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Abstract—To protect user privacy in the search engine context,
most current approaches, such as private information retrieval
and privacy preserving data mining, require a server-side deploy-
ment, thus users have little control over their data and privacy. In
this paper we propose a user-side solution within the context of
keyword based search. We model the search privacy threat as an
information inference problem and show how to inject noise into
user queries to minimize privacy breaches. The search privacy
breach is measured as the mutual information between real user
queries and the diluted queries seen by search engines. We give
the lower bound for the amount of noise queries required by
a perfect privacy protection and provide the optimal protection
given the number of noise queries. We verify our results with a
special case where the number of noise queries is equal to the
number of user queries. The simulation result shows that the
noise given by our approach greatly reduces privacy breaches
and outperforms random noise. As far as we know, this work
presents the first theoretical analysis on user side noise injection
for search privacy protection.

I. INTRODUCTION

Privacy concerns have emerged globally as massive user
information is collected by search engines. The large body
of data mining algorithms, which are potentially employed
by search engines while unknown to search users, further
increase such concerns. Currently most search engines keep
user queries for several months or years, for example, as of
Sep. 8, 2008, Google claims to anonymize search log after 9–
18 months [1]. Privacy violations may happen within the data
retention window. Private information retrieval [2] and privacy
preserving data mining [3] have been proposed as responses to
the concerns over user profiling methods, while most existing
approaches require a server-side deployment in the context
of search privacy protection, which relies on the courtesy of
search engines and privacy laws/regulations. Vulnerable data
anonymization/sanitization designs and improper implementa-
tions also result in privacy breaches. For instance, after AOL
released a query log of 650k users in 2006, several users were
physically identified through their anonymized queries [4].
Moreover, there are chances for a malicious insider to get
unprotected data and compromise user privacy.

In this paper, we propose a user-side privacy protection
model for search users. Shown as Figure 1, our threat model
assumes a malicious search engine (or an attacker who reveals
the query log on the network or server side) and a user
sending queries to this search engine. The search engine
tries to profile this user with the queries it receives and
thus further compromises user privacy. In other words, we

model the search privacy violation as an information inference
problem [5], where the input is user queries and the output is
the privacy leaked though these queries. There may exist other
information channels which can be employed by the attacker,
such as voter registrations or medical records, while in this
paper we only consider search queries.

Fig. 1. Search Privacy Inference

To hide the real purpose of search users, it is possible to
split a query into several sub-queries and assemble the results
of these sub-queries. This approach, however, may not get the
same results as the original query. First of all, many search
engines only provide the top ranked search results, e.g. at most
1, 000 entries are provided by Google. Hence some results for
the original query will be missing if they are not among the top
ranked results for all the sub-queries. For example, splitting
“Mountain View,” a city in California, into “mountain” and
“view” probably will not get the desired results for the user.
Secondly, the ranking information for the original results is
important, while it is hard for the user to recover or re-rank
in many cases. In this paper we assume that the user can not
change/split queries in order to get the results he/she wants,
therefore a natural choice for privacy protection is to inject
noise queries.

The next challenge is to formally define privacy under the
search engine context. Rather than selecting a set of sensitive
queries and protecting ad hoc privacy issues, this paper takes a
rigorous approach to bound the possible privacy breaches and
derives the optimal noise to protect search users. Moreover, our



model does not target specific privacy issues or user profiling
algorithms thus can be applied to a wide range of application
scenarios.

We believe that we have made the following contributions.
• We measure the search privacy breaches as the mutual

information between real user queries and the diluted
queries seen by the attacker, and formulate the noise
injection problem as a mutual information minimization
problem. (Section IV)

• We give the lower bound for the amount of noise queries
required by a perfect privacy protection in the information
theoretical sense. (Section V)

• We show how to generate optimal noise when the amount
of noise is insufficient for perfect protection. (Section VI)

• We compute an approximate solution for the special case
where equal number of noise queries are injected and
evaluate our result with simulations. (Section VII)

TrackMeNot [6], a web browser extension, is developed to
inject noise queries into user queries, while we are not aware
of any analytical results published on how to generate noise
queries such that privacy breaches are minimized or bounded
by certain requirements. We believe that the theoretical anal-
ysis presented here complements existing privacy protection
research and provides insights for more sophisticated protec-
tion tools.

