider pays the developer
for the ads displayed to the user and ads clicked by the
user. A major threat to this ecosystem is ad fraud, where
a miscreant’s code fetches ads without displaying them to
the user or “clicks” on ads automatically. Ad fraud has been
extensively studied in the context of web advertising but has
gone largely unstudied in the context of mobile advertising.
We take the first step to study mobile ad fraud perpe-

trated by Android apps. We identify two fraudulent ad
behaviors in apps: 1) requesting ads while the app is in
the background, and 2) clicking on ads without user in-
teraction. Based on these observations, we developed an
analysis tool, MAdFraud, which automatically runs many
apps simultaneously in emulators to trigger and expose ad
fraud. Since the formats of ad impressions and clicks vary
widely between different ad providers, we develop a novel
approach for automatically identifying ad impressions and
clicks in three steps: building HTTP request trees, identify-
ing ad request pages using machine learning, and detecting
clicks in HTTP request trees using heuristics. We apply
our methodology and tool to two datasets: 1) 130,339 apps
crawled from 19 Android markets including Play and many
third-party markets, and 2) 35,087 apps that likely contain
malware provided by a security company. From analyzing
these datasets, we find that about 30% of apps with ads
make ad requests while in running in the background. In
addition, we find 27 apps which generate clicks without user
interaction. We find that the click fraud apps attempt to
remain stealthy when fabricating ad traffic by only periodi-
cally sending clicks and changing which ad provider is being
targeted between installations.
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1. INTRODUCTION
Online advertising is a financial pillar that supports both

free Web content and services, and free mobile apps. Both
web and mobile advertising use a similar infrastructure: the
ad library embedded in the web page or mobile app fetches
content from ad providers and displays it on the web page
or the mobile app’s user interface. The ad provider pays
the developer for the ads displayed (impressions) and the
ads clicked (clicks) by the user. Because web and mobile
advertising use a similar infrastructure, they are subject to
the same security concerns, such as tracking and privacy in-
fringements [9, 27, 29]. Perhaps the biggest threat to the
sustainability of this ecosystem is ad fraud, where a miscre-
ant’s code fetches ads without displaying them to the user
or “clicks” on ads programmatically. Ad fraud has been ex-
tensively studied in the context of web advertising but has
gone largely unstudied in the context of mobile advertising.

On the web, ad fraud is often perpetrated by botnets,
which are collections of compromised user machines called
bots. Fraudsters issue fabricated impressions and clicks us-
ing bots so that the traffic they generate is varied (i.e., by IP
address), making the fraud harder to detect [28]. The two
properties of botnets that make them useful for ad fraud are:

• Botnets are comprised bots, which are real user de-
vices.

• Bots can be instructed to make arbitrary network re-
quests silently to the user.

Both of these properties also apply to malicious Android
applications. Moreover, while attackers have to compromise
desktops to acquire bots, they can simply distribute their
malicious applications through Android markets. Based on



these observations, we hypothesize that Android (and mo-
bile devices in general) are a lucrative target for those who
commit ad fraud professionally.
We take the first step to study fraud and other undesirable

behavior in mobile advertising. First, we identify unique
characteristics of mobile ad fraud. On Android, at any time
at most one app is running in the foreground, where the
app has a UI. Our first observation is that when an app
fetches ads while it is in the background, this is most likely
fraudulent, because the app developer gets credit for this ad
impression without displaying it to the user.1 Our second
observation is that when an app clicks an ad without user
interaction, it is definitely fraudulent.
Based on our observations, we set out to measure the

prevalence of ad fraud in the wild. We use two sets of apps:
1) 130,339 apps crawled from 19 Android markets includ-
ing Play and many third-party markets, and 2) 35,087 apps
that likely contain malware provided by a security company.
We build a testing infrastructure, where we launch multiple
instances of the Android emulator concurrently. In each em-
ulator, we install an app from our datasets, run it for a fixed
time, push it to the background, and continue running for a
fixed time, while capturing all the network traffic from the
emulator. Finally, we extract impressions, clicks, and other
ad related activities from the network traffic.
We have to overcome a number of challenges, the biggest

of which is how to identify ad impressions and clicks. The
formats of impressions and clicks vary widely between differ-
ent ad providers, so manually compiling a white list is labo-
rious, unreliable, and prone to obsolescence. We propose a
novel approach with three steps. First, we build request trees
to link causally related HTTP requests (Section 4.2). Then,
we use machine learning to discover new ad request pages
based on known ones. Finally, based on the properties of ad
clicks, we create rules to identify clicks from the HTTP re-
quest trees. From analyzing our datasets, we find that about
30% of apps with ads make ad requests while in running in
the background, which may be malicious or indicate miscon-
figuration. In addition, 27 apps generate clicks without user
interaction, which is definitely malicious. We find that the
click fraud apps attempt to remain stealthy when fabricating
ad traffic by only periodically sending clicks and changing
which ad provider is being targeted between installations.
We call our system MAdFraud, which includes the testing

infrastructure we used to run apps as well as the techniques
used to identify impressions and clicks. The goal of MAd-
Fraud is to automatically detect fraud behavior through
black-box testing of apps alone, without the need to man-
ually reverse engineer apps. In this way, our system can
scale to large numbers of apps. Although the definition of
ad fraud varies between ad providers as some ad providers
only pay developers when ads are clicked, we define fraud
as: 1) apps that show ads in the background, and 2) apps
that click on ads without user interaction. Thus, MAd-
Fraud exposes potentially fraudulent behaviors in apps but
it is up to the ad providers to decide if the behavior is in-
deed fraudulent. From reviewing the terms and conditions

1One possibly legitimate exception is when the app tries
to cache ad content while it is running in the background,
but this is forbidden by the terms of service of many ad
providers, as the app may never return to the foreground
and therefore cannot guarantee that the cached content will
ever be displayed on the UI.

of several ad providers [1, 19, 20], we find that all explic-
itly disallow (2) while only one explicitly disallows (1). It
would be fairly trivial to enforce other definitions of fraud
by analyzing the logs of impressions and clicks produced
by MAdFraud. For example, the ad providers may restrict
which other ad providers an app may contact. MAdFraud
can be applied to other deployments, such as identifying ad
behavior in network traffic captured from the wild, simply
by re-training our machine learner on the new dataset (see
Section 7). We make the following contributions:

• We take the first step to study ad fraud in mobile ad-
vertising by running a large number of apps and ana-
lyzing their network traffic.

