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Abstract—Mobile applications are a major force behind the
explosive growth of mobile devices. While they greatly extend
the functionality of mobile devices, they also raise security and
privacy concerns, especially when they have not gone through
a rigorous review process. To protect users from untrusted
and potentially malicious applications, we design and imple-
ment a rewriting framework for embedding In-App Reference
Monitors (I-ARM) into Android applications. The framework
user identifies a set of security-sensitive API methods and
specifies their security policies, which may be tailored to each
application. Then, our framework automatically rewrites the
Dalvik bytecode of the application, where it interposes on
all the invocations of these API methods to implement the
desired security policies. We have implemented a prototype of
the rewriting framework and evaluated it on compatibility,
functionality, and performance in time and size overhead.
We showcase example security policies that this rewriting
framework supports.

Keywords-Mobile applications; Reference monitor; Rewrit-
ing; Security policy

I. INTRODUCTION

Smartphones and tablets are becoming ubiquitous, fu-
eled by the explosive growth of mobile applications. For
example, Google’s Android Market has topped the 200K,
300K, and 400K available apps milestones in April, August,
and December 2011, respectively [1]. Since most of these
applications are written by third-party developers and have
not gone through rigorous review, they may violate the
user’s security or privacy expectations. For example, they
may exfiltrate the user’s confidential or private information
or modify critical data. Even though Android allows the
user to review and approve the permissions requested by
each application, few users are able or willing to understand
the implications of each permission completely. Moreover,
unless the user agrees to grant all the requested permissions,
Android will refuse to install the application.

To overcome the above limitations, we propose a rewriting
framework to embed In-App Reference Monitors (I-ARM)
in Android applications. Unlike traditional x86 applications,
most Android application code runs on the Dalvik Virtual
Machine (DVM) and is structured and unambiguous. This is
in stark contrast to x86 instructions where the meaning of

a particular section of binary code depends on the context
of the running application. We build a general rewriting
framework for Dalvik code in Android applications. Our
framework implements a user’s desired security policy by
interposing on method invocation in an application. Our
approach requires no modification of the Android framework
and no application source code.

A. Alternative design choices

Our goal is to enforce flexible security policies on Android
applications. We chose the approach of embedding reference
monitors in applications by rewriting the Dalvik bytecode
directly. We considered but rejected three alternative ap-
proaches:

Modifying the Android Platform: One could modify the
Android framework to specify and enforce flexible security
policies [2]. This approach has a few benefits, such as no
need to modify individual applications and being able to
incorporate system information into the policy enforcement
that is inaccessible to the applications.

However, this approach has a number of major draw-
backs. First, it would require building custom firmware
and platform code, which is tedious, and deploying them,
which generally requires rooting the device and voiding the
user’s warranty. Second, maintaining the modified platform
is challenging, especially for different devices and different
versions of the platform. Upgrading to a newer version of
Android requires reimplementing the custom modifications
into the new platform source, and rebuilding and deploying
to the device. Third, this approach may not be flexible
enough, as applications are limited to the security policies
that are supported by the modified Android framework.
Furthermore, the build and deployment concerns make it
tedious for a user to add or update new security policies
over time.

Rewriting via Java bytecode: The Android developer
writes her application in Java, compiles it into Java bytecode,
and finally to the Dalvik bytecode. Since the Java VM (JVM)
has existed much longer than Dalvik (DVM), research and
tools on rewriting Java bytecode are much more mature,
e.g., the ASM framework [3]. To take advantage of these



existing tools, we were tempted to first convert the Dalvik
bytecode to Java bytecode, then rewrite the Java bytecode
using existing tools, and finally convert the rewritten Java
bytecode back to Dalvik bytecode.

However, there are several important differences between
JVM and DVM, the most glaring one being that JVM
operates on a stack, whereas DVM uses virtual registers to
manipulate local state. Several tools, such as dex2jar [4]
and ded [5], attempt to convert Dalvik bytecode back to
Java bytecode. Because some information from the Java
bytecode is lost when being converted to Dalvik, these tools
have to infer the missing details based on the surrounding
context, but the inference is sometimes wrong (as described
by Reynaud et al. [6]). Even though these errors may not
prevent static analysis on the converted Java bytecode, in our
experience they often lead to invalid Java bytecode or later
invalid Dalvik bytecode. In other words, after we converted
an application’s Dalvik bytecode to Java bytecode (e.g. using
dex2jar) and then back to Dalvik bytecode, the resulting
application sometimes failed to run. To avoid these errors,
we decide to rewrite Dalvik bytecode directly.