The rest of this paper is organized as follows. After
introducing the search privacy problem in Section II, we
review related work in Section III. Section IV proposes our
noise injection model and the mutual information measure for
privacy breaches. Section V gives the lower bound for the
expected number of noise queries required by perfect privacy
protection. Section VI shows how to generate optimal noise
with limited number of noise queries. Section VII computes
an approximate solution of the optimal noise for a special case
where equal number of noise queries are injected and verifies
the results with simulations. We outline our future work in
Section VIII and conclude this paper with Section IX.

II. SEARCH PRIVACY

In this section, we discuss the methods to identify search
users and the information sources for users profiling. Then we
introduce existing search privacy protection solutions.

A. Search User Identification

The following methods are widely used to identify search
users.
• IP addresses: IP addresses are probably the most popular

user identifier since they are always available to search
engines. IP addresses may fail when multiple users share
one IP address, such as users behind proxies and NAT
(Network Address Translation). DHCP (Dynamic Host
Configuration Protocol) also makes the mapping between
users and IP addresses unreliable.

• HTTP cookies: Supported by almost all modern web
browsers, HTTP cookies are a common tool for web
applications to identify users. For example, a long term

cookie may be kept on the user side and every query
will be companioned by this cookie. Such cookies allow
search engines to keep track of users better than IP
addresses.

• Client-side search tool: Client-side search software, such
as search toolbars, can generate a unique user ID based
on random numbers or information collected from the
user side, e.g. user names, operation systems, and hard-
ware configurations. This ID is then embedded in search
requests to search engines.

Some tools have been developed to remove such identifiable
information, most of which are web browser extensions, such
as CustomizeGoogle [7] and PWS [8].

B. Information Sources for User Profiling

There are four major information sources for search engines
to profile users.
• Queries: User queries are the major source of user

information for search engines.
• Click-through: Correlating user queries with their corre-

sponding clicked results, click-through data help profiling
users with more accurate and detailed information [9].

• User preferences: Users may be able to specify their
search preferences, such as languages, locations and even
interested topics, which are often stored as cookies locally
on the user side. Some existing work has incorporated
user preferences for better search performance [10].

• Rich client side: With the help of search toolbars and
desktop search, more user information can be collected
from the user side, such as browsing history and even
local documents.

C. Protection Solutions

Based on their deployment, existing search privacy pro-
tection solutions can be partitioned into the following three
categories.
• Server side: Privacy preserving data mining allows search

engines to profile users without compromising user pri-
vacy. We review related work in Section III-B.

• Network: Proxies and anonymity networks make it hard
for search engines to identify users with IP addresses.
Section III-C introduces current network based solutions.

• User side: This paper and tools such as TrackMeNot fall
into this category.

Some solutions involve more than one party above. For
example, most private information retrieval (PIR) approaches
require both user and server side deployment.

Based on the target being protected, the protection methods
can also be classified as follows.
• User ID: We can randomize the user identification and

make it hard to keep a complete query log for each user.
The possible solutions include:

– Mixing multiple users: For example, it would be hard
for search engines to map queries to individual users
behind a proxy.



– Distributing queries: For example, a user may dis-
tribute his queries to N proxies. When N is large, it
would be hard for search engines to correlate these
queries.

In both cases, we assume that there is no other identifiable
information sources such as cookies. This family of solu-
tions requires trusted infrastructures such as proxy pools,
which may not be available in some cases. Moreover, it is
subject to single points of failure when the infrastructure
is compromised.

• Query Semantics: Additional queries can be injected as
noise to change the query semantics and cover the real
search goals. For example, as indicated in [11], it is
possible to protect user privacy by breaking contextual
integrity.

In this paper we focus on how to protect query semantics
by limiting the amount of information which search engines
can infer based on (diluted) user queries.

III. RELATED WORK

A. Private Information Retrieval

A large body of literature has been devoted to private in-
formation retrieval (PIR) [2], [12]–[15] where the user tries to
prevent the database operator from knowing his/her interested
records. For example, an investor wants to keep his/her inter-
ested stocks private from the stock-market database operator.

Chor et al. [2] proves that to get a perfect protection,
in the information theoretical sense, the user has to query
all the entries in the database when dealing with a single
server scenario. Following PIR research focuses on a multi-
server setting and/or computational restrictions on the server
side, which leads to two main families of PIR: information-
theoretical [2], [12], [14], [15] and computational [13], [16].
The former prevents any information inference even with
unlimited computing resources on the server side, while the
latter allows the servers with polynomial-time computational
capabilities in most cases.

