
Model Checking One Million Lines of C Code∗

Hao Chen Drew Dean David Wagner
UC Berkeley SRI International UC Berkeley

hchen@cs.berkeley.edu ddean@csl.sri.com daw@cs.berkeley.edu

Abstract

Implementation bugs in security-critical software are
pervasive. Several authors have previously suggested
model checking as a promising means to detect improper
use of system interfaces and thereby detect a broad class
of security vulnerabilities. In this paper, we report on
our practical experience using MOPS, a tool for software
model checking security-critical applications. As exam-
ples of security vulnerabilities that can be analyzed using
model checking, we pick five important classes of vulnera-
bilities and show how to codify them as temporal safety
properties, and then we describe the results of check-
ing them on several significant Unix applications using
MOPS. After analyzing over one million lines of code, we
found more than a dozen new security weaknesses in im-
portant, widely-deployed applications. This demonstrates
for the first time that model checking is practical and use-
ful for detecting security weaknesses at large scale in real,
legacy systems.

1. Introduction

From the dawn of the computing era, software has per-
formed in ways surprising to its authors. In short: soft-
ware has bugs. Right from the beginning, computer secu-
rity researchers have recognized that assurance would be
a critical challenge for the field, and much work has gone
into formal methods for verifying programs. While there
have been some successes in the national security arena,
formal methods have yet to make it into mainstream soft-
ware development, be it commercial or open source. And
so, software in the 21st century still has bugs, and this
seems likely to remain true for the foreseeable future.

All hope, however, is not lost. For instance, a variety
of techniques have recently emerged for dealing with the
lack of memory safety in the C programming language.
Static analysis techniques, with some limitations, can now

∗This work was supported by the Office of Naval Research under con-
tract N00014-02-1-0109, DARPA under contract N66001-00-C-8015,
NSF CCR-0093337, and generous donations from Microsoft and Intel.

handle real world programs. And, model checking has
provided an alternative paradigm to theorem proving in
formal methods.

Model checking has several important advantages. For
one, model checking is particularly useful because it tells
exactly why a property isn’t satisfied, rather than leaving
one scratching one’s head trying to figure out if the formal
proof is failing because the theorem is false, or one is sim-
ply insufficiently clever to prove it in the formal system
being used. Also, the advent of model checking has in-
troduced a new spin on formal methods: beyond their ap-
plications for verification of systems, model checkers are
even more useful for finding bugs in systems. Other re-
searchers have reported significant advantages to focusing
on bug-checking, at least when looking for non-security
bugs [10], and so the time seems ripe to examine how
model checking might improve software security.

In this paper, we initiate an empirical study of model
checking as a means to improve the security of our soft-
ware. Our aim is to find problems in software written
with benign intent; verifying the absence of bugs is ex-
plicitly less important. In this sense, we fit squarely into
Jackson’s “lightweight formal methods” [13]. Hence, al-
though we take a principled approach (model checking),
we are driven more by the pragmatics of checking large
software packages for security issues than by theoretical
arguments.

Many security problems in Unix programs are viola-
tions of folk rules for the construction of secure programs,
especially for setuid programs. Some of these rules
are amenable to simple local checks, such as those per-
formed by ITS4 [20] and RATS [15]. Others, alas, require
searching through all possible control flow paths through
the program. Such analysis is painful and error-prone if
done by hand. We’ve built a tool, called MOPS, which
was designed and implemented to meet the need for au-
tomation to support the security analyst. In this paper,
we report on experience with using MOPS to check six
large, well-known, frequently used, open source packages
(Apache HTTPD, BIND, OpenSSH, Postfix, Samba, and
Sendmail) and two small setuid applications (At and Vix-
ieCron) in Red Hat Linux 9.

We have found previously unknown weaknesses in five
out of the eight programs that we checked. Our experience
has demonstrated that model checking security properties
in large, real programs is practical and useful. Though our
experiments focus on MOPS, MOPS is just one example
of a whole class of model checking tools, and the lessons
we learned are likely to be generally applicable to other
model checking systems, as well.

2. Overview of MOPS

MOPS is a static (compile-time) analysis tool [6].
Given a program and a security property, MOPS checks
whether the program can violate the security property.
The security properties that MOPS checks are tempo-
ral safety properties, i.e., properties requiring that pro-
grams perform certain security-relevant operations in cer-
tain orders. For example, MOPS might be used to check
the following property: a setuid-root program had bet-
ter drop root privilege before executing an untrusted pro-
gram; otherwise, the untrusted program may execute with
root privilege and therefore compromise the system (see
Section 3.1.1. for details on this property). The MOPS
user describes a security property by a Finite State Au-
tomaton (FSA). Figure 1(a) shows a simplified FSA de-
scribing the above property1 and Figure 1(b) shows a pro-
gram that violates this property.

MOPS checks if a program may violate a temporal
safety property using pushdown model checking. Model
checking technique exhaustively searches the control flow
graph of a program to check if any path may violate
a safety property. Pushdown model checking enables
searching inter-procedural paths in a context-sensitive
manner. If MOPS finds violations, it reports error traces,
program paths that cause such violations. In general,
model checking tends to be best at checking properties
that refer primarily to the control flow of the program; in
contrast, model checking is usually less well suited for
checking data-flow intensive properties.

2.1. Soundness

MOPS strives for soundness, precision, and scalabil-
ity. A sound tool will not overlook any violations of the
security property in the program2. A precise tool will
have very few false alarms. However, it is challenging
to achieve all three criteria at once. Since MOPS is de-
signed to be a practical tool for checking lots of security

1The FSA depicted here considers only one call,
setuid(getuid()), for dropping root privilege and only one
call, execl(...), for executing an untrusted program. Other calls are
omitted for clarity.

2A tool that proves whether a program satisfies a property is sound
if all the programs that it can prove to satisfy the property do in deed
satisfy the property.

priv error

setuid(getuid())

unpriv

execl()

(a) An FSA describing this property.

// The program has root privilege
if ((passwd = getpwuid(getuid())) != NULL)
{

fprintf(log, “drop priv for %s”, passwd->pw name);
setuid(getuid()); // drop privilege

}
execl(“/bin/sh”, “/bin/sh”, NULL); // risky syscall

(b) A setuid-root program that violates this property. One path of
the program satisfies the property, but the other path violates it,
giving the user a shell with full privilege.

Figure 1. An FSA describing the property
that “A setuid-root program should drop root priv-
ilege before executing an untrusted program” and
a program violating it.

properties on large programs, it tries to strike a balance
between soundness, precision, and scalability. To strive
for soundness, MOPS is path sensitive, i.e., it follows ev-
ery path in the program (including arbitrary number of
iterations of loops) except a few minor cases discussed
below. MOPS is also context sensitive, i.e., MOPS can
match each function return with its call site. To ensure
scalability, MOPS takes the approach of sacrificing on the
precision of its data-flow analysis rather than sacrificing
on scalability. Since data-flow analysis presents many dif-
ficulties for scalability, MOPS chooses to be data-flow in-
sensitive. In other words, MOPS ignores most data values
in the program and assumes that each variable may take
any value3. Therefore, MOPS assumes that both branches
of a conditional statement may be taken and that a loop
may execute anywhere from zero to infinite iterations.
As such, MOPS is mostly suitable for properties that are
control-flow centric.