Placing the reference monitor in another application:
Our approach embeds the reference monitor in the untrusted
application directly. Alternatively, one could embed the
reference monitor in another application. The advantage
of this approach is that the user could then remove all
the permissions from the untrusted application. Instead, the
untrusted application delegates all API calls that require per-
missions to the reference monitor application. Even though
this approach has the desirable fail-safe default property, it
suffers from several disadvantages:

• Complexity. Implementing API call delegation correctly
is difficult, especially the stateful calls. For example,
when a call takes a parameter that refers to a context
local to the application (e.g. database connection or
file handle), the delegation must map the corresponding
contexts between the untrusted and reference monitor
applications, which is difficult and error prone.

• Performance. Cross-application API calls are expen-
sive. When they occur often, they degrade the appli-
cation performance.

• Anti-least privilege. Since the reference monitor must
be able to perform delegated access from all possible
applications, it would need all the permissions. There-
fore, a bug in the reference monitor application might
allow an untrusted application to invoke a privileged
API call (via delegation) that its original permission
would never allow.

Therefore, we chose the approach of embedding the
reference monitor inside the untrusted application directly.

II. DESIGN

Our framework for building reference monitors into An-
droid apps is built on the ability to identify and rewrite

method calls, as method calls are the primary way most
Android apps interact with the underlying platform of the de-
vice. In this section we describe the design of our framework
for intercepting and altering the behavior of method calls.
Our goal is to have a system flexible enough to add whatever
functionality is required to achieve the user’s security goals.

Our approach involves rewriting the applications them-
selves, leaving the underlying platform unmodified. Users
can easily add different behavior to each app individually,
and deploying a rewritten app is as easy as installing any
other app. Identifying new methods of interest and adding
new custom behavior does not require a change in the
underlying platform. Also, apps that have not been modified
do not pay a performance penalty for changes users require
for other apps.

A. Changing Method Behavior

Before rewriting an application using our system, the user
must identify the methods on which they wish to interpose.
We call these methods of interest the target methods. Users
identify target methods by the full method signature, includ-
ing the types and package and class containing the method.
In Dalvik bytecode methods are identified uniquely so with
full method signatures there is no danger of confusing
two methods with the same name. The methods of interest
greatly depend on the goal of the rewriting, though tools
such as static analysis may be valuable ways to determine
methods to target. For example, Stowaway [7] used static
analysis on the Android platform to map all Android meth-
ods that required Android permissions. One could use a
method listing like this as a basis for adding a flexible, fine-
grained access controls into Android applications without
requiring any platform modifications.

In addition to identifying the methods the user wishes to
interpose on, the user must also specify the new behavior
they wish the app to execute in place of the original method
invocation. We designed our system so that the user can
specify their custom behavior by writing Java code. This
gives the user the power to write arbitrarily complex behav-
ior without having to consider the details of the underlying
bytecode. Our system automatically compiles the custom
behavior code into Dalvik bytecode and adds it to the app
during the rewriting phase.

B. Adding Custom Behavior

The user must specify custom behavior for each target
method. We place this custom behavior into separate meth-
ods inside classes in our own package that we add to the
rewritten application. In our rewriting phase, we identify all
method calls in the app that match the signatures specified
by the user. We change these method calls to invoke our
methods instead of the original calls.

We take this approach instead of adding the custom
behavior to the apps inline for two main reasons. First, it



limits the size of the code we add to an app during rewriting.
Adding new behavior inline around each individual method
invocation means that the code size increases linearly with
the number of places a method is invoked. Instead, in our
approach the amount of code we add to an app scales
linearly only with respect to the number of different methods
signatures that we wish to intercept. Second, this approach
greatly simplifies the rewriting process. The Dalvik VM
is a register-based architecture, and many operations can
only operate on a subset of registers (e.g. the first 16
registers) [8]. By simply changing the method specified in
the invoke operation we can achieve our goal by making
minor modifications to the bytecode, without requiring a
detailed analysis of register allocation and use.

Note that as long as our custom method returns an object
of the correct type, there is no requirement that we actually
invoke the original target method. For example, the custom
behavior in our new methods could return fake sensor data
without ever accessing the actual sensor on the device.