Multiple replicas of the database are required by many
existing PIR, often with non-collusive assumptions, i.e. these
replicas can not communicate with each other to compromise
user privacy. Moreover, besides the simple query-answer in-
teractions, various server-side computations are employed to
reduce the communication cost, for example in [2], exclusive-
ors are performed on the server side to reduce the size of
answers. Such requirements for deployments or cooperations
on the server side are infeasible for general search privacy
protection. We will discuss the differences between our work
and existing PIR in Section IV-C.

B. Privacy Preserving Data Mining

Extensive work has been conducted in the field of privacy
preserving data mining [3]. We refer interested readers to [17]
for a large collection of related literature.

Evfimievski et al. [18] investigates the problem of associa-
tion rule mining with a randomization operator for privacy
protection. An “amplification” method is proposed to limit

privacy breaches. The basic idea is to determine how much
information will be leaked if a certain mapping of the ran-
domization operator is revealed, which is similar to the mutual
information measure in our paper.

Many privacy preserving approaches target a relatively small
dataset and a particular family of data mining algorithms.
It is challenging for these approaches to protect large scale
data sets against unknown user profiling methods [19]. For
example, it would be prohibitive to apply k-anonymity [20] to
search query logs, due to their large scales and highly skewed
distributions.

Within the context of search privacy protection, privacy
preserving data mining is a server-side solution. On one hand,
users have no control of their data and the privacy associated
with these data. On the other hand, the expensive cost incurred
by these algorithms discourages search engines to deploy
them.

C. Anonymity Browsing and Search

Proxies and anonymity networks have been widely used
to protect user browsing privacy [21]. HTTP proxies allow
users to hide their IP addresses from search engines. Onion
routing [22] and its successor TOR [23] provide more sophisti-
cated network protection, making it hard for attackers to trace
users via network traffic analysis. Web Mixes [24] provides a
more comprehensive architecture to generate anonymous real-
time Internet access by adding an authentication mechanism
to prevent flood attacks and a feedback system to inform the
user about his/her current level of protection.

To remove other identifiable sources such as HTTP cook-
ies, some web browser extensions have been developed for
anonymity search, which can be combined with proxies and
anonymity networks. Notable tools are listed as follows.
• CustomizeGoogle provides a large set of privacy pro-

tection options for Google users, including randomizing
Google user ID, blocking Google Analytics cookies, and
removing click-through logging.

• PWS [8] sends user queries through a TOR network and
normalizes HTTP headers such that the HTTP requests
from all PWS users “look like the same.”

• Besides similar protection options as CustomizeGoogle,
TrackMeNot claims to automatically generate “logical”
noise queries according to the previous search results,
while we are not aware of any published result on its
details.

Many heuristic and search engine specific features have
been used by these tools for search privacy protection. This
paper attacks the problem with a general protection model and
complements existing solutions with theoretical analysis.

IV. BASIC PROTECTION MODEL

A. Noise Injection

Noise injection has been widely used to protect information
privacy [25]. In this section we formalize our noise injection
model.



Fig. 2. Noise Injection Model

Shown as Figure 2, our noise injection model works as
a black box with a selection switch inside. The black box
generates diluted queries (Qs) by mixing noise queries (Qn)
and user queries (Qu), then sends Qs to the malicious search
engine. When the black box decides to send a query, with
probability ε, the switch selects Qu, and with probability 1−ε,
it selects Qn. Then a query in the front of the selected queue is
sent. Both the status of the switch and ε are invisible/unknown
to the search engine since they are locally decided at the user
side. This process continues until all Qu are sent. Thus Qs on
the server side follows:

∀i P (Qs = qi) = εP (Qu = qi) + (1− ε)P (Qn = qi) (1)

where {qi} are all the possible unique (privacy sensitive)
queries and ε

1−ε can be considered as the signal-to-noise ratio
(SNR). The expected number of noise queries sent to the
search engine is 1−ε

ε |Qu|, where |Qu| represents the total
number of user queries sent to the search engine.

To avoid cumbersome, we denote P (Qs = qi) as P (s =
i), which also applies to other probabilities when there is no
confusion about the random variables.