• We propose a novel approach for automatically identi-
fying ad impressions and clicks, which is the basis for
detecting ad fraud.

• We discovered and analyzed various fraudulent ad be-
havior in mobile apps on popular markets.

2. BACKGROUND

2.1 Web Advertising
Advertising on the Internet is pervasive, and allows for

services such as websites, search, and email to be provided
to customers for free by including advertisements (ads) as
part of the content displayed to the user. Website own-
ers and other service providers (called publishers in adver-
tising jargon) typically include ads through a third party
called an ad provider, which handles finding and selecting
advertisements, as well as paying publishers for ads shown
to their users. On the Web, this is typically implemented
as an <iframe> or <script> HTML element embedded in
the publisher’s webpage, with a src attribute that points to
the ad provider’s ad server. When the web page is loaded
by a browser, the ad is populated via an ad request, which
contains the publisher’s ID and information about the user
that is used to select a relevant ad (known as targeting in-
formation). The ad server returns three pieces of content
once an ad is selected: the ad content URL, a click URL,
and a pixel URL. The ad content is typically hosted by the
ad provider (usually through a CDN) instead of the digi-
tal marketer who owns the ad, ensuring the content will be
available when the ad is loaded. Marketers who are paying
for their ads to be distributed by the ad provider want to
guarantee the ad provider is not fraudulently billing them,
so they themselves host a tracking pixel (or web bug) that is
loaded by browsers along with the ad so that the marketers
can independently verify that ads are being requested. Fi-
nally, the click URL indicates which web page should be
opened when a user clicks on an ad. The click URL typi-
cally points to the ad provider’s ad server, which records the
clicks and then redirects the user to the marketer’s landing
page. A complete ad request, response, and display of the
ad and pixel to the user is called an impression, and opening
the click URL is a click. Publishers are paid based on how
many impressions and clicks their content generates.

2.2 Web Ad Fraud
Unscrupulous publishers may inflate their ad revenues by

having automated bots visit their website and click on ads.



This is referred to as ad fraud (or click fraud), and is a se-
rious security issue as digital marketers who pay to have
their ads shown online will not receive any business bene-
fit for ads shown to bots. Although hard numbers on the
amount of ad fraud is hard to determine, conservative es-
timates suggest 10% of Web ad traffic is due to fraud [11].
In order to receive revenue, fraudsters must remain unde-
tected while issuing large numbers of ad requests and clicks.
To do so, they employ a number of techniques. First, the
ratio of click requests to requested ads is kept low (around
1% [28]) to avoid suspicion, as ads are rarely clicked on by
real users. This means fraudsters issue far more ad requests
than click requests. Second, fraudsters do not rely on a sin-
gle publisher account, but rather have many accounts from
many ad providers which they rotate through while issu-
ing requests [28]. Not only does this mitigate the impact
of any single account being detected, it also decreases the
magnitude of fraudulent requests for each publisher ID and
ad provider. Finally, fraudsters use botnets as the bots run
code that consistently visits the fraudsters’ webpages in the
background and clicks on the ads located there, so that the
fraudsters receive revenue. As mentioned in Section 1, bot-
nets allow fraudsters to remain stealthy as the bots are real
user devices which have been compromised.

2.3 Android App Advertising
Many Android applications are distributed for free on app

markets, and use ads embedded in the user interface of the
app to make money for the developer. The developer must
register with an Android ad provider, which provides the
developer with a publisher ID and an ad library to include
in their app. The library is responsible for fetching and dis-
playing ads when the app is being run. Requesting an ad for
an app is analogous to doing so on the web: an ad request
is made over HTTP to the ad server which includes the de-
veloper’s publisher ID and user targeting information. The
ad server returns the ad’s content URL, click URL, and any
tracking pixel URLs which must be fetched to display the
ad. In fact, many ad libraries choose to implement making
requests and displaying ads simply by loading a traditional
HTML ad element in a web view. The primary difference
between web and Android app advertising is that ad libraries
are implemented in application code, and often contain spe-
cial application-only logic, for example automatically col-
lecting user targeting information or refreshing the ad.

3. DATASET

3.1 Crawled Apps
We evaluate our assumptions on 713,173 Android apps

crawled from 19 markets including Google Play and numer-
ous third-party markets. Since we are only interested in
apps that can make network requests, we randomly selected
150,000 apps from the 669,591 apps that have the Internet
permission. Due to incompatibilities with our analysis envi-
ronment (e.g. mismatched API version and missing depen-
dencies), we ran a total of 130,339 apps out of the 150,000
selected apps (see Section 5.1 for details on the failed apps).
These apps were crawled between between October 30, 2012
and July 17, 2013. A breakdown of the 130,339 apps by
market is shown in Table 1.

Market Apps
Google Play 83,957

Anzhi 14,273
Gfan 8,423

Brothersoft 7,037
Opera 6,131

SlideME 4,627
m360 3,096

Android Online 2,174
1Mobile 1,650

Eoemarket 1,128
Goapk 628

AndAppStore 283
ProAndroid 278

Freeware Lovers 233
SoftPortal 216
Androidsoft 136
AppChina 74

AndroidDownloadz 39
PocketGear 36

Table 1: Market origins of the apps successfully run by MAd-
Fraud. Since some apps appear on multiple markets, the to-
tal apps in the table is slightly more than the total 130,339
apps run.