C. Types of Method Invocation

In Dalvik code there are three main types of methods that
can be invoked: constructors, static methods, and instance
methods. In each of these cases we create new static methods
that contain the desired custom behavior as specified by the
user. We call the static methods we add stub methods. We
describe the semantics of our stub methods and how we
convert existing method calls to use them in Section III.

We use an additional technique to interpose on calls to
methods in classes that can be extended by the developer
of the original application. If a user wishes to interpose on
a method call in some (non-final)1 class A in the Android
platform, in addition to the corresponding stub methods we
generate a wedge class B that extends A. This wedge class
includes a wedge method corresponding to the target method.
We identify all classes in the application that extend A and
modify them to instead extend our wedge class B. In this
way, all developer classes that originally extended and called
the target method in A pass through our wedge method
instead, where we include the user’s custom behavior. This
also simplifies our rewriting process by reducing the need to
analyze all classes in the developer’s hierarchy for methods
that call or override methods in the parent class. We describe
wedge classes in more detail in Section III.

In addition to normal method invocation, developers can
execute code dynamically using reflection. However, these
calls to the reflection library are normal method invocations
that we can intercept using our approaches described above.
That is, we can statically determine where the app invokes
a method in the reflection API, even if we may not be able
to predict the values that will be passed as parameters to

1We do not need wedge classes for final classes, as developers cannot
extend final classes.

these methods. Since we can statically identify calls to the
reflection API, we can replace these method invocations with
calls to our own methods that include code to inspect the
arguments at runtime.

Android developers may also attempt to run bytecode that
has not been rewritten by using a ClassLoader to inject code
at runtime. In these situations, we can still analyze the app
for method calls that initiate the ClassLoader by specifying
the appropriate signatures. Again, by writing signatures for
these methods we can interpose on these calls to detect their
use and insert our own code to perform runtime checking.

D. Other Code Execution

Android applications may also call libraries of native
code. While analyzing and rewriting native code requires
techniques beyond the scope of this paper, we can identify
calls from Dalvik bytecode to native code. In our current
implementation, we abort the rewriting process and notify
the user when we detect native code.

III. IMPLEMENTATION

In order to rewrite an Android application, users of
our prototype must specify the method calls they wish to
interpose on, and define the augmented behavior they want
to add to the application. Our prototype system takes in a
list of fully-qualified method signatures, which contain the
package, class, and method name as well as the types of the
parameters and the return value. We call the methods the
user wishes to intercept the “target” methods. We use this
information to automatically generate “stub” and “wedge”
code (as described in Section II) as needed. Then we ana-
lyze the Dalvik bytecode and identify all calls to specified
methods, and rewrite the bytecode to call our stub and wedge
methods instead.

In addition to specifying the method calls on which to
interpose, the user of our tool must also define the desired
behavior for these modified methods. For example, this
added behavior could be logging when a method is called,
or dynamically generating fake sensor data to return to an
application. We discuss some types of behavior we can add
in Section VI.

In this section, we describe exactly how we generate our
stub and wedge code, and how we perform the rewriting on
the Dalvik bytecode itself to redirect target methods to our
new methods.

A. Generating Stub and Wedge Code

We create a new method containing the augmented behav-
ior we want to execute for every target method specified by
the user. When an application would normally have called a
target method, an app rewritten using our system calls our
new method instead.

Stub and wedge methods are placed into classes that
mirror the hierarchy of their corresponding target methods.



We pick a random prefix pkgprefix that is not already
part of any package names in the Android platform or
application. Then, if the user wanted to interpose on the
openStream method in the java.net.URL class then
our framework creates the stub method openStream in
the class pkgprefix.java.net.URL. Similarly, we put
wedge classes into the pkgprefix.wedge package, mirroring
the target method’s class name and package hierarchy. We
also declare all of our methods to throw the same exceptions
as the original methods on which we are interposing.

Our prototype allows users to specify a template for
stub and wedge methods, allowing simple specification for
classes of behavior. If users make use of this template
method (e.g. having all stub methods call some same
“doCheck” method) then these stub and wedge methods
will be very small.