MOPS is sound under the following assumptions:

• The program is single-threaded. In other words,

3MOPS implements limited data flow analysis so that it recognizes
the same variable x in different expressions such as x=open() and
close(x).

MOPS is unsuitable for checking concurrent pro-
grams.

• The program is memory safe, e.g., no buffer over-
runs.

• The program is portable. For instance, MOPS does
not understand inline assembly code.

• The program does not violate the soundness assump-
tions required by the property. Some properties are
sound only under certain assumptions about the pro-
gram. For example, to enable the user to express the
property “do not call open() after calling stat()
on the same file name”, MOPS allows the user to de-
clare a generic pattern variable f to create the FSA
shown in Figure 4. In that FSA, the variable f in
stat(f) and open(f) is a generic pattern vari-
able — it refers to any variable that is syntactically
used in both stat() and open(). Since this is
syntactic matching, it does not survive aliasing: if the
program contains “stat(x); y=x; open(y)”,
then MOPS does not know that y is an alias of x, so
the property is not sound for this program.

In addition, the current version of MOPS does not con-
sider control flows that are not in the CFG, such as indi-
rect calls via function pointer, signal handlers, long jumps
(setjmp()/longjmp()), and libraries loaded at run-
time (dlopen()). Although these may cause unsound-
ness, they are implementation limitations rather than in-
trinsic difficulties.

2.2. Completeness

Since any nontrivial property about the language rec-
ognized by a Turing machine is undecidable (Rice’s
Theorem[16]), no tool that checks a nontrivial property
can be both sound and complete. Because MOPS strives
to be sound, it is inevitably incomplete in that MOPS may
generate false positive traces, i.e., program traces that are
either infeasible or that do not violate the property. Un-
fortunately, large numbers of false positive traces would
overwhelm the user easily; therefore, it is essential to
avoid generating too many false positives. We will dis-
cuss how MOPS reduces false positive traces while not
sacrificing soundness in Section 5.1.

3. Experiments

We designed the experiments to evaluate three objec-
tives of MOPS. To be useful, MOPS ought to be able to
(1) check a variety of security properties; (2) check large
programs; and (3) be usable — it should run fast, require a
moderate amount of memory, and generate a manageable
number of false positive traces.

3.1. Security Properties

We selected five important security properties that are
non-trivial and that have been violated repeatedly in the
past. We will show how we expressed them in a formal
language suitable for input to MOPS.

3.1.1. Drop Privileges Properly

Access control in Unix systems is mostly based on user
IDs (uids). On most Unix systems, each process has three
user IDs: the real user ID (ruid), the effective user ID
(euid), and the saved user ID (suid). The real uid identifies
the owner of the process, the effective uid represents the
privilege of the process such as its permission to access
the file system, and the saved uid is used by the process
to swap between a privileged uid and an unprivileged one.
Different user ID values carry different privileges. The uid
0, reserved for the superuser root, carries full privileges:
it gives the process complete control over the machine.
Some non-zero user IDs carry privileges as well. For ex-
ample, the user ID daemon grants the process the privilege
of accessing the spools used by atd. Most user processes
have no privileges4. However, a class of programs called
setuid programs allow the user to run a process with extra
privileges. For example, passwd is a program that allows
a user to change his password, so the program needs ex-
tra privilege to write to the password file. This program
is setuid-root, which means that when a user runs the pro-
gram, the real uid of the process is still the user, but both
the effective and saved uid of the process are root, a privi-
leged user ID.

A process modifies its user IDs by a set of system
calls, such as setuid, seteuid, setreuid, and
setresuid. By the principle of least privilege, if the
process starts with a privileged user ID, it should drop the
privilege permanently — by removing the privileged user
ID from its real uid, effective uid, and saved uid — as
soon as it no longer needs the privilege. Otherwise, if a
malicious user takes control over the process, e.g. by a
buffer overrun, he can restore the privileged user ID into
the effective uid and thus regain the privilege. For fur-
ther treatment on this topic, we refer the interested reader
elsewhere [7].

Since where to drop privilege permanently is appli-
cation specific, it is difficult for an automated tool like
MOPS to check this property automatically without know-
ing the design of each application. Nevertheless, a process
should permanently drop privileges before making certain
system calls, such as execl, popen, and system, un-
less the process has verified that the arguments to these

4Since each process always has the privilege of its owner, this priv-
ilege is uninteresting from the security point of view and will not be
considered as a special privilege further on.

calls are safe. So we check the following property, which
is a good approximation of the desired behavior (see Fig-
ure 2):
Property 1 A process should drop privilege from all its
user IDs before calling execl, popen, system, or any
of their relatives.

We decompose this property into two FSAs. The first
one describes which user IDs of the process carry privi-
lege (Figure 2(a)) and the second one describes whether
the process has called the execl, popen, and system
(Figure 2(b)5). Decomposition makes each FSA simpler
and also allows the user to reuse FSAs (if the user wants
to describe another property that involves privilege, he can
reuse the FSA in Figure 2(a)). MOPS automatically com-
putes the the parallel composition of the two FSAs, which
represents the integrated property.

3.1.2. Create Chroot Jails Securely

chroot is a system call that allows a process to confine
itself to a sub-filesystem, called a chroot jail. To create
a jail securely, the process should observe the following
property (see Figure 3(a)):
Property 2 After calling chroot, a process should im-
mediately call chdir("/") to change its working direc-
tory to the root of the sub-filesystem.

The program in Figure 3(b) violates this property
because it fails to call chdir("/") after chroot
("/var/ftp/pub"), so its current directory remains
/var/ftp. As a result, a malicious user may ask the pro-
gram to open the file ../../etc/passwd successfully even
though this is outside the chroot jail and the programmer
probably intended to make it inaccessible. Here, the ma-
licious user takes advantage of the method by which the
operating system enforces chroot(new root). When
a process requests access to a file, the operating system
follows every directory component in the path of the file
sequentially to locate the file. If the operating system has
followed into the directory new root and if the next di-
rectory name in the path is “..”, then “..” is ignored. How-
ever, in the above example, since the current directory is
/var/ftp, the path ../../etc/passwd never comes across the
new root /var/ftp/pub and is therefore followed success-
fully by the operating system. In short, the chroot sys-
tem call has subtle traps for the unwary, and Property 2
encodes a safe style of programming that avoids some of
these traps.

5Although the transition from the state “after exec” to the state “be-
fore exec” is optional for this property, it enables MOPS to find all the
risky system calls if a trace contains multiple such calls; without this
transition MOPS can only find the first call on the trace.

chroot
other

chdir("/")

other

(a) An FSA describing Property 2

chroot(“/var/ftp/pub”);
filename = read from network();
fd = open(filename, O RDONLY);

(b) A program segment violating Property 2. Note that the
program fails to call chdir("/") after chroot(), so if
filename is “../../etc/passwd”, a security violation ensues.