3.2 Malware Apps
In addition to the dataset described above, we received

38,126 apps from a mobile security company between Oc-
tober 28, 2013 and November 16, 2013. According to the
company, the dataset contains apps which are likely mal-
ware, but may contain some goodware as well. Regardless,
the percentage of apps which are malware in this dataset is
expected to be higher than in our crawled apps. We specu-
late the click fraud will be more pervasive in this dataset as
ad fraud on the web is primarily conducted by bots.

3.3 Ad Provider Domains
In order to detect ad behavior, we must know which do-

mains that ad providers use for their ad requests and clicks.
We build our list using two domain blacklists [14, 25] which
are curated to include only domains related to ad providers
and analytics. We then manually removed domains related
to the most popular analytics libraries. Unfortunately, even
after pulling in two separate blacklists with one being specif-
ically curated to include mobile ad providers, our list was
not complete. Therefore, we supplement these lists with
ad-related domains that we manually identified using App-
Brain’s list of popular ad libraries [2]. In total, we identified
3,118 ad-related domains, 3,062 from the blacklists and 56
manually.

4. METHODOLOGY
We wish to measure the prevalence of fraudulent and un-

desirable ad behavior (abbreviated simply as ad fraud hence-
forth) in Android applications. Based on common guidelines
and terms of service in mobile advertising, we identify the
following behavior as ad fraud:

• An Android app requesting ads while in the back-
ground, as it cannot display ads to the user (see a
possible exception to this rule discussed in Section 1).



• An Android app generating clicks without user inter-
action.

To detect the above behavior, we design a dynamic analy-
sis system to run apps in an emulator, capture their network
traffic, and extract ad impressions and clicks from the traffic.

4.1 Running Android Apps
We run apps in our dataset in an Android emulator (API

17) and capture their network traffic. For each app, we
create a new emulator image, install the app on the new
emulator, run the app in the foreground for 60 seconds, put
the app into the background, and run for another 60 seconds.
To put the app in the background, we issue an intent to
the emulator to open the browser on a static page hosted
on our server. The HTTP request to this static page marks
the boundary between the app’s foreground and background
activities in the captured network traffic. As we installed
only one third-party app on the emulator, all the captured
traffic not from the emulator (evident by a nonstandard TCP
port) or browser (evident by our server’s IP address in the
IP header’s source or destination) is attributed to this app.
We choose not to interact with the app (i.e., touch events)
even when it runs in the foreground to ensure that any ad
clicks are generated without user interaction.
To analyze the packets captured by MAdFraud, we use

the Bro Network Security Monitor [22]. Using Bro, we can
reconstruct TCP flows and extract application protocol enti-
ties for HTTP and DNS traffic. For HTTP, these entities in-
clude fields from the HTTP request and response. From the
HTTP request, we extract header fields as well as the URL
and request body. From the HTTP response, we record the
status code, response type, and any URLs in the unzipped
response body. For DNS, these entities include the host-
name in the DNS query and the IP addresses in the DNS
response. We store all of these entities in a database for
further analysis.

4.2 Request Trees
We can group HTTP requests logically together, as a re-

sponse from the server may trigger additional HTTP re-
quests. For example, a browser loading a web page may
fetch static resources, such as JavaScript or images, to em-
bed in the HTML. In this case, we can group the HTTP
requests using the HTTP referrer header to form a tree of
requests where the request to the HTML page is the root
and requests to the static resources are the children. Intel-
ligently constructing this HTTP Request Tree is important
because it enables a number of techniques for automatically
analyzing ad traffic, such as automatically detecting clicks.
We represent each HTTP request in an app’s network traf-

fic by a node in a request tree, and connect two nodes if and
only if they are related according to three rules. The first
two rules are based on the HTTP protocol specifications [3]:
1) the client may set the request referrer field to indicate
to the server the URL that contained the requested URL,
so we consider the former URL as the parent of the latter
URL, and 2) the server may set the location header along
with a redirection status code to redirect the client to a an-
other URL, so we consider the original URL as the parent of
the redirected URL. Finally, to account for when the refer-
rer header is missing, we extract all the URLs in the HTTP
response body of a node and consider the node as the parent
of all the URLs (after URL normalization).

4.3 Ad Request Page Classifier
To identify ad fraud, we must first identify impressions in

app network traffic, which begin with an ad request. Since
there are many ad providers for Android (over 80 accord-
ing to [2], and likely many more that are small or operate in
other countries), it would be prohibitive to manually reverse
engineer each ad provider’s ad serving protocol to determine
which URLs correspond with ad requests. Instead, we de-
velop an approach for automatically identifying impressions
using machine learning. From manually examining mobile
ads in our previous work [27], we know ad requests have
a common, characteristic format. They typically contain
a large number of query parameters, such as the publisher
ID and user and device information for selecting relevant
ads, will receive at least three URLs in the response body,
and are followed by HTTP requests to image content but
not HTML or CSS. One naive approach would be to clas-
sify whether each HTTP request is an ad request directly;
however, since this approach fails to consider any aggregate
features, it would severely limit the features available to the
classifier. Instead, we classify request pages, identified by the
host and path names, which is the portion of URL before
the ‘?’ character that denotes the beginning of the query
parameters. This allows us to extract features over the ag-
gregate of all requests to each request page. We then classify
whether each page is for requesting ads.

For each page we extract 33 features from three sources:
10 from query parameters, 16 from request trees, and 7 from
HTTP headers. Since our classifier builds decision trees
based on the predictiveness of features for the ground truth
dataset, we include all the features that may be important
based on our observations and then let the classifier deter-
mine which of these features are actually predictive. We
measure the relative importance of these features in Sec-
tion 5.2.2.