Note that although the stub classes we create have the
same name as the classes of the associated target methods,
our stub classes do not extend the original classes (in fact,
they cannot if the methods are final). Using the same name
simplifies the organization of our code generation, and in
the Dalvik bytecode classes are uniquely identified in a way
that there will be no ambiguities about classes with the same
name in different packages.

1) Static Methods: To generate stub methods (and wedge
methods for non-final methods) for a given static tar-
get method, we simply duplicate the original method’s
Java signature. For example, to interpose on the on the
sqrt method in java.lang.Math then our stub method
public static double sqrt(double var0) in
the pkgprefix.java.lang.Math class. If desired, we
can compute the original value from within our method
directly (e.g. java.lang.Math.sqrt(var0)).

2) Instance Methods: We generate a static stub method
for each target instance method. For an instance method that
takes n arguments, we create a static stub method that takes
n+1 arguments, where the first argument in our stub method
is the instance object in the original app. For example,
for the instance method setContentView(int)
in the Activity class we generate a stub
method with the signature public static void
setContentView(android.app.Activity
var0, int var1). Since we’re receiving the
instance value as the first parameter, we can call
the original method inside our static stub (e.g.
var0.setContentView(var1)).

As we described in Section II we also generate
wedge classes for all classes containing non-
final methods. These wedge classes extend the
original class, so if the user wants to intercept
Activity->setContentView(int) then we create
class pkgprefix.wedge.android.app.Activity
that extends android.app.Activity. In this
wedge class we have a method with the same

signature as the original method (e.g. public
void setContentView(int var0) where we
add code to add our desired functionality. We can
make the original method call on the instance with
super.setContentView(var0).

3) Constructors: For final constructors that users want
to intercept, we create static “factory” stub methods that
create the object of an appropriate type and return it
back to the application. For example, to interpose on
the constructor that takes a String for the final class
java.net.URL, we create a method in our stub URL class
with the signature public static java.net.URL
cons_java_net_URL(java.lang.String var0)
throws java.net.MalformedURLException. In
this method we perform whatever behavior the user desires
and return a URL object.

4) Injecting Stub and Wedge Classes: After generating
the Java code for our stub and wedge classes, we compile
them into Dalvik bytecode. We add this new bytecode to
the application we are rewriting. All of our new classes are
in the new pkgprefix package hierarchy we created, none of
our fully qualified package and class names will interfere
with existing classes.

B. Method Call Transformations

After creating the necessary stub and wedge classes, we
must identify all calls to the target methods in the original
application, and rewrite the bytecode to call our methods
instead.

1) Static Methods: In Dalvik bytecode, static
methods are called via the invoke-static (and
invoke-static/range) instructions. These
instructions take a variable number of registers – one
for each parameter to the static method. Because our static
methods take the same number and types of arguments as
the original static methods, we simply change the method
referenced in the original instruction to our associated stub
method.

2) Instance Methods: Instance methods are invoked with
the invoke-virtual and related instructions. These in-
structions include a reference to the method to be invoked
(including a reference to the associated class and package).
These instructions also include a variable number of reg-
isters. The first register contains a reference to the instance
object on which the method should be called. The remaining
registers referenced in the instruction point to the values that
are passed as parameters to the method itself.

We rewrite these instructions by replacing the instruc-
tion opcode with the invoke-static opcode of the
same form (e.g. invoke-virtual/range becomes
invoke-static/range). We change the reference to
the target to method into a reference to our stub method. We
do not need to make any changes to the registers associated
with the instruction. When invoking a static method, the first



register is now passed as the first parameter to the method,
which matches the parameters our stub method expects.

3) Constructors: Normally, apps construct new in-
stances by calling the appropriate constructor with the
invoke-direct instruction. The first register in instruc-
tions of this type is the destination where the reference to
the new instance will be stored after the object is created.
The remaining registers are the parameters passed to the
constructor.

We rewrite these instructions by replacing the opcode
with the invoke-static opcode of the same form, with
the method reference pointing to our corresponding stub
“factory” method. We include all but the first register from
the original instruction in the invoke-static call. Inside
our stub method we receive the parameters passed to the
original constructor, which can be used as needed. We create
an instance of the appropriate type and return it. After our
invoke-static call we also insert an instruction to move
the instance returned from our stub method into the register
expecting the new instance.