B. Measure Privacy Breaches

There are two types of privacy breaches through search
queries, explicit and implicit. Explicit privacy information,
such as phone numbers, addresses and social security numbers,
usually has fixed formats thus is easy to recognize and protect.
For example, one may cover a real phone number with mul-
tiple randomly generated ones. Implicit privacy information,
on the other hand, can not be obtained directly and has to
be extracted from user queries via profiling methods or data
mining algorithms. For example, it is possible to infer the
user’s income level via the brands of products he/she often
searches [26]. In this paper, we are interested in implicit
privacy breaches.

As indicated in [18], the distribution of Qu may allow the
attacker to learn with high confidence some sensitive infor-
mation. Different Qu distributions correspond to different user
profiles and user profiling methods exploit their characteristics
to reveal privacy sensitive information. In our noise injection
model, the search engine or attacker can only learn Qu via
Qs, thus our objective is to prevent or minimize the amount
of information about Qu which can be inferred through Qs.

To quantify the notion of privacy breaches, we choose the
mutual information between Qs and Qu, i.e. I(Qs;Qu), as
our measure. Formally, let {qk}, k = 1, 2, · · · , NQ, be all the

possible (sensitive) queries, where NQ is the number of unique
user queries. We have:

I(Qs;Qu) =
∑
i

∑
j P (u = i, s = j) log P (u=i,s=j)

P (u=i)P (s=j)

=
∑
i

∑
j P (s = j|u = i)P (u = i) log P (s=j|u=i)

P (s=j) (2)

More specifically, given Qu, if I(Qs;Qu) > I(Q′s;Qu), we
believe that Q′s is better than Qs for privacy protection [27].
Therefore, our goal is to find a set of Qn which minimizes
I(Qs;Qu).

We have the following conditional probability:

P (s = j|u = i) =
{
ε+ (1− ε)P (n = j|u = i) j = i
(1− ε)P (n = j|u = i) j 6= i

(3)
The model presented in this paper considers all user queries

equally sensitive. It has to be noted, however, that the same
amount of privacy breach (measured by mutual information)
may correspond to different risks or costs. For example,
assuming that one bit information is leaked, knowing whether
a user has a certain disease is probably more sensitive than
knowing whether the user is interested in a certain class
of music. Moreover, different users have different privacy
concerns, thus we need to investigate the particular user or
application scenarios to assess the risks or costs associated
with different privacy breaches, which is beyond the scope of
this paper.

C. Comparison With PIR

It might seem natural to formulate search privacy protection
as a private two-party computation problem within the PIR
framework, while the following comparison shows why our
model is chosen.
• Objective: PIR provides a secure computation protocol

to prevent the database from knowing one or multiple
items which the user is interested in. The objective of
our approach is to protect the probability distribution
of Qu, instead of the query set. Moreover, our model
allows a certain portion of information leakage (as shown
in Section VI), which is a trade-off towards practical
applications in the search scenario, while most existing
PIR do not have such flexibility.

• Server side assumptions: Most PIR research requires mul-
tiple non-collusive database replicas and various compu-
tations performed on the server side. Our model assumes
a single search engine and its only service for the user is
to return the search results according to the queries, which
is exactly how current search engines work. We also
have no assumptions on the server-side computational
capabilities.

• Measure: It directly follows the difference of objectives.
Most existing PIR models do not allow any information
leakage so their most important measure is the commu-
nication cost, which considers not only the cost between
the user and the servers but also the cost between servers
when some servers collude. Our approach measures the



privacy breach with mutual information and only consid-
ers the user side cost, i.e. the number of noise queries to
inject.

V. PERFECT PRIVACY PROTECTION

Since mutual information can not be negative, the perfect
protection in our model is I(Qs;Qu) = 0. In this section, we
give the lower bound for the amount of noise queries required
by this perfect protection. This bound is a function of ε and
the number of user queries, denoted as |Qu|. In our noise
injection model, given ε, the more user queries we have, the
more noise queries will be injected. |Qu| is decided by the
user/application thus we need the upper bound for ε, which is
given by the following theorem.

Theorem 1: I(Qs;Qu) = 0 only if ε ≤ 1/NQ.
The proof is presented in the appendix. To see that there

exists Qn which satisfies Theorem 1, we show an example
here.