Features from query parameters.
For each page, we aggregate all the requests to it to mea-

sure two properties on each query parameter: whether the
parameter is an enumeration and how many bits of entropy
it contains. To determine whether a parameter is an enu-
meration, we compute the ratio of distinct values found for
that parameter over the total number of times the parame-
ter appeared in a request. Some parameters will only have a
small number of distinct values, and we expect this ratio to
be tiny (for example, the IMEI of the emulator will always
be the same). On the other hand, if the ratio is near one, it
implies that most requests have different values for this pa-
rameter, indicating that the parameter may take arbitrary
values (for example, a timestamp field). We also compute
the ratio of distinct values found for that parameter over the
number of distinct apps (to account for fields that remain
unchanged between requests for the same app, such as the
publisher ID). We then segment these two ratios into several
intervals and count the numbers of query parameters whose
ratios are in each interval. These counts contribute six fea-
tures to our classifier. To estimate the entropy of the values
of a key, we first attempt to categorize the values into classes
(e.g. numeric, alphanumeric) which have different entropy
levels per character. We then multiply the determined en-
tropy level by the average length of the values associated
with each query parameter to determine the entropy level
for the query parameter. We consider an entropy to be high



if it has more than 216 bits and low otherwise. We then
count the number of query parameters that have high and
low entropy, respectively, contributing two features to our
classifier. The last two features describe the average and
total number of query parameters, respectively.

Features from request trees.
These 16 features describe the structure of the request

trees (Section 4.2). These features include the position in the
request trees, such as the average height of trees containing
the page, the average subtree height below the page, and
the average depth of the page in the trees. We also extract
features based on the number of children, the MIME types
of the children, and the types of edges that connect the
children to the parent.

Features from HTTP headers.
These 7 features include the status codes, the length of

the requests, and the length of the replies, etc.

4.4 Finding Impressions and Clicks
With the classified ad request pages (Section 4.3) and

HTTP request trees (Section 4.2), we can extract impres-
sions and clicks for each app. It is tempting to simply
consider each ad request as an impression. However, we
found that many ad providers support reselling of ad im-
pressions, where an ad request receives a new ad tag (i.e.,
an ad <iframe>) instead of ad content. This new ad tag
then initiates another ad request, which may be resold again.
Reselling of ad slots is done for business purposes: an ad
provider may choose to buy ad slots from another ad provider
so that the ad slots can be sold at a higher price to their own
marketers, allowing for the provider to reach a larger target
audience. For the purpose of measuring ad fraud, however,
counting each resold ad request as an impression would be
disingenuous, as the developer cannot control ad reselling
and is paid only once regardless of how many times the ad
is resold. To accurately measure the number of impressions,
we consider an ad request as an impression only when none
of its ancestors in the request tree are ad requests.
Besides impression fraud, another, perhaps more lucra-

tive, revenue source for misbehaving apps is click fraud,
where an app fabricates fraudulent clicks. There are two
ways for apps to fabricate clicks without user interaction.
First, the app may generate a touch event on the ad to trick
the ad library to process it as a user click. Second, the app
may parse the response body of the ad request and extract
the click URL, and then make an HTTP request to the click
URL. To detect either of these cases, we apply rules to the
subtrees of ad request nodes in our request trees to deter-
mine if there is a path from an ad request node to a click
node. We extracted the following rules by manually running
apps in an emulator, clicking on their ads, analyzing their
network traffic, and examining the properties of paths that
led to ad clicks.

• Apps often handle clicks using HTTP redirection to
send a request to the ad server before redirecting the
user to the marketer’s web page. Based on this obser-
vation, we look for an HTTP redirection in the subtree
of an ad request node that ends on a node that received
HTML as its response MIME type.

• Android apps have a variety of unique ways to handle
clicks. For example, some clicks redirect to a loca-

tion URL that has a market:// schema, indicating
the Google Play app should be launched. Similarly,
we found an ad provider whose library downloads a
.apk to the device after the user clicks an ad. To han-
dle these cases as well as marketers that have HTTPS
landing pages, we infer that an ad request that has a
redirection in its subtree that redirects to a page with
a schema other than http:// contains a click.

Both of these rules require that the landing page be for a
non-ad related hostname. We identify clicks in each app by
building its request trees, finding all the impression nodes,
and applying the above rules to each impression node. Fig-
ure 1 shows an example request tree with a click.

mobfox.com/adrequest

inmobicdn.net/..a4.jpg

body_url

mobfox.com/pixel.php

body_url

mobfox.com/cl/..Gly

body_url

mobfox.com/click.php

location

c.w.inmobi.com/..NTI

location

marketer.com/..adClicked.jsp

location

marketer.com/..jquery.js

referrer

marketer.com/adtracking

referrer

marketer.com/favicon.ico

referrer

Figure 1: Example ad request tree with click. Nodes in
blue are images and nodes in green are static web content.
Nodes with a dotted outline are for requests with a known
ad provider hostname. The ad request is the root, and its
children are the ad image and a tracking pixel. The subtree
on the right is the result of a click, with a redirect chain that
ends on the marketer’s homepage. All nodes have shortened
URLs, for simplicity.

5. EVALUATION
We ran 130,339 of our crawled apps through MAdFraud.

In total, these apps generated 1,807,379 HTTP requests,
508,005 of which we identify as being ad-related based on
the hostname extracted from the request.

5.1 Apps without ad requests
77,461 apps made no HTTP request to a known ad provider

hostname during the full duration of their runtime in MAd-
Fraud. The possible reasons are: 1) the app crashes before it
makes an ad request, 2) the app includes no ads, 3) the app
requires user interaction to reach a UI state where ads are
displayed, or 4) the ad library refuses to make ad requests
when it detects the emulator environment.2 To investigate
why these apps make no ad requests, we ran a random sam-
ple of 7,500 (approx. 10%) apps through a separate tool
called PyAndrazzi [12].

2We know of no ad libraries that do this.



Status Apps
Ran to completion, no ads 3,807
Ran to completion, with ads 957

Missing Native Library 990
Unknown Error 733

App crash 573
API Version Mismatch 440

Table 2: Breakdown of PyAndrazzi’s results for the 7,500
apps analyzed that made no ad requests when run through
MAdFraud.