C. Modifying Class Hierarchy to Inject Wedge Classes

After we have created our wedge classes, we identify
classes in the app code that extend from the parents of our
wedge classes. In each of these classes, we modify the class
to extend our wedge class instead of the original class in the
Android platform. We also modify all method invocation
calls in these app classes to point to our wedge class
instead of the original parent class. In this way, the rewritten
developer’s class cannot call the methods in the Android
platform classes without passing through the methods we
have added to catch intercept calls.

D. Prototype Implementation Details and Scope

Java’s classloader and reflection capabilities still rely on
normal method invocation that we can detect and interpose
on using our framework. That is, we can statically determine
all points where reflection is invoked, even though we might
not know the parameters passed to these methods until
runtime. In theory, we could interpose on reflection calls
and do dynamic introspection of the arguments passed to
reflection methods, and determine how to execute each call
at runtime. Note that this requires a recursive solution, as
a crafty developer may attempt to call reflection methods
via reflection. In our current implementation we only detect
and prevent the use of reflection to block this avenue of
executing unanalyzed code.

Analyzing and rewriting native code requires different
techniques that are beyond the scope of this paper. We detect
the use of native code in our prototype, but do not attempt to
modify the behavior or native code included with Android
apps.

We use smali/baksmali to parse and assemble our dex
bytecode [9].

IV. APPLICATIONS

A flexible application-level method rewriting framework
can be used to add a wide variety of useful functionality
to applications without requiring changes to the under-
lying platform. In this section we describe some ways
our rewriting-based reference monitor framework may be
applied.

A. Improved Fine-Grained Access Control

The current Android permission model offers a user only
a limited amount of flexibility and control over how apps
access the resources on their device. If a user wants to
install an app then she must grant the application all of the
permissions that it requests. It can be difficult to determine
what an app will do just from this permission list alone.
Once the user agrees and installs the app then they have
no control over how the app behaves as longs as it does
not perform operations requiring permissions that it did not
request.

Previous work (such as [2], [10]) add fine-grained control
by modifying the underlying platform. We believe our sys-
tem could be used to build similar controls directly into apps,
eliminating the serious build, configuration, and deployment
issues involved with custom platforms like these. We could
use an approach such as the described in [7] to build a list of
permission-sensitive methods. Then we could define custom
behavior for each method to check with a dynamic policy
to determine how to handle each request. Similar to the
systems and operate in custom Android framework, we could
allow the user to specify a dynamic policy on how to handle
each kind of access to device resources. For example, our
stub and wedge methods could check a dynamic policy to
determine whether to allow or deny a request. Furthermore,
as long as we return objects of the expected type, we just
as easily generate fake or anonymized data and return these
values in lieu of the original result to provide additional
control over user privacy. Also, because our stub and wedge
methods receive all of the parameters that were intended to
be passed to the target method, we can use this information
to make further policy decisions about how to handle each
method request. We can use this approach to distinguish
between Internet request to different domains, similar to the
functionality offered by ACPlib [11].

We note that any policy accessed within an app should be
protected from tampering. One easy approach is to simply
make the policy information stored in a resource that the
rewritten app has read-only access to (e.g. an Android
ContentProvider managed by a separate, trusted app).

B. Implementing “Same Origin Policy” for App/Ad Code

Because our app rewriting includes an analysis of an entire
app’s codebase, we can provide different behavior for target
methods called in different parts of the code. For example,
many Android apps include advertising libraries. While these



libraries were written by a different party, normally Android
does not distinguish between code in ad libraries and code
for the rest of an app.

The “same origin policy” is a security policy in web
browsers that prevents a script from one origin from ac-
cessing document content from another origin. We can use
our rewriting framework to implement a sort of “same ori-
gin policy” for Android applications, where we distinguish
between advertising code and normal application code.

For example, imagine a contact management app that also
shows advertisements retrieved from the web. A user may
wish to give the main portion of the app access to their
contacts, but might not be comfortable giving their contacts
to the ad library. Also, the user may wish to support the
developers by permitting advertisements retrieved from the
web, but not want the main portion of the app to access the
web after accessing their contacts. Users of our system could
detect repackaged library code during the rewriting phase
using techniques such as those suggested by Zhou et al. [12].
We could add separate stub and wedge methods for each
kind of behavior during the rewriting phase. Alternatively,
we could simply have our stub and wedge methods inspect
the call-stack at runtime to determine what part of the code
called a target method. Of course, it is difficult to remove all
possible side-channels of communication between different
portions of an application, but our system would allow a user
far more control over their apps than they have in Android’s
current design.