Let ε = 1
NQ

, and

P (n = j|u = i) =
{

0 j = i
1

NQ−1 j 6= i

In other words, given a user query qi, the noise is equally
likely to be any other query except qi. With Equation 3, we
have

P (s = j|u = i) =

{
1
NQ

+ (1− 1
NQ

)× 0 = 1
NQ

j = i

(1− 1
NQ

) 1
NQ−1 = 1

NQ
j 6= i

Hence Qs is uniformly distributed in the entire query space.
Plug P (s = j|u = i) = P (s = j) into Equation 2, we get
I(Qs;Qu) = 0, i.e. the bound given by Theorem 1 (therefore
it is a tight bound).

This solution actually sends every user query with the entire
possible query set on average, thus the search engine fails to
find the queries which the user is really interested in.

To get a perfect protection, the lower bound for the expected
number of noise queries is

E(|Qn|) =
1− ε
ε
|Qu| ≥ (NQ − 1)|Qu|

This is also a tight bound.
The analysis presented in this section shows that it is

expensive for a perfect privacy protection in the information
theoretical sense. The fundamental challenge here is that
mutual information is a strong requirement. There may be
information which is not privacy sensitive although it is
over a set of sensitive queries. In our model, however, we
eliminate the chance for the search engine/attacker to infer
such information as well.

To get a smaller NQ, we need to limit {qi} to all the
privacy sensitive queries, such as those related to sensitive
medical information, including queries which are not sensitive
individually while may lead to successful inference if being
correlated. Such analysis is user/application dependent and out
of the scope of this paper.

VI. LIMITED AND INDEPENDENT NOISE

The number of noise queries has to be small or in other
words, ε has to be larger than 1/NQ in many application
scenarios.

• Both the user and the search engine have limited network
bandwidth.

• Search engines will deny users who issue a large number
of queries within a short period of time to prevent deny-
of-service (DoS) attack.

• The user wants his/her real queries to be answered
quickly. In our current model, assuming that each query
takes the same amount of time, the time for a user
query to be served follows a geometric distribution with
parameter ε, hence the expected waiting time for every
real query is 1/ε. A small ε means a long waiting period.

Furthermore, we want Qu and Qn to be independent, which
simplifies the implementation and makes it much easier for
parallelism. With this independence requirement, Equation 3
can be rewritten as

P (s = j|u = i) =
{
ε+ (1− ε)P (n = j) j = i
(1− ε)P (n = j) j 6= i

(4)

Then Equation 2 becomes

I(Qs;Qu) = ε
∑
i

P (u = i) log
ε+ (1− ε)P (n = i)

P (s = i)

+(1− ε)
∑
i

P (u = i)[
∑
j,j 6=i

P (n = j) log
(1− ε)P (n = j)

P (s = j)

+P (n = i) log
ε+ (1− ε)P (n = i)

P (s = i)
] (5)

Let ui = P (u = i), ni = P (n = i), and α = ε/(1− ε), we
rearrange Equation 5 as:

I(Qs;Qu) = ε
∑
i

ui log
α+ ni
αui + ni

+(1− ε)[
∑
i

ni log
ni

αui + ni
+
∑
i

uini log
α+ ni
ni

]

Then our task becomes

arg min
n
I(n) w.r.t.

∑
i

ni = 1, ∀i ni ≥ 0 (6)

where n = (n1, n2, · · · , nNQ
).

First we show that I is a convex function of n. Since I
is a continuous twice differentiable function over its domain,
we just need to show that its second derivative is positive.
The intermediate steps are omitted here due to the page limit.
Interested readers may refer to our technical report [28] for
more details.

∂I

∂ni
= (1−ε)[ui log(α+ni)− log(αui+ni)+(1−ui) log ni]



Therefore
∂2I

∂n2
i

= (1− ε)( ui
α+ ni

− 1
αui + ni

+
1− ui
ni

)

=
(1− ε)(1− ui)uiα2

(α+ ni)(αui + ni)ni
> 0

Then we can use Lagrange multipliers to solve Equation 6.
Use the constraint to define a function g(n):

g(n) =
∑
i

ni − 1

Let
Φ(n, λ) = I(n) + λg(n)

Solve for the critical values of Φ:

∀ni
∂Φ
∂ni

=
∂I

∂ni
+ λ = 0

λ = (ε−1)[ui log(α+ni)−log(αui+ni)+(1−ui) log ni] (7)

Decide the desired ε and solve the system of Equation 7,
we will get the optimal noise Qn which is independent of Qu
and minimizes privacy breaches.