PyAndrazzi is a dynamic analysis framework designed to
interact with apps and perform UI state exploration. Be-
cause it was originally designed to inspect how apps fail
when their permissions are revoked, PyAndrazzi monitors
apps extensively and can identify when and how the apps
crash. This makes PyAndrazzi an ideal tool for determining
whether apps are crashing, contain no ad libraries, or require
interaction to reach a UI state where ads are displayed.
Table 2 shows that about 37% of the apps that did not

generate ad traffic either crashed or failed to install prop-
erly on the emulator (due to missing x86 native libraries or
an API mismatch). Both MAdFraud and PyAndrazzi use
the x86 version of Android to speed up the Android emu-
lator through hardware acceleration. However, some apps
include native code for ARM devices but not x86 and thus
cannot run correctly. In future work, we could address this
limitation by running apps with ARM binaries on an ARM
emulator. Among the apps that did run to completion, 957
made requests to a known ad provider. As these apps did
not make ad requests during their analysis in MAdFraud,
we conclude that these apps likely display ads on UI states
that require user interaction.

5.2 Ad Request Page Classifier

5.2.1 Ground Truth
To build the ground truth dataset for identifying ad re-

quests, we started with the most popular ad providers and
manually investigated the pages that our apps requested.
For each ad provider, if we were able to determine all the
ad request pages for this ad provider by manually inspecting
the HTTP traffic for each page, we labeled those pages as
ARQ (ad requests) and all other pages for the ad provider
as NARQ (not ad requests). Otherwise, we excluded this ad
provider from our ground truth dataset and instead use our
trained classifier to automatically identify the ad request
pages for this ad provider. We also identified the top do-
mains used by apps that are not ad providers and labeled
all their pages as NARQ. In total, we identified 39 pages as
ARQ from 25 ad providers and 11,484 pages as NARQ.
Since the dataset is heavily skewed towards the NARQ

class, we use SMOTE [4] to over-sample the ARQ class.
SMOTE is an algorithm for creating synthetic instances
of a minority class to improve the classifier’s sensitivity to
the minority class. Once we have generated the new in-
stances and added them to the ground truth, we then build
a classifier using the RandomForestClassifier from scikit-
learn [23]. The RandomForestClassifier creates a forest
of decision trees by randomly selecting subsets of the fea-
ture space and training a decision tree using each subset.

Prediction

ARQ NARQ Recall

T
ru

th ARQ 28 11 71.8%

NARQ 9 11,475 99.9%

Precision 75.7% 99.9%

Table 3: Confusion matrix of our ad request page classifier,
computed using 3 fold cross-validation on our ground truth.

The most predictive decision trees are weighted appropri-
ately, and in turn indicate which features are the most pre-
dictive. Decision trees are an appropriate choice for our fea-
ture space as we include categorical (i.e., non-Euclidean) fea-
tures, which popular algorithms like SVM and K-neighbors
do poorly on.

To evaluate the performance of the classifier, we apply
cross validation to the ground truth. We split the ground
truth into 3 folds, train a classifier on 2 of those folds and
then evaluate its performance on the remaining fold. In the
evaluation, we include no synthetic data points generated
by SMOTE and used for training. Table 3 shows the overall
confusion matrix for the classifier during cross validation. It
shows that the classifier has a very low false positive rate
(00.1%) and that it achieves a reasonable true positive rate
(71.8%). Since we will apply the classifier to unknown pages
from ad providers to report on the number of ad requests,
we prefer the classifier to have erred towards being more
precise. Overall, the classifier had a class-weighted accuracy
of 85.9%.

5.2.2 Feature Importance
Once we have trained the classifier, we can evaluate the

relative importance of its features to investigate which fea-
tures are the most predictive. We compute feature impor-
tance using scikit-learn’s built-in method, which measures
feature importance by calculating the depth of nodes that
use the feature in the decision trees. The higher a feature
appears in the trees, the more important it tends to be. Us-
ing this methodology, each feature is assigned an importance
between 0 and 100% with the sum of all feature importance
values equaling 100%.

Figure 2 shows the importance values of features exclud-
ing features whose importance values are less than 1%. It
shows that nine out of the top ten features are derived
from the query parameters, such as the number of enumer-
ation parameters, the number of low and high entropy pa-
rameters, and the total number of parameters. Note that
many of these features could not be computed from single
requests, confirming our assertion that classifying request
pages, which are aggregate requests, is more predictive than
classifying individual requests (Section 4.3). The most pre-
dictive request tree features focus on the height of the tree,
as opposed to features measured by analyzing the page’s
child nodes. This makes sense, as ad requests tend to vary
more in their tree heights and their depths in the tree (due
to ad reselling) than other types of pages. The fact that
features measured from child nodes are not very predictive
is likely due to differences between how ad servers respond
to ad requests.
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Figure 2: Feature importances ranking the predictability of
each feature. Feature importances sum to 100%. Features
with less than 1% importance are not shown.

5.2.3 Results
Using the ground truth described in Section 5.2.1, we

build a classifier to apply to all the pages requested by apps
in our dataset. First, as a prefiltering step, we eliminate
all pages whose extension indicate that they are likely a
static resource such as an image, JavaScript file, or CSS file,
as static resources cannot be used for ad requests. After
prefiltering, there are 100,611 pages to classify. When we
applied the classifier to these pages, 715 pages were classi-
fied as ARQs, among them 678 pages were not present in
the ground truth and 229 pages were for hostnames that
had been known to be ad-related domains. As there are
far too many non-ad-related domains to manually investi-
gate, we instead investigated 30 domains whose pages the
classifier was most confident were ARQs (the classifier com-
putes a probability that the page is in each class). From
the 30 domains, we were able to determine that 13 of the
domains were ad-related. A common trend we found when
analyzing these non-ad-related domains is that the pages
used by analytics libraries, which are used to record infor-
mation about the user’s actions, are often misclassified as ad
requests. These analytics pages have a very similar format
to ad requests as they both rely on many query parameters
to pass identifiers for the app, device, and user back to the
server. This corroborates our earlier findings in Section 5.2.2
that the classifier primarily uses features based on the query
parameters. To avoid over-estimating the number of ad re-
quests performed by apps, we choose to consider only ad
requests to pages with known ad-related hostnames. This
results in 229 pages for 77 ad providers.