Figure 3. An FSA illustrating Property 2
(“chroot()must always be immediately followed
by chdir("/")”) and a program violating it.

3.1.3. Avoid Race Conditions When Accessing the
File System

When a process accesses a file by its name, the process
should avoid race conditions, which are potential security
vulnerabilities [5]. As an example, consider a privileged
process that runs on behalf of a normal user and that wants
to constrain itself to access only files owned by the nor-
mal user. A naive implementation might use two steps:
(1) call stat("foo") to identify the owner of the file
foo; (2) only open the file if it is owned by the current
user. This strategy, however, is insecure because of a race
condition: an attacker may change the file associated with
the name foo (e.g., through modifying a symbolic link)
between the stat("foo") and open("foo") calls.
The program in Figure 4(b) illustrates this race condition.
Suppose the filename foo in the variable logfile ini-
tially is a symbolic link to a file owned by the attacker.
When stat(logfile, &st) is called, the program
verifies that the attacker is the owner of the file. But
before the program proceeds to open the file by calling
open(logfile, O RDWR), the attacker changes foo
to be a symbolic link to /etc/passwd, a file that should
not be writable to him. So open(logfile, O RDWR)
ends up opening /etc/passwd for him in read/write mode.

We see that race conditions in privileged processes may
be exploited by an adversary to gain control over the sys-
tem. Moreover, race conditions in unprivileged processes
may also be exploited by an adversary to penetrate the ac-
count of the user that runs the vulnerable processes. A
conservative approach for detecting race conditions is to
check if the program passes the same file name to two

ruid=0,euid!=0,suid=0

ruid=0,euid=0,suid=0

ruid!=0,euid!=0,suid!=0

ruid=0,euid!=0,suid!=0

ruid!=0,euid=0,suid=0

ruid=0,euid=0,suid!=0

ruid!=0,euid=0,suid!=0

ruid!=0,euid!=0,suid=0

(a) An FSA describing which user IDs carry the root privilege. For clarity, we do not
show the labels on the transitions.

before
exec

after
exec

popen | system | execl | execv | ...

other

other

popen |
system |
execl |
execv |
...

(b) An FSA describing whether the process
has called any of execl, execv, system,
popen, etc.

Figure 2. Two FSAs describing Property 1 (“A process should drop privilege from all its user IDs before
calling execl, execv, popen, or system”). In these FSAs the privileged user ID is root and the
unprivileged user ID is non-root. In other situations, however, we may need to use an alternative
FSA where the privileged user ID is also non-root.

system calls on any path, which we encode in Property 3:
Property 3 A program should not pass the same file name
to two system calls on any path6.

The system calls in Property 3 include: chdir,
chmod, chroot, creat, execve, lchown, link,
lstat, mkdir, mknod, mount, open, pivot root,
quotactl, readlink, rename, rmdir, stat,
statfs, symlink, truncate, umount, unlink,
uselib, utime, utimes.

3.1.4. Avoid Attacks on Standard File Descriptors

Normally when a Unix process is created, it has three
open file descriptors: 0 for standard input (stdin), 1 for
standard output (stdout), and 2 for standard error (stderr).
Many C programs and some library functions, such as
perror, write error messages to stderr, assuming that
stderr is opened to a terminal (tty). If, however, stderr is
opened to a sensitive file, then the messages will be writ-
ten to the sensitive file, damaging the file or even allowing
an adversary to take control over the system. For exam-
ple, suppose the victim program in Figure 5(a) is installed
setuid-root. The adversary runs the attack program in Fig-

6We could make this property stronger by including library functions
that take file names as arguments.

ure 5(b), which closes its stderr and then executes the vic-
tim program. Then, when the victim program opens the
password file /etc/passwd, because Unix opens a file to
the smallest closed file descriptor, the file will be opened
to file descriptor 2, i.e., stderr. Later, when the victim pro-
gram writes an error message to stderr, the message enters
/etc/passwd. Since the message contains a string coming
from the adversary, the adversary can choose the string to
be a valid entry in the password file that allows him to log
in as root.

The avoid this attack, a prudent program should observe
the following property:
Property 4 Do not open a file in writing mode to stdout
or stderr, no matter which file descriptors are open when
the process starts7.
A popular defense to this vulnerability is to open /dev/null
three times at the beginning of the program so that no files
can be opened to stderr.

7We could make the property stronger by ensuring that the program
does not open any file in reading mode to stdin. We have not experi-
mented with this modification.

stat(f)
open(f)

rename(f, *)
...

other other stat(f)
open(f)

rename(f, *)
...

(a) An FSA describing Property 3

stat(logfile, &st);
if (st.st uid != getuid())

return -1;
open(logfile, O RDWR);

(b) A program segment violating Property 3. Note that the
program is susceptible to a race condition, since the binding
of logfile to a file may change between the stat() and
open() calls.

Figure 4. An FSA illustrating Property 3 (“A
program should not pass the same file name to two
system calls on any path”) and a program vio-
lating it.

3.1.5. Create Temporary Files Securely

Many programs create temporary files in a shared direc-
tory such as /tmp. The C library provides several functions
for creating unique temporary files. Unfortunately, most
of them are insecure because they make the program vul-
nerable to race condition attacks. For example, mktemp
returns a unique file name, but if an adversary creates a
file with the same name before the program does, the pro-
gram will either open the adversary’s file, if the open call
does not specify the O EXCL flag, or fail otherwise. Other
insecure functions for making unique temporary files are
tmpnam, tempnam, and tmpfile. The only secure
function is mkstemp, which accepts a string parameter
as the template for the temporary file, opens a unique file,
and then returns the file descriptor. Additionally,

• To avoid race conditions, the program should not
reuse the string parameter to mkstemp for any other
system calls or library functions. This is because
mkstemp writes the name of the unique temporary
file to the string, but the binding from name to inode
might change after mkstemp returns and before the
next function executes.

• The program should call umask(077)8 before call-
ing mkstemp, because old versions of mkstemp

8Here we are using the C convention that a leading 0 denotes an octal
number.

// This is a setuid-root program
fd = open(“/etc/passwd”);
str = read from user();
fprintf(stderr, “The user entered:\n%s\n”, str);

(a) victim.c: a program vulnerable to the stderr attack

int main()
{

close(2);
execl(“victim”, “victim”, NULL);

}

(b) A program run by the adversary to attack the program in Fig-
ure 5(a)

Figure 5. A program vulnerable to the attack
on standard file descriptors and an exploit-
ing program.

create temporary files with the mode 0666, which is
a security risk because all users can read the files.

We summarize the security property as the following:
Property 5 A program should (1) never call mktemp,
tmpnam, tempnam, or tmpfile; (2) never reuse
the parameter x in mkstemp(x); and (3) call
umask(077) before mkstemp.