It would be computationally expensive to solve the nonlin-
ear systems represented by Equation 7 when NQ is large. In
some special scenarios, such as searching medical databases,
Qu may be limited to a small dictionary, while for general
web search, NQ will be huge. We discuss possible ways to
reduce NQ in Section VII-B.

VII. A SPECIAL CASE: E(|Qn|) = |Qu|
In this section, we give an approximate solution which can

be computed quickly for the case ε = 0.5. In other words,
equal amount of noise queries are injected into user queries.

A. Approximate Solution

Using Taylor series to replace the logarithm function in
Equation 7, we have

ln(1 + x) =
∞∑
n=0

(−1)n

n+ 1
xn+1 : |x| < 1 (8)

We take the following approximation

ln(1 + x) ≈ x− x2

2
+
x3

3
: |x| < 1 (9)

Since we assume ε = 0.5 in this section, Equation 7 can be
rewritten as follows.

λ = −0.5[ui log(1 + ni)− log(ui + ni) + (1− ui) log ni]

≈ −0.5[ui(ni −
n2
i

2
+
n3
i

3
)− (ui + ni − 1)

+
(ui + ni − 1)2

2
− (ui + ni − 1)3

3

+(1− ui)((ni − 1)− (ni − 1)2

2
+

(ni − 1)3

3
)]

= −0.5(
3
2
u2
i − u2

ini −
u3
i

3
+ uini −

7
6
ui)

Thus we have

n̂i =
7− 2ui

6
+

2λ
u2
i − ui

(10)

Considering
∑
i ni = 1, we have

λ̂ =
1−

∑
i

7−2ui

6∑
i

2
u2

i
−ui

(11)

Combining Equation 10 and 11, we can solve for n̂i given ui.
One issue here is how accurate this solution is. We list the

factors which support this solution as follows.
• The objective function, Equation 6, is convex, which

means the smaller |ni − n̂i| is, the smaller |I − Î| we
get.

• n̂i and ni are asymptotically equivalent. We can always
increase the order of the Taylor series as long as we can
afford the computation cost.

The counter argument is that I involves a summation of ni,
thus the offset of |ni − n̂i| will be accumulated.

B. Simulation Results

Simulations are conducted to evaluate the solution we get in
the previous section. Generally speaking, the larger the entropy
of Qu, H(Qu), is, the larger I(Qs;Qu) will be. Hence we
consider the following relative mutual information to show
privacy breaches with less bias from Qu.

I(Qs;Qu)
H(Qu)

(12)

We assume that the user queries follow a power law
distribution, i.e. the number of the ith most popular queries
is proportional to i−α, which has been observed in many
previous studies [29]. In our experiment, α is ranging from
1.0 to 5.5, which covers most power law observations in real
world [30]. NQ is ranging from 100 to 1, 000.

We employ Octave [31], a numerical computation software,
to solve Equation 10 and 11. Uniformly distributed random
noise is chosen as a baseline. Shown as Figure 3, our noise
greatly reduces the privacy breach and performs much better
than the uniform noise consistently.
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Although our simulations are based on several hundreds of
user queries, the results are encouraging and promising.

• In many cases, privacy information is restricted within
a relatively small set of queries, for example, sensitive
medical information, racial or ethnic origins, political or
religious beliefs or sexuality.

• As the number of user queries, NQ, increases, the protec-
tion of random noise gets worse as more information is
leaked, while our optimized noise does not exhibit such
trend, which is a good indicator for its performance when
dealing with larger NQ.

• Combining network solutions with noise injection will
help us reduce NQ. For example we may divide all the
queries into N disjoint subsets and send them through N
proxies.

VIII. FUTURE WORK

In this section we outline the directions to further improve
our work.

• As mentioned earlier, there may be some non-sensitive
information, which users do not mind to share with
search engines, while our current model bounds all the
information leakage. We want to relax this constraint
by allowing non-sensitive inferences in a restricted way.
Some server-side solutions have been proposed, such as
the obfuscated database model in [32], while how to
achieve it on the user side is still not clear.

• Our threat model assumes that the attacker only knows
search queries, while in some cases the attacker may have
external knowledge or other information channels. For
example, the movie ratings on IMDB have been used
to compromise the privacy of Netflix users in a recent
study [33]. More specifically