C. General-Purpose Instrumentation

Our app rewriting framework allows a user to gain valu-
able insight into the behavior of apps on their device. Aside
from building a reference monitor, another use case of our
system is that it can allow instrumentation of applications.
Since our system can detect the call sites of target methods it
can, for example, log every time a target method gets called.
As a result, this could provide a useful tool for determining
an application’s behavior by analyzing how often and which
permissions the applications exercises. By adding logging
to key method calls our system allows a user to add simple
profiling capabilities to any app. Users can also gain insight
into how applications use device resources like GPS, SMS,
accelerometer, and network access.

V. EVALUATION

We performed several tests to demonstrate our approach
is feasible for rewriting real-world Android applications.

A. Compatibility

We randomly selected thirty free applications from
the top 100 free apps on the official Android Market.
For each of these applications, we interposed on the
static method java.lang.Math.sqrt, common Java
instance methods java.net.URL.openStream and

app name # wedge # stub
com.amazon.kindle 46 62
com.bayview.tapfish 120 42
com.creativemobile.DragRacing 193 37
com.droidhen.irunner 179 1
com.espn.score center 117 6
com.facebook.orca 90 243
com.google.android.apps.maps 151 325
com.google.android.apps.translate 276 24
com.google.android.googlequicksearchbox 157 13
com.google.android.youtube 24 67
com.justwink 169 14
com.magmamobile.game.BubbleBlastValentine 384 14
com.mobilityware.solitaire 394 53
com.myxer.android 191 31
com.oovoo 106 41
com.pandora.android 33 94
com.rechild.advancedtaskkiller 187 1
com.scannerradio 639 17
com.shootbubble.bubbledexlue 134 10
com.socialnmobile.dictapps.notepad.color.note 254 18
com.stylem.wallpapers 219 5
com.twitter.android 57 146
com.weather.Weather 141 95
com.yahoo.mobile.client.android.im 215 75
com.yahoo.mobile.client.android.mail 224 93
com.zynga.hanging 379 66
com.zynga.livepoker 54 10
com.zynga.words 375 57
mk.g6.crackyourscreen 222 6
net.lucky.star.mrtm 306 12

Table I
NUMBER OF METHOD CALL SITES MODIFIED TO CALL WEDGE AND

STUB METHODS (DESCRIBED IN SECTION II)

java.lang.StringBuilder.append, Java reflection
method java.lang.reflect.Method.invoke,
Android instance method
android.app.Activity.setContentView, and a
constructor for java.lang.String.

Our automated system successfully rewrote all thirty apps
to intercept method calls matching our signatures. Our
prototype is completely automated and does not require any
manual guidance or app-specific hints to perform the rewrit-
ing. Table I contains a listing of the apps we tested, along
with the number of method call sites that we transformed to
instead call our wedge and stub methods.

B. Functionality

We manually verified that all thirty rewritten apps gen-
erated by our automated rewriting framework installed and
ran successfully on an Android emulator running Android
version 4.0.3 (API level 15). We confirmed by inspection
that our wedge and stub code was included in the rewritten
app bytecode. We ran and manually exercised the capabili-
ties of each app until the app performed some functionality
that involved calling one or more methods specified by our
signatures. All of our stub and wedge methods included
code to log a message containing information about the
method being called to logcat (Android’s logging system).



This allowed us to verify that our methods were indeed being
called in apps rewritten by our system. We successfully
verified that all thirty rewritten apps did call our methods
by observing the corresponding messages in logcat.

C. Performance

We performed a microbenchmark test to evaluate the per-
formance impact of our approach. In our system, rewritten
apps call our stub or wedge method every time the app
would have normally called a method matching one of
the signatures. To evaluate the impact of adding this extra
method call, we wrote a simple application that used the
StringBuilder class to append one million characters
together by calling StringBuilder.append one mil-
lion times. Then we used our system to automatically rewrite
our test application using our system to interpose on each
call to append. Following our scheme, our stub method
for append receives the StringBuilder instance and
the character to append. Our stub method simply invokes
append on the incoming StringBuilder parameter and
returns the result back to the original app.