3.2. Software Programs

We selected six large, network-related, security-
sensitive packages and two small setuid-root programs
from Redhat Linux 9. See Figure 6 for a list of software
packages we analyzed, their descriptions, and the number
of lines of code analyzed (counted using “wc -l *.c”).

3.3. Performance

We ran all the experiments on an 1.5GHz Pentium 4
single-CPU PC with 1GB memory that runs Redhat Linux
9. Figure 7 shows the time that MOPS spent on model
checking each package and the number of real error traces
and total error traces that MOPS found. Each table shows
the results for one property, where each row shows the
results for one package, including the number of programs
checked, the running time, and the number of real error
traces vs. total error traces. The following explains how
we measured these results.

• The number of programs checked. Each package
builds multiple executable programs, but some prop-

Program LOC Description

Apache 2.0.40-21 229K An HTTP server
At 3.1.8-33 6K A program to queue jobs for later execution
BIND 9.2.1-16 279K An implementation of the Domain Name System (DNS)
OpenSSH 3.5p1-6 59K A client and a server for logging into a remote machine via the SSH protocol
Postfix 1.1.11-11 94K A security-oriented Mail Transport Agent
Samba 254K A Windows SMB/CIFS file server and client for Unix
Sendmail 8.12.8-4 222K A popular Mail Transport Agent
VixieCron 3.0.1-74 4K A program to maintain crontab files for individual user

Figure 6. Software packages that we checked using MOPS

erties only apply to a subset of these programs. Prop-
erty 1 and 2 only apply to either programs that are
run by the root user or setuid/setgid programs, be-
cause the OS only allows these programs to change
their user IDs or group IDs (Property 1) and to cre-
ate root jails (Property 2). Property 4 applies only to
setuid/setgid programs because an unprivileged ad-
versary can only exploit the violation of this property
by running vulnerable setuid/setgid programs, which
grant him extra privilege. Property 3 and 5 apply to
all the programs in each package.

• The running time. We calculated the running time
by summing the user time and the system time as
reported by the time command.

• The number of real error traces and total error traces.
For each package, after collecting the error traces
that MOPS reported on each program, we merged all
the equivalent traces. We consider two traces from
two different programs equivalent if both make tran-
sitions to an identical error state from an identical
non-error state at an identical program point. This is
similar to how we decide two equivalent traces within
a program (see Section 5.1.). Then, we examine each
trace manually to determine if it indicates a real bug.
A real bug means that under certain conditions an ad-
versary may exploit the bug to take control over the
system or the user’s account, to gain privileges, or to
cause the program to fail. A trace reported by MOPS
may not indicate a real bug due to the following rea-
sons:

– The trace is infeasible due to MOPS’s impre-
cise program analysis.

– Because the property is conservative, the trace
does not indicate a bug even though it violates
the property. For example, Property 1 requires
that a privileged process should not call execv
with untrusted argument. Since we cannot de-
termine if an argument is trusted statically, we

code the property to forbid a privileged process
from calling execv entirely. Therefore, even if
a privileged process calls execv with an trusted
argument, MOPS still considers it a violation
of the security property and provides an error
trace; it is up to the human to notice that this
error trace is not a real bug.

Therefore, the 5th column in each table counts only
real bugs. The 6th column counts the total number of
all error traces (whether they represent real bugs or
not).

3.4. Usability

To evaluate the usability of MOPS, we examine the
three stages in the MOPS process: (1) the user describes
a security property in an FSA; (2) the user runs MOPS
on a software package; and (3) the user analyzes the er-
ror traces from MOPS. For the first task, once the user
formalizes a security property into a control-flow cen-
tric temporal safety property, it is fairly easy to describe
it using an FSA. Although one needs to become famil-
iar with the syntax of ASTs before one can write new
FSAs, this proved to be an easy task in our experiments
– users without compiler background learned how to de-
velop new FSAs quickly by looking at examples and by
letting MOPS’s parser generate sample ASTs. For the
second task, we have written tools for integrating MOPS
into the build process of software packages that are built
by GCC. Currently, the tools are able to analyze pack-
ages distributed as .tar files or as source RPM packages.
To run MOPS on these packages, the user runs a simple
MOPS front-end and provides it with the names of the
packages and the names of FSAs, and then the tools take
care of the rest of model checking. Note that the user need
not modify any Makefile in the packages (see Section 5.2.
for details). For the third task, MOPS reports all the er-
rors in the program by listing all error traces that violate
the property. Section 5.1. will describe how we improved
MOPS so that only one error trace is reported for each

Package LOC Pro- Time Error Traces
grams (m:s) Real Total

Apache 229K 2 :45 1 4
At 6K 2 :05 0 0
BIND 279K 1 :53 0 1
OpenSSH 59K 3 :23 2 8
Postfix 94K 3 :17 0 2
Samba 254K 3 1:53 0 5
Sendmail 222K 1 :12 0 0
VixieCron 4K 2 :05 0 0

(a) Performance of MOPS on Property 1: “A process should
drop privilege from all its user IDs before calling execl,
popen, system, or any of their relatives.”

Package LOC Pro- Time Error Traces
grams (m:s) Real Total

Apache 229K 2 :09 0 0
At 6K 2 :05 0 0
BIND 279K 1 :03 0 0
OpenSSH 59K 3 :17 0 0
Postfix 94K 3 :12 0 0
Samba 254K 3 :56 0 0
Sendmail 222K 1 :22 0 0
VixieCron 4K 2 :05 0 0

(b) Performance of MOPS on Property 2: “After calling
chroot, a process should immediately call chdir("/") to
change its working directory to the root of the sub-filesystem.”

Package LOC Pro- Time Error Traces
grams (m:s) Real Total

Apache 229K 14 :43 0 1
At 6K 2 :06 0 6
BIND 279K 30 1:08 0 3
OpenSSH 59K 13 :50 0 12
Postfix 94K 33 2:18 0 3
Samba 254K 25 13:14 1 2
Sendmail 222K 24 1:53 0 8
VixieCron 4K 2 :07 1 2

(c) Performance of MOPS on Property 3: “Avoid race condi-
tions in file system access.”

Package LOC Pro- Time Error Traces
grams (m:s) Real Total

Apache 229K 1 :14 1 1
At 6K 1 :04 1 1
BIND 279K 0 :00 0 0
OpenSSH 59K 2 :58 1 2
Postfix 94K 2 :46 0 1
Samba 254K 1 :52 1 1
Sendmail 222K 1 14:12 0 3
VixieCron 4K 1 :04 2 2

(d) Performance of MOPS on Property 4: “Do not open a file in
writing mode to stdout or stderr, no matter which file descrip-
tors are open when the process starts.”