5.3 Request Trees
We build request trees for finding clicks based on impres-

sion nodes. Using the rules described in Section 4.4, we
automatically found 60 clicks, among which 59 clicks we
manually verified. The single false positive was caused by
an ad image redirecting to an HTML page. We suspect that
this is due to a misconfiguration in either the ad provider or
the CDN hosting the ad image.

Apps... Crawled Apps Malware Apps
in dataset 150,000 38,126
successfully run 130,339 35,087
with HTTP traffic 88,305 24,957
with ad traffic 52,878 10,960
with impressions 40,409 8,974
with bg impressions 12,421 1,835
with clicks 21 6

Table 4: The number of apps at each stage of our analysis
in our two datasets. in dataset : the number of apps ex-
amined. successfully run: the number that actually ran in
our dynamic analysis environment. with HTTP traffic: the
number of apps that had any HTTP traffic (not attributed
to the emulator or MAdFraud). with ad traffic: the number
of apps that have traffic to known ad provider hostnames.
with impressions: the number of apps with impressions is
calculated based on the ARQ pages identified by our clas-
sifier. with bg impressions: the number of apps making ad
requests in the background. with clicks: the number of apps
issuing clicks.

Occasionally, we cannot link clicks to their impressions
due to ad providers that construct click URLs dynamically
in application or JavaScript code. To identify clicks for these
ad providers, we would have to either reverse engineer this
logic to add special cases for them when constructing re-
quest trees, or manually determine which pages are associ-
ated with clicks and look for requests to these pages in app
traffic. This limitation may have caused us to underesti-
mate the number of clicks. In the case that an impression is
resold, we find that the subsequent ad requests are always in
the response body of their predecessors, as this is intrinsic
to the mechanism for reselling ads. One caveat, however, is
that it would be impossible to manually determine that two
ad requests are part of a reselling chain if there is no refer-
rer, body URL, or redirection to indicate that an impression
was resold, without reverse engineering ad library logic. We
speculate that this case would occur very rarely, if at all.

6. FINDINGS
We describe the results of our analysis on the network data

captured from the crawled app and malware app datasets.
We start by focusing on the 130,339 crawled apps, then in
Section 6.3 we compare these results with the results of the
35,087 malware apps. Table 4 shows an overview of our
results.

6.1 Market Comparison
We investigate the popularity of various ad providers in

our crawled app dataset compared with the markets from
which we downloaded the apps. We group the providers Ad-
mob and Doubleclick together under ‘Admob’, as they are
both owned by Google and often appear together in ad traf-
fic. Overwhelmingly, Admob is the most popular provider
among the apps we ran; 47.21% of our apps make a net-
work request to an Admob domain. Figure 3 shows the
popularity of Admob across the 9 markets from which we
downloaded a majority of our apps. The popularity of the
remaining 8 most popular ad providers across these markets
is shown in Figure 4. We can see that the Chinese providers
WAPS and YouMi have much higher popularity among apps



from Chinese markets (Anzhi, Gfan, m360, and Android On-
line) compared with their popularity on English (language)
markets. Similarly, English ad providers are less popular
on the Chinese markets, although Admob is still the most
popular provider on m360 and Android Online. Finally,
the ad provider Adlantis is the only popular ad provider
which is neither English or Chinese; Adlantis is a Japanese
ad provider. Its popularity in our dataset is surprising, as
we do not crawl any Japanese markets.
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Figure 3: Popularity of Admob for apps from the top 9
Android markets, ordered by number of apps tested from
that market. The y-axis is percentage of our crawled app
dataset that appear on that market that make a request to
an Admob domain.

6.2 Ad Fraud
Here we report on the ad behavior of our crawled app

dataset. As previously mentioned, we identify two behaviors
that are consistent with ad fraud: 1) apps which make ad
requests in the background, and 2) apps that click on ads
without user interaction.

6.2.1 Background Requests
We start by investigating which apps made ad requests

while in the background. As previously mentioned, we run
apps for 60 seconds in the foreground and 60 seconds in
the background. We build request trees from the network
captures of the apps and find impressions by looking for clas-
sified ad request pages in the request trees. Using the list of
ARQ pages identified by our classifier, we find that 40,409 of
our crawled apps generated a total of 274,128 impressions.
Figure 5 shows a distribution of the number of impressions
over time, relative to the start time of each app. From this
figure, we can see a number of interesting patterns. First,
most apps request an ad immediately upon startup with-
out user interaction. 16,755 of the apps only request one ad
during their run. Second, there is a clear periodicity to the
distribution of impressions. This is because many Android
ad libraries are configured to automatically refresh ads at
constant intervals, the most common intervals being 30 sec-
onds and 60 seconds. There appears to be a large spike at

60 seconds (the time when we put apps in the background)
due to apps which are configured to request ads at these
intervals. This is because these apps had initiated their ad
request while in the foreground, but did not complete it until
being put into the background. We do not wish to consider
these impressions as fraudulent, as they do not indicate that
the apps would have had the same behavior if they had been
put into the background at a different time. Thus, we allow
a 5-second grace period after apps are put into the back-
ground where we do not consider impressions as fraudulent.
Based on this, we found 91,784 background impressions from
12,421 apps.
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Figure 5: Distribution of the number of impressions over
time, relative to the start time of each app.

Finally, the periodicity of ad requests continues after apps
have been put into the background, implying some apps con-
tinue to run the ad library after losing focus. We expect that
some of these cases are due to misconfiguration, however we
do not attempt to determine intent. Regardless, requesting
ads while the user is not using the app is undesirable behav-
ior, as it is wasteful of device bandwidth and battery life,
and may affect the ad provider’s bookkeeping.