We performed our microbenchmark test on a HTC Thun-
derbolt phone running Android 2.3.4, and performed 100
trials with each of the original and rewritten apps. On
average, the unmodified app took an average of 680ms to
perform one million the append operations, and an average
of 790ms to perform the same task after rewriting to
interposed on all append method calls. This means that in
our microbenchmark, adding an extra method call adds less
than 0.2 microseconds to a method call.

In our tests it seems that the overhead of additional
method calls for each stub and wedge method will be
dominated by the time taken to perform the methods them-
selves, making our approach practical for all but the most
performance-constrained environments. Of course, when
users add additional functionality to stub and wedge methods
(e.g. checking a dynamic security policy for fine-grained
access control) they must consider the performance impact
of the code they add.

D. Size

Mobile devices frequently have storage and bandwidth
constraints, so it is important to consider the impact of our
system on app size. In our rewriting system we not only
modify existing code, but we also add our stub and wedge
classes containing our stub and wedge methods. Recall that
the number of methods we add increases linearly with the
number of method signatures we have, not the number of
times the methods are called in the original app.

To test the impact on app size, we wrote signatures for
60 different methods corresponding to popular network,
reflection, and Android platform methods. 30 of those
methods also required corresponding wedge methods, so
our approach requires adding bytecode for a total of 90

new methods to a rewritten app. Each method included its
own call to the logcat logging mechanism, with a unique
string identifying the method as well as code to perform the
original method call and return the result. We used these
signatures to rewrite the same thirty apps we selected from
the Android Market.

Android applications are stored as APK files, which is a
compressed format. Each APK includes a classes.dex
file containing all of the Dalvik bytecode in Dex format.
Adding our stub and wedge classes and method bytecode
increased the (uncompressed) classes.dex file size by ap-
proximately 13KB in each app. Adding our stub and wedge
methods to the classes.dex file resulted in a median increase
in size of less than 2% in the thirty apps we examined,
which is further minimized when the classes.dex file is
compressed in the APK.

In our current prototype we do not inspect each app to
see if all stub and wedge classes are needed. If we can
determine statically that we do not need a stub or wedge
method in the rewritten application then we could remove
those unneeded methods. This optimization could greatly
decrease the impact on application size in situations where
there are many signatures for methods that are never called.
Of course, if we permit an application to use reflection then
it may be impossible to statically identify all unneeded stub
and wedge methods.

VI. DISCUSSION

In this paper we propose a framework for adding in-app
reference monitors to Android applications. The quality of
the reference monitor depends on the completeness of our
approach. We discuss the two main aspects of completeness.

A. Policy Completeness

A reference monitor must have a complete policy. Specif-
ically, in our system the user must provide a complete list
of Android methods she wishes to detect and rewrite. If
the user fails to identify methods in the Android framework
that access sensitive resources, then our framework will not
know to rewrite these method calls when it sees them in
the app. While selecting the correct methods for the policy
is important, the methodology for doing so is orthogonal
to our work, and highly dependent on the user’s security
goals. Felt et al. [7] have used static analysis techniques to
determine methods in the Android framework that perform
permissions-sensitive operations, and these techniques can
be adapted to determine methods appropriate for a variety
of policies.

B. Rewriting Completeness

Our reference monitor framework must also rewrite ap-
plications completely, in the sense that all calls to target
methods must be identified and rewritten. Luckily, in the
Dalvik bytecode format there are only a few, well-defined



ways of invoking a method. By enumerating all of the ways
methods can be invoked as defined in the official bytecode
reference [8], to our knowledge we have covered all cases.
The Java reflection API is also invoked from within the
app using these mechanisms. Our framework allows users
to statically identify and hook these calls to the reflection
API like any other method call, and allows them to block
or provide runtime analysis as desired. We describe the
categories of method calls as they relate to higher-level Java
abstractions in Section II-C.

As mentioned earlier, analyzing and rewriting native code
is outside of the scope of our paper. However, we do detect
calls to native code, and our system refuses to rewrite the
application if it includes native code.

VII. RELATED WORK

A. Modifying Android Behavior

Many researchers have proposed ways to modify the way
that Android applications function on a device by modifying
the underlying Android framework [13], [2], [10], [14].
TISSA [2] and Apex [10] are two examples of systems
designed to provide fine-grained control over permission-
based methods. The drawbacks of these systems are that
they require modifying the Android framework. Installing
a custom framework on a device may entail voiding the
warranty and violating the terms of service associated with
the device. One might imagine adding the capabilities these
systems provide directly into applications using our system,
resulting in apps that can be deployed to any stock Android
device. In Section VI we discuss how we might use our
system to provide a the functionality these systems provide
by rewriting applications without requiring any changes to
the underlying Android platform.