Package LOC Pro- Time Error Traces
grams (m:s) Real Total

Apache 229K 14 :42 0 0
At 6K 2 :05 0 0
BIND 279K 30 1:11 0 0
OpenSSH 59K 13 1:01 2 2
Postfix 94K 33 3:20 0 0
Samba 254K 25 28:38 0 0
Sendmail 222K 24 1:55 0 0
VixieCron 4K 2 :06 0 0

(e) Performance of MOPS on Property 5: “A program should: (1) never call mktemp, tmpnam, tempnam, or tmpfile; (2) never reuse the
parameter x in mkstemp(x); (3) call umask(0077) before mkstemp.”

Figure 7. Running time of MOPS and number of error traces reported by MOPS on five properties

unique programming error. This improvement greatly re-
duced the number of error traces that we had to examine
manually in Figure 7.

To evaluate the usability of MOPS for programmers that
are not MOPS developers, we asked three undergraduate
and one graduate Computer Science students to run these
experiments independently. The students were able to fin-
ish the experiments within a few weeks in their spare time,
and the learning curve was not too high. This provides ev-
idence that these enhancements to MOPS have made it
fairly easy to use.

4. Findings

In this section we describe several security weaknesses
in the programs that we found during our experiments.

4.1. Failure to Drop Privilege Completely

In the past several programs have had vulnerabilities be-
cause they failed to drop privilege securely. This is partly
due to the poor design of the system calls that set user IDs
— they have confusing semantics, different behaviors on
different platforms, and insufficient or even wrong docu-
mentation [7]. As a result, they are susceptible to misuse,
which has caused numerous security vulnerabilities.

ssh in OpenSSH ssh is a client that allows a user to
log into a server via the SSH protocol. ssh is installed
as a setuid-root program on some systems9. ssh may need
to execute another program, which is ssh-askpass by de-
fault but is user selectable, to read the passphrase of the
user’s private key. Since this program is not trusted, ssh
needs to drop its root privilege permanently before execut-
ing the program. The code is “seteuid(getuid());
setuid(getuid());”. This code fulfills the objec-
tive on BSD where OpenSSH was originally developed,
but behaves unexpectedly on Linux. This is because the
semantics of setuid differs between BSD and Linux.
On BSD setuid(new uid) sets all the real uid, effec-
tive uid, and saved uid to new uid. On Linux, however,
the behavior of this call depends on whether the effec-
tive uid is root: if so, the call sets all three user IDs to
new uid; otherwise, the call sets only the real and effec-
tive uid to new uid but leaves the saved uid unchanged.
Before ssh executes the above code, its real uid is non-
root and its effective uid and saved uid are root. The
first call, seteuid(getuid()), sets the effective uid
to non-root. Therefore, the outcome of the second call,
setuid(getuid()), depends on the OS. On BSD the

9ssh needs root privilege to read the local host key and to generate the
digital signature required during the host-based authentication with SSH
protocol version 2. A site can either install ssh setuid-root or configure
it to use a setuid-root helper, ssh-keysign.

call sets the saved uid to non-root, but on Linux the call
keeps the root saved uid unchanged.

This weakness suggests that the programmer misun-
derstands how the setuid-like system calls work. In
fact, if we remove the first call, ssh would behave as
desired on both Linux and BSD. The extra seteuid
(getuid()) was introduced in recent versions of
OpenSSH (an old version, 2.5.2, does not have it) and
the programmers seem to think that it makes the program
safer, but in fact it introduces a weakness. It would be very
easy to overlook this subtle weakness in a manual audit,
which demonstrates the utility of MOPS.

Although leaving a privileged user ID in the saved uid
before executing an untrusted program does not result in
an immediate exploit by itself (because the OS will set the
saved uid to the unprivileged effective uid before execut-
ing the program), it is an indication of weakness in the
program because the programmers have likely intended
to drop privilege permanently. This may cause two prob-
lems. First, since the programmers think that they have
permanently dropped privilege, they may freely do cer-
tain actions that are safe without privilege but risky with
privilege. Second, if an adversary causes a buffer over-
run in the program, he may inject code into the pro-
gram to regain privilege in the saved uid (by calling
seteuid(saved uid)). The more code that runs after
the failed attempt to drop privilege permanently, the more
potential threat the program faces.

ssh-keysign in OpenSSH ssh-keysign is a setuid-root
program that accesses the local host keys and gener-
ates a digital signature. It starts with root privilege in
its effective uid and saved uid because it needs it to
access the local host keys, which are accessible only
to root. After ssh-keysign opens the host key files,
it intends to drop root privilege permanently before
doing complicated cryptographic operations. Unfortu-
nately, it fails to drop root privilege from the saved
uid on Linux because it calls “seteuid(getuid());
setuid(getuid());”, like ssh as discussed earlier.
Therefore, the ssh-keysign process will execute compli-
cated, possibly third-party cryptographic code with root
privilege in the saved uid. If an adversary can cause a
buffer overrun in the code, as happened to the RSAREF2
library in the past [17], he may take control of the process
and then regain privilege.

suexec in Apache suexec is a setuid-root program that
executes another program using a given user ID and group
ID. The calling convention is as follows.

suexec uid gid program args

An option in the Apache web server httpd lets the server
execute CGI programs as the program owner (e.g. using
the owner’s user ID and group ID). Since httpd runs as the
user apache, it cannot run any program as another user, so
it asks suexec to do it. This option, however, is turned off
by default, therefore by default httpd executes CGI pro-
grams as the user apache. To prevent non-root users from
running suexec directly, suexec is executable by the user
root and the group apache but not by anyone else.

However, a local adversary on the web server can cir-
cumvent this protection by running suexec from his CGI
program because the CGI program runs as the group
apache and so can run suexec. This seems very dangerous
because now the adversary can run any program as any
user. Fortunately, to ensure that it will not do any harm
to the system, suexec performs many security checks, in-
cluding:

• It checks that the current directory is within DOC-
ROOT (e.g. public html/cgi-bin).

• It checks that the requested user and group IDs own
the current directory.

• It checks that the requested user and group IDs own
the requested program.

• It checks that the last component in the path to the
requested program is not a symbolic link. (However,
it does not check if a directory name in the path is a
symbolic link.)

• It checks that the command does not start with / or
../ and does not contain /../, to prevent the com-
mand from escaping DOCROOT.

Notwithstanding these paranoid checks, the adversary
can still attack the system in at least the following two
cases:

• For any target user on the system, the adversary can
execute any program that is owned by the victim and
is in a subdirectory of the victim’s CGI directory.
This may not seem a risk because the victim should
assume that any program under his CGI directory can
be invoked at any time by a web user. However, the
threat is that this may break the victim’s expectations
in two different ways, as listed below, and this could
lead to a security violation.

– First, the victim can no longer prevent other
users from executing the programs in his CGI
directory by setting file permission appropri-
ately. For example, when the victim is exper-
imenting with a CGI program that has not been
audited for security, he may want to prevent

other users from running the program by set-
ting the file not world executable, but he might
not realize that an adversary can still run his
program via suexec.

– Second, the victim can no longer expect the
command line arguments to his CGI program
to come from the web server and therefore to
be well-formed, because the adversary can pass
arbitrary arguments to the CGI program via
suexec. As the victim may not expect this, he
may not have written his CGI programs to de-
fend against malicious data in command line ar-
guments.