6.2.2 Click Fraud
We can now use the 274,128 request trees containing im-

pressions that were found in the previous section to find
apps that are fabricating clicks. We consider all clicks in
our apps as fabricated, regardless of whether they were per-
formed while the app was in the foreground or background,
as we do not interact with the UI of our apps while running
them. Using the click rules described in Section 4.4, we find
that 21 apps fabricate a total of 59 clicks. We find that 24
of the clicks were performed in the foreground and 35 were
performed in the background, indicating that the apps fab-
ricating clicks continue doing so regardless of whether they
are on the screen. We manually investigate the HTTP traf-
fic for these 21 apps to confirm that they were all indeed
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Figure 4: Popularity of the top 8 ad providers on the top 9 Android markets by percentage of apps. We omit Admob from
the list of ad providers (but plot it in a separate figure, Figure 3) because of its overwhelming popularity.

click requests. This means that this result is a lower bound
for the actual number of clicks across all ad providers. To
further investigate the behaviors of these apps, we ran an
additional experiment where we left the apps running for a
total of twelve hours — six hours in the foreground and six
hours in the background. The primary goal of this experi-
ment was to determine whether the apps fabricate clicks for
some period of time and then stop, or, if they continue to
fabricate clicks on a regular interval indefinitely.
The results from this experiment are shown in Table 5

(along with six apps found to fabricate clicks in the malware
dataset). Interestingly, only 16 of the 21 apps fabricated
clicks when run a second time, perhaps to stay hidden. For
each app, we show its source (either a market, the malware
dataset, or ‘?’ if the market information was missing), the
number of installs the app had at the time it was crawled
along with the number of impressions and clicks during the
experiment. Lastly, we report the average interval of time
between clicks, calculated as time between the first and last
clicks divided by the total number of clicks, and list the ad
providers whose impressions were clicked on.
There are a number of surprising results in this table.

First, three apps on Google Play, collectively with thou-
sands of installs, fabricated clicks. When we looked up the
apps on the market, we found that only one of the three apps
were still available. It is unclear whether these apps were
removed due to the fraudulent ad behavior or for other rea-
sons. Second, a number of apps have a very similar number
of impressions and clicks. We speculate that the same mis-
creant may have uploaded separate apps with the same click
fraud code. Third, only three ad providers appear in the ta-
ble. This could be for a variety of reasons including, 1) these
ad providers are easy to sign-up for, or 2) these ad providers
have less sophisticated click fraud detection. Fourth, apps
fabricate clicks to at most one ad provider during the ex-
periment. To reduce their risk of being detected, we expect
miscreants to rotate between different ad providers but this
does not seem to be the case. Interestingly, some apps fabri-
cated clicks to different ad providers during this experiment

than in the previous experiment. We speculate that the apps
may select an ad providers on start-up rather than rotating
while they are running.

6.3 Dataset Comparison
We analyze the network traffic generated from our mal-

ware apps and compare the result with our measurements
from the crawled app dataset. Figure 6 shows the popularity
of various ad providers in our crawled apps, malware apps,
and from App Brain, an organization that presents statistics
about Android apps on Google Play. App Brain publishes
ad provider statistics [2] based on the presence of ad libraries
in apps. It provides an interesting comparison to our results,
which measure usage of ad libraries by apps. There are clear
discrepancies between these three datasets. Notably, apps
in the malware dataset prefer certain ad providers (WAPS,
AdsMogo, AppLovin) while avoiding other (Admob, Mob-
clix). This could be due to certain providers vetting devel-
opers more aggressively, or because malware apps may tar-
get non-English markets. The popularity of Airpush in the
malware dataset is explained by the numerous security and
privacy infringements found in the Airpush ad library [26],
meaning some of the apps in the malware dataset may only
be there because they include the Airpush library. Finally,
we note that App Brain’s methodology for measuring ad
provider popularity does not indicate which providers are
actually used. Unused libraries may be dead code, or used
only rarely by apps. In addition, determining which libraries
are included in an app using only static analysis is compli-
cated by programs like Proguard [24], which obfuscate pack-
age and class names for Android apps.

6.3.1 Ad Fraud Differences between Datasets
We now investigate the prevalence of fraudulent ad be-

havior in the malware dataset. We find a total of 8,974 apps
made 57,619 impressions overall, and that 1,835 apps made
16,565 impressions while in the background. Of the clicks we
measured, 27 clicks were generated from 6 apps in the mal-
ware dataset. Interestingly, the rates of fraudulent behavior



App Source # Installs # Impressions # Clicks Click Interval (s) Ad providers
79b85a Opera 236 63 18 1,935.6 MobFox
9e5b41 SlideME 915 63 18 1,925.7 MobFox
f56bda Google Play 1,000 63 17 2,049.3 MobFox
5a6fc0 Opera 117 54 6 5,795.6 MobFox
63fd85 Opera 255 54 6 5,798.7 MobFox
76a7dc Opera 125 54 6 5,797.3 MobFox
86cd17 SlideME 915 54 5 6,956.4 MobFox
94bfa8 Google Play* 500 4,366 5 8,353.1 Migital
7bb12f 1Mobile N/A 4,392 4 6,717.8 Migital
807a0a BrotherSoft N/A 98 2 0 AppsGeyser
d9162a BrotherSoft N/A 4,385 2 16,919.2 Migital
57b67c Google Play* 10,000 56 1 N/A AppsGeyser
a3d816 ? N/A 4,381 3 10,000 Migital
b611ea ? N/A 4,374 1 N/A Migital
c7681c ? N/A 4,416 1 N/A Migital
d55ece ? N/A 4,384 1 N/A Migital
c31310 Malware N/A 63 15 2,323.1 MobFox
1fcc39 Malware N/A 54 6 5,796.5 MobFox
247e2e Malware N/A 414 6 5,797.6 MobFox
721797 Malware N/A 414 6 5,796.0 MobFox
35e164 Malware N/A 54 5 6,956.1 MobFox
9863d9 Malware N/A 414 5 6,955.2 MobFox

Total 14,063 32,670 139

Table 5: Results of running apps that fabricate clicks for six hours. During the experiment, only 22 (16 crawled from various
markets and 6 from our malware dataset) of the 27 apps tested fabricated clicks after being found doing so in previous
experiments. An asterisk next to an app from Google Play indicates that the app is no longer available. Apps whose sources
are labeled ‘?’ were downloaded by our crawlers but their markets were not recorded.

in the malware dataset tend to be lower than those in the
crawled dataset. For example, 9.5% of crawled apps have
an impression in the background, whereas 5.2% of malware
apps have an impression in the background. This could be
due to a number of factors. First, this could mean that mal-
ware apps do not commonly perform ad fraud (remember
the malware dataset contains apps that are likely malware,
but also includes some goodware). On the other hand, the
security company that collected the malware samples may
not check for ad fraud. Lastly, malware may be more likely
to perform emulator detection and thus would avoid per-
forming malicious activities if the malware apps detect that
they are run in an emulator. The relationship between mal-
ware and ad fraud on Android is an interesting direction for
future work.