B. Android App Rewriting

Reddy et al. [11] have developed ACPlib/Redexer, which
performs Dalvik bytecode rewriting on Android apps with
the goal of implementing more fine grained permissions in
apps. While our goal was a flexible, general app-rewriting
framework, their focus is entirely on enforcing “application-
centric security policies.” ACPlib is a collection of Android
services, which they use to perform specific permission-
sensitive API calls. When an Android app makes a permis-
sion call, they proxy this request through the appropriate
service in ACPlib, which executes the method and returns
the result. This allows them to make all sensitive method
calls from their service process, to which they assign the
Android permissions required to make the API calls.

While this is a reasonable approach for relatively “state-
less” requests (e.g. setting the ringtone or toggling the
GPS), it is difficult to interpose on other operations that our
approach can handle. For example, if we want to modify the
behavior of file I/O methods we can easily do so because
code running in our stub and wedge methods are still within

the same process space as the original application. How-
ever, objects tied to resources are difficult to pass between
Android applications (i.e. between the app and ACPlib),
and it does not appear that ACPlib/Redexer is capable of
proxying complex operations like file I/O requests to an
ACPlib service.

Reynaud et al. [6] use a specialized rewriting transforma-
tion to reveal vulnerabilities in Google In-App Billing. They
create a fake Google Market app and rewrite applications to
bind to their fake Market app instead of the genuine Market
app. While their rewriting goals are limited in scope and rely
on conversion to Java code, their work illustrates another
application for app rewriting, and supports our belief in the
utility of a flexible, general-purpose application-rewriting
system.

C. Java-Based Analysis

Because of the similarities between Dalvik and Java
code, there are several tools designed to convert Dalvik
code into Java. The tools ded [15] and dex2jar [4] can
convert Dalvik bytecode into JVM bytecode. This allows
tools designed for Java bytecode analysis to be used on
Android applications. However, these tools are only intended
for one-way conversion to Java bytecode, and attempts to
convert back to Dalvik are reported [6] to frequently result
in Android apps that no longer function. It is nontrivial to do
the round-trip conversion between Dalvik and Java bytecode,
so our approach operates on the Dalvik bytecode without
requiring conversion to Java.

The rewriting techniques we use in our project is related
to similar rewriting work done for the Java platform. Even
though the Dalvik VM is register-based while the JVM
is stack-based, we can leverage many of the ideas and
techniques from these earlier works. We build upon the
work by [16], which used both invocation replacements
and safe versions of classes, much like our stub methods
and wedge classes. We’ve tailored our work to the Android
environment, which has a large number of permissions and
sensitive data to control, as well as many of the same
concerns from their paper. In [17], Rudys and Wallach
perform Java bytecode rewriting to wrap certain pieces of
code. In addition, they also implement soft termination to
prevent infinite loops, and transactional rollback in order
to revert persistent changes by code that has been aborted
by their reference monitor. Their approach allows for full
instrumentation of all of the bytecode, whereas we have
focussed our work on intercepting and instrumenting at the
method call level.

Our goal of implementing inline reference monitors di-
rectly into applications has been successfully performed by
Erlingsson and Schneider [18] for Java applications. Many of
the practical advantages of the Java “IRM” design [19] also
apply to reference monitors added to applications using our
framework. Specifically, by adding security controls inline



it is possible to get great insight into the application being
observed. Through careful policy specification, users can
apply our framework to leverage the benefits of running
their inlined code in the same process space as the rewritten
Android application, with full knowledge of the parameters
passed to target methods.

VIII. CONCLUSION

We have designed and implemented a rewriting frame-
work for embedding reference monitors in Android appli-
cations. The framework user identifies a set of security-
sensitive API methods and specifies their security poli-
cies, which may be tailored to each application. Then, our
framework automatically rewrites the Dalvik bytecode in
the application, where it interposes on all the invocations
of these API methods to implement the desired security
policies. We have implemented a prototype of the rewriting
framework and evaluated it on compatibility, functionality,
and performance in time and size overhead. We showcase
example security policies that this rewriting framework
supports.
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