This becomes more serious if the victim creates a
symbolic link from his CGI directory to his home
directory, as now the adversary can run every pro-
gram in his home directory with command line ar-
guments of his choice, and these programs runs with
the victim’s privileges. This may allow the adversary
to gain control of the victim’s account.

• On systems where a non-root user can change the
ownership of his files, such as some systems derived
from System V Unix, the attack becomes more se-
vere. The adversary can create a directory within his
DOCROOT, create a malicious program inside it, and
change the ownership of both to the victim. Then the
adversary lets suexec (via his CGI program) to run
the malicious program as the victim.

Discovering both these security issues in suexec re-
quired some manual analysis, but MOPS pointed us to
the right place to start and helped find “the needle in the
haystack”. This example shows the value of looking for
suspicious code, even when that code is not previously
known for certain to be a security hole.

4.2. Standard File Descriptor Vulnerabilities

at in At at is a setuid-root program. It reads the com-
mands that the user wants to execute at a certain time from
the standard input and writes them into a file. Later, the
daemon atd executes the file. The file is placed in a direc-
tory that ordinary users cannot read from or write to.

at does not take care to ensure that the first three file
descriptors are open before it opens any file for writing.
Because the invoker controls the initial bindings of all file
descriptors, an adversary can cause at to open a file in
writing mode to stderr. For example, the adversary could
close stdout and stderr and then invoke at. at first opens a
lock file, which will be assigned to stdout, and then opens
a task file to record the user’s commands, which will be
assigned to stderr. From now on, all messages for stderr
will enter the task file.

We are unaware of any way to exploit this bug. Though
it is possible for an attacker to corrupt the task file, the at-
tacker has little control over the contents written into the
task file, since at only writes prompts to stderr. Nonethe-
less, this blemish may cause serious problems if future
versions of at write user-supplied strings to stderr.

We also found similar problems in Apache, OpenSSH,
Samba, and VixieCron.

4.3. Temporary File Vulnerability

sshd in OpenSSH sshd makes temporary files using the
secure function mkstemp. It, however, forgets to call
umask(077) before calling mkstemp. This may in-
troduce a vulnerability when used with older versions of
glibc, where mkstemp creates unique temporary files that
are readable and writable by everyone (mode 0666).

5. Experience and Lessons

Checking real, large software packages requires a great
deal of engineering effort. In our experiments, we quickly
discovered that we needed to improve MOPS’s error re-
porting and to automate the build process of software
packages for MOPS before we could practically analyze
large software packages. This forced us to extend MOPS
in two key areas: error reporting and build integration.

5.1. Improvement on MOPS’s Error Reporting

When MOPS finds potential violations of security prop-
erties in a program, it reports error traces, which are use-
ful to the programmers for identifying errors in the pro-
gram. Since MOPS is conservative, it may report false
positive traces, i.e. traces that in fact do not violate secu-
rity properties but that are misconceived as violations due
to MOPS’s imprecise analysis. It is left up to the user to
decide which error traces are real and which are false pos-
itives. In its first implementation, MOPS could only re-
port one error trace for each violated property. Because of
this restriction, the presence of a false positive trace effec-
tively prevented MOPS from reporting further, possibly
real, traces. To overcome this problem, MOPS must be
able to report multiple, and ideally all, error traces. How-
ever, we also discovered that a single programming error
can cause many, sometimes infinitely many, traces, so it is
undesirable or impractical to report all of them. We con-
cluded that what we really want is for MOPS to show all
programming errors by reporting one error trace as a wit-
ness to each programming error. This approach satisfies
our seemingly contradictory desires to review all the pro-
gramming errors and to avoid reviewing redundant error
traces.

We consider two different error traces as witnesses to
the same programming error if both traces make transi-

tions to an identical error state e from an identical non-
error state s at an identical program point p. The unique
programming error that both these traces witness is rep-
resented by the tuple (e, s, p).10 Using this definition, for
each unique programming error (e, s, p), MOPS searches
for only one shortest error trace as a witness and reports it
if it exists. This improvement provided orders of magni-
tude reduction in the number of error traces that the user
was forced to examine. For example, it gave us the fairly
small number of total traces reported in Figure 7.

This approach is more precise than the one used by Ball
et al. for localizing errors in model checking [2]. The
major difference is that our approach distinguishes each
unique programming error by a unique tuple of a program
point, the non-error state before the program point, and the
error state after the program point, but their approach dis-
tinguishes each error by just a unique program point. It is
clear that their approach is less precise because many pro-
gram points are shared by error traces and correct traces.
To illustrate the limitation of their approach, let us look
at each of the two alternative algorithms used in their ap-
proach. Their first algorithm considers all the program
points that are in some error traces but that are absent
from any correct traces as error causes. This algorithm
has the problem that it will overlook all the error causes
that are shared by error traces and correct traces. Their
second algorithm, intended to solve the above problem,
collects all the tuples (s, p), where p is a program point
and s is the state of the program at p, that are in some
error traces but that are absent from any correct traces.
Then, the algorithm considers all the program points in the
collected tuples as error causes. The drawback of this al-
gorithm is that it will mistakenly treat many innocent pro-
gram points as error causes. To illustrate the problem, let
t = (t1, t2, . . . , tn) be an error trace, where each element
in the trace is a tuple of a program point and a program
state, and let ti be the first element where the trace enters
an error state. Their algorithm will treat all the program
points in the tuples after ti on the trace as error causes,
even though many of them may not be error causes at all.
In summary, our approach is more precise in identifying
unique error causes.

5.2. Automated Build Process

One of our goals was to make it easy to check many
software packages. The core of MOPS consists of three
programs:

• mops cc: a parser that takes a file containing
C source code and generates a Control Flow
Graph(CFG).

10What constitutes a unique programming error is subjective and de-
batable. Here we use just one possible interpretation.

• mops ld: a linker that takes a set of CFG files and
merges them into a single CFG file, resolving cross
references of external functions and variables.

• mops check: the model checker that takes a CFG and
an FSA and decides if the program may violate the
security property in the FSA.

Our build integration mechanism is built on top of these
three core components. Amusingly, it took us three major
iterations before we settled upon an acceptable method for
integrating MOPS into the applications’ build processes.

First try: running MOPS by hand In our first imple-
mentation, we provided no build integration support at all:
the user was forced to run the above three programs by
hand. This quickly proved unwieldy for packages contain-
ing multiple source files and also made it tricky to ensure
that mops cc received the same options as the real cc.

Second try: modifying Makefile The next thing we
tried was to integrate these three programs into the build
process of the package manually. As a first attempt, we
tried to put these programs into the Makefile of each pack-
age. Although this works on packages with simple Make-
files (e.g., OpenSSH), it quickly becomes unusable on
packages with complicated and multiple Makefiles. Fur-
thermore, rerunning autoconf will remove any modifica-
tions to Makefiles. Therefore, we soon discovered that we
needed an automatic approach for integrating MOPS into
the build process.