7. LIMITATIONS
Here we discuss limitations of our study. We first dis-

cuss three limitations that may have led us to underesti-
mate the prevalence of fraud behavior in apps. First, we
ran apps in emulators instead of on real devices. It is possi-
ble, though we have not observed it, that some ad libraries
may refuse to display ads while in an emulator, and some
fraud apps may not send fraudulent traffic to avoid being
analyzed. Second, we do not interact with the apps and
thus we may not reach a UI state where apps would per-
form fraud. Given that our work was inspired by botnet ad
fraud on the web, we would like to find apps which issue
fabricated impressions and clicks silently to the user. Fraud
apps which only perform fraud on certain UI states risk not
being able to perform the fraud when users are not inter-
acting with the app. Regardless, if exploring the UI of apps

is desirable, MAdFraud could be run using a more sophisti-
cated dynamic analysis tool which can explore the UI state
of apps without accidentally clicking on ads (in Section 5.1
we ran MAdFraud using the output of the PyAndrazzi dy-
namic analysis tool, for example). Designing such a system
is non-trivial, however, as different ad libraries implement
ads differently. Thus, heuristic approaches would be prone
to false positives, where ads are clicked accidentally, caus-
ing MAdFraud to flag the apps as having click fraud. This
may cause us to overestimate our results. Third, we ran all
our emulators on a single static IP address. It is possible
that some ad providers may have blocked our IP address
during our experiments. However, given the prevalence of
NAT in our network and that we run no more than 70 apps
concurrently, we believe that this is unlikely.

Lastly, we discuss a type of fraud our system cannot de-
tect, display fraud where apps obscure or hide ads in the UI
of the app. Liu, et al. [13] investigate display fraud on Win-
dows Mobile via a system called DECAF which analyzes the
UI structure of apps. Their approach is complementary to
our system, as the two systems detect different types of ad
fraud. The display fraud detected by DECAF requires the
user to run the app (so that ads can be obscured), and to
interact with it (so that the user can be coerced into click-
ing on an ad). On the other hand, MAdFraud detects fraud
that is performed silently to the user, either ads requested
in the background or ad clicks without user interaction. If
we combine the methodologies of MAdFraud and DECAF,
we could detect new types of fraud that neither system can
detect currently; for example, apps that request ads while
running in the foreground but do not put the ad in the UI
of the app.
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Figure 6: Ad provider popularity by dataset. The list of ad
providers differs slightly from those in Figures 4 and 3 be-
cause those figures were limited to apps on the top markets.
The results from our crawled dataset may overestimate the
popularity of ad providers as we only select apps that have
the INTERNET permission. Again, we omit Admob from the
list of ad providers because of its overwhelming popularity.
In comparison, Admob is in 47.21%, 28.3%, and 36.64% of
crawled apps, malware apps, and App Brain apps, respec-
tively.

8. RELATED WORK

8.1 Web Advertising
Ad fraud has been studied extensively in the context of

online Web advertising. Daswani [6] provides an overview of
terms and techniques used for Web ad fraud. Many detec-
tion and defense techniques have been proposed to combat
web ad fraud. Some detection techniques focus on detect-
ing duplicate clicks [30, 17], where a publisher inflates its
clicks by clicking the same ad many times. Other techniques
detect fabricated impressions and clicks by aggregating ad
traffic across client IP addresses and cookie IDs and looking
for clients whose ad traffic deviates from expected behav-
ior [16, 18] However, both of these techniques are thwarted
by sophisticated botnet ad fraud [28], which uses many com-
promised machines to vary the IP addresses and cookie ID
of fraudulent requests. Fraud performed on many mobile
devices would be similarly resistant to these detection tech-
niques. Defenses against ad fraud focus on defeating eco-
nomic incentives of fraud [21, 15] or using false ads to find
malicious publishers [10].

8.2 Mobile Advertising
There is very little security research on ad fraud on mo-

bile devices. Notably, Liu [13] investigates display fraud on
Windows Mobile, which uses techniques that analyze the
UI of apps to determine if developers are hiding, obfuscat-
ing, or stacking ads to increase their ad revenue or coerc-
ing users to click ads. These techniques would not be able
to detect when apps fabricate ad traffic in the background.
Symantec [5] and Lookout [7], two security companies, pro-

vide case studies of malware which uses ad fraud to make
money. These include a type of click fraud called search en-
gine poisoning, where search engine results can be modified
by clicking on links in search engine results to increase their
page rank. We note that despite similar nomenclature, this
type of click fraud is independent of ad click fraud. Finally,
plagiarized applications have been found to use advertising
to make money by replacing the ad libraries of victim appli-
cations with libraries configured to use the plagiarist’s ac-
count details [8]. Despite the damage that plagiarism causes
to developers, this attack is not ad fraud, as plagiarized apps
will still show ads to users.

9. CONCLUSION
We have taken the first step to study mobile ad fraud

on a large scale. We developed a system and approach,
MAdFraud, for running mobile apps, capturing their net-
work traffic, and identifying ad impressions and clicks. To
deal with the wide variety of formats of ad impressions and
clicks, we proposed a novel approach for automatically iden-
tifying ad impressions and clicks in three steps. We discov-
ered and analyzed various fraudulent behavior in mobile ads.
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