Third try: interposing on GCC Our solution was to
hook into GCC. Most packages use GCC to build executa-
bles. By setting the GCC EXEC PREFIX environment
variable, we instruct the GCC front-end to use mops cc as
the parser instead of cc1 and mops ld as the linker instead
of collect2. So after we build the package, each object file
contains a CFG from a single source program file and each
executable file contains a merged CFG instead of machine
code that GCC would normally build. A nice side benefit
of this approach is that we can be sure that MOPS runs
on exactly the (preprocessed) code that is compiled, since
mops cc runs after the preprocessor (cpp).

Refinement: building both CFGs and machine code
The above process does not build any machine code.
This causes problems in some packages, which build and
run executables to generate header files needed for future
compilation. Since the above MOPS process replaces ex-
ecutables with CFGs, it causes these packages to fail to
build. Similarly, it breaks autoconf. An obvious solution
is to let mops cc, for each program file foo.c, build both

a CFG file foo.cfg and a machine code file foo.o. Also
mops ld should link not only the CFG files but also the
machine code files.

Refinement: combining each CFG and its machine
code into one file The above process, however, causes
yet some other packages to fail because of the weak link-
age between machine code (.o files) and CFGs (.cfg files).
In some packages, the build process moves an object file,
renames it, or puts it into an archive. In such cases, the
corresponding CFG file is left dangling and the link to
the .o file is broken. A possible solution is to modify
the PATH environment variable to trap the commands that
cause the above problems, such as mv, ar, etc. This,
however, is laborious and is hard to make complete. In-
stead, we adopted an approach that takes advantage of the
ELF file format, which allows multiple sections. Since
GCC generates object files and executables in ELF, we
extended mops cc and mops ld to insert CFGs into a com-
ment section in the appropriate object files and executable
files. Then, mops check extracts CFGs from executables
for model checking. This way, a CFG is always in the
same file as its corresponding machine code, no matter
how the build process moves, renames, or archives the file,
the fidelity of MOPS’s analysis is ensured.

Finally, we wrote a front-end that lets the user run
MOPS on packages distributed as .tar files or source
RPM packages at the push of a button. The user sim-
ply provides the front-end with the packages and the se-
curity properties, and the front-end will invoke the model
checker on the packages using their appropriate build pro-
cesses. This push-button capability has made a significant
qualitative difference in our use of MOPS: by removing
artificial barriers to use of MOPS, it has freed us up to
spend the majority of our time on the code auditing task
itself. For packages with special build processes, we can
modify their Makefiles to use mops cc as the compiler, use
mops ld as the linker, and do model checking immediately
after linking. In this way, we have integrated MOPS into
the build process of EROS (Extremely Reliable Operating
System) [19].

5.3. Value of Tool Support

It is striking that we were able to find so many bugs
in these mature, widely used software packages that are
probably among the best designed, implemented, audited
packages around. Given that MOPS can find security bugs
in these programs, our experience suggests that we proba-
bly cannot have confidence in the rest of our software.

Static analysis tools like MOPS are valuable in find-
ing vulnerabilities in the programs that run today, but
they are even more valuable in preventing vulnerabili-
ties from being inadvertently introduced into programs

in the future. Take OpenSSH, for example. In version
2.5.2p2, ssh drops all privileges permanently by calling
setuid(getuid()). In the newer version 3.5p1, how-
ever, ssh introduces a weakness because it adds a call
seteuid(getuid()) before setuid(getuid())
and therefore fails to drop privileges completely. Incor-
porating static analysis tools into the build processes of
software packages would help the programmers to catch
vulnerabilities as soon as they are introduced into the
programs. In addition, in the same way that regression
tests prevent old bugs from being re-introduced, MOPS
could be used to prevent old security holes from being re-
introduced into security-critical applications.

5.4. Configurations Make Static Analysis Diffi-
cult

Many packages have build-time configurations and run-
time configurations. Build-time configurations affect
which code gets compiled and linked. Some of them are
set by autoconf, which detects the features of the platform,
and some can be set by the user. Therefore, one CFG re-
flects only one build-time configuration, but in some cases
only certain configurations result in vulnerable executa-
bles. This is often true for programs that make setuid-
like calls. Because these calls differ on different plat-
forms, many programs put them into conditional macros
(#ifdef) hoping that they work correctly on every plat-
form. However, MOPS can only check the package for
the property on the platforms where the package has been
built.

Run-time configurations affect the control flow of the
program — some control flows are feasible only in some
configurations. Since MOPS lacks data flow analysis, run-
time configuration causes false positives. Furthermore,
there are often constraints on the parameters in a config-
uration. Therefore, even a data-flow savvy tool cannot
avoid some false positives without domain knowledge of
each configuration. This demands more human assistance.
Therefore, configuration-dependent code remains a weak
spot for software model checking, static analysis, and for-
mal verification in general.

6. Related Work

A number of static analysis techniques have been used
to detect specific security vulnerabilities in software.
Wagner et al. used integer range analysis to find buffer
overruns [21]. Koved et al. used context sensitive, flow
sensitive, inter-procedural data flow analysis to compute
access rights requirement in Java with optimizations to
keep the analysis tractable [14]. CQUAL [11] is a type-
based analysis tool that provides a mechanism for speci-
fying and checking properties of C programs. It has been

used to detect format string vulnerabilities [18] and to ver-
ify authorization hook placement in the Linux Security
Model framework [23], which are examples of the devel-
opment of sound analysis for verification of particular se-
curity properties. The application of CQUAL, however, is
limited by its flow insensitivity and context insensitivity,
although it is being extended to support both.

Metal [9, 1] is a general tool that checks for rule vi-
olations in operating systems, using meta-level compila-
tion to write system-specific compiler extensions. Use
of Metal basically requires the programmer/security an-
alyst to specify annotations on the program being stud-
ied. Metal then propagates these annotations and is very
good at finding mismatches: e.g., when a pointer to a user-
mode address is dereferenced inside the kernel. Over time,
Metal has evolved from a primarily intra-procedural tool
to an inter-procedural tool. Recent work [22] has been on
improving the annotation process. The most substantial
difference between Metal and MOPS are Metal’s annota-
tions: with more effort, Metal can find data-driven bugs
that MOPS currently cannot. Overall, the approaches of
MOPS and Metal are converging. One could easily rec-
ommend the use of both tools to analyze a particular piece
of software, with each tool used where it has particular
strength. Moreover, we expect that the results of this pa-
per would carry over to Metal; all of the security proper-
ties we considered can be expressed within Metal’s anno-
tation system, and it seems likely that most (or all) of the
bugs we found with MOPS could also have been found
with Metal.

SLAM [3, 4] is a pioneer project that uses software
model checking to verify temporal safety properties in
programs. It validates a program against a well designed
interface using an iterative process. During each itera-
tion, a model checker determines the reachability of cer-
tain states in a boolean abstraction of the source program
and a theorem prover verifies the path given by the model
checker. If the path is infeasible, additional predicates
are added and the process enters a new iteration. SLAM
is very precise, and as such, represents a promising di-
rection in lightweight formal verification. SLAM, how-
ever, does not yet scale to very large programs. Similar to
SLAM, BLAST is another software model checker for C
programs and uses counterexample-driven automatic ab-
straction refinement to construct an abstract model which
is model checked for safety properties [12]. Compared to
SLAM and BLAST, MOPS trades precision for scalability
and efficiency by considering only control flow and ignor-
ing most data flow, as we conjecture that many security
properties can be verified without data flow analysis. Also
since MOPS is not an iterative process, it does not suf-
fer from possible non-termination as SLAM and BLAST
do. ESP [8] is a tool for verifying temporal safety proper-

ties in C/C++ programs. It uses a global context-sensitive,
control-flow-insensitive analysis in the first phase and an
inter-procedural, context-sensitive dataflow analysis in the
second phase. ESP is between SLAM/BLAST and MOPS
in scalability and precision.

A key contribution to the usability of MOPS is its abil-
ity to report only one error trace for each error cause in the
program, which significantly reduces the number of error
traces that the programmer has to review. Among the tools
discussed above, only SLAM has documented a similar
ability [2]. Compared to MOPS’s approach, SLAM’s ap-
proach is less precise because it may overlook error causes
or report spurious error causes (see Section 5.1. for a de-
tailed discussion).

Despite important technical differences, we believe
these diverse approaches to software model checking
share significant common ground, and we expect that
much of our implementation experience would trans-
fer over to other tools (such as Metal, ESP, SLAM, or
BLAST). This makes our results all the more meaningful.

7. Conclusion

We have shown how to use software model checking
to analyze the security of large legacy applications. We
reported on our implementation experience, which shows
that model checking is both feasible and useful for real
programs. After performing extensive case studies and
analyzing over one million lines of source code, we dis-
covered over a dozen security bugs in mature, widely-
deployed software. These bugs escaped notice until now,
despite many earlier manual security audits, because the
security properties were somewhat subtle and non-trivial
to check by hand. This demonstrates that MOPS allows
us to efficiently and automatically detect non-obvious se-
curity violations. Our conclusion is that model checking
is an effective means of improving the quality of security-
critical software at scale.

Acknowledgment

We are grateful to David Schultz, who built a first proto-
type of the automated build process and who implemented
a first version of the stderr property; and to Geoff Morri-
son, who helped improve the automated build process and
who implemented the MOPS user interface for reviewing
error traces in HTML formats. Ben Schwarz, Jacob West,
Jeremy Lin, and Geoff Morrison helped verify many re-
sults in this paper after the initial submission of this paper.
We also thank Peter Neumann, Jim Larus, and the anony-
mous reviewers for their comments on an earlier draft of
this paper.

References

[1] K. Ashcraft and D. Engler. Using programmer-written
compiler extensions to catch security holes. In Proceed-
ings of IEEE Security and Privacy 2002, 2002.

[2] T. Ball, M. Naik, and S. Rajamani. From symptom to
cause: Localizing errors in counterexample traces. In
POPL ’03: Proceedings of the ACM SIGPLAN-SIGACT
Conference on Principles of Programming Languages,
2003.

[3] T. Ball and S. K. Rajamani. Automatically validating tem-
poral safety properties of interfaces. In SPIN 2001, Work-
shop on Model Checking of Software, 2001.

[4] T. Ball and S. K. Rajamani. The SLAM project: Debug-
ging system software via static analysis. In POPL ’02:
Proceedings of the ACM SIGPLAN-SIGACT Conference
on Principles of Programming Languages, 2002.

[5] M. Bishop and M. Dilger. Checking for race conditions in
file access. Computing Systems, 9(2):131–152, 1996.

[6] H. Chen and D. Wagner. MOPS: an infrastructure for ex-
amining security properties of software. In Proceedings of
the 9th ACM Conference on Computer and Communica-
tions Security (CCS), Washington, DC, 2002.

[7] H. Chen, D. Wagner, and D. Dean. Setuid demystified. In
Proceedings of the Eleventh Usenix Security Symposium,
San Francisco, CA, 2002.

[8] M. Das, S. Lerner, and M. Seigle. Esp: Path-sensitive pro-
gram verification in polynomial time. In PLDI ’02: Pro-
ceedings of the ACM SIGPLAN 2002 Conference on Pro-
gramming Language Design and Implementation, Berlin,
Germany, June 2002.

[9] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
system rules using system-specific, programmer-written
compiler extensions. In OSDI, 2000.

[10] D. Engler and M. Musuvathi. Static analysis versus soft-
ware model checking for bug finding. In 5th Intl. Confer-
ence Verification, Model Checking and Abstract Interpre-
tation (VMCAI ’04), 2004.

[11] J. Foster, M. Fähndrich, and A. Aiken. A theory of type
qualifiers. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’99),
May 1999.

[12] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.
Software verification with BLAST. In Proceedings of the
10th SPIN Workshop on Model Checking Software, 2003.

[13] D. Jackson and J. Wing. Lightweight formal methods.
IEEE Computer, pages 21–22, April 1996.

[14] L. Koved, M. Pistoia, and A. Kershenbaum. Access rights
analysis for Java. In Proceedings of the 17th Annual ACM
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2002.

[15] RATS. http://www.securesoftware.com/
rats.php.

[16] H. Rogers. Theory of Recursive Functions and Effective
Computability. MIT Press, 1987.

[17] Sendmail Inc. CERT advisory CA-1999-15 buffer over-
flows in SSH daemon and RSAREF2 library. http://
www.cert.org/advisories/CA-1999-15.htm.

[18] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. De-
tecting format string vulnerabilities with type qualifiers.
In Proceedings of the 10th USENIX Security Symposium,
2001.

[19] J. Shapiro, J. Smith, and D. Farber. EROS: a fast capability
system. In Proceedings of the 17th ACM Symposium on
Operating Systems Principles, 1999.

[20] J. Viega, J. T. Bloch, T. Kohno, and G. McGraw. Its4: A
static vulnerability scanner for c and c++ code. In Pro-
ceedings of the 16th Annual Computer Security Applica-
tions Conference, December 2000.

[21] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step
towards automated detection of buffer overrun vulnerabil-
ities. In Proceedings of NDSS 2000, 2000.

[22] J. Yun, T. Kremenek, Y. Xie, and D. Engler. Meca: an
extensible, expressive system and language for statically
checking security properties. In V. Atluri and P. Liu,
editors, Proceedings of the 10th ACM Conference on
Computer and Communication Security, pages 321–334,
Washington, DC, October 2003. ACM.

[23] X. Zhang, A. Edwards, and T. Jaeger. Using CQUAL for
static analysis of authorization hook placement. In Pro-
ceedings of the Eleventh Usenix Security Symposium, Au-
gust 2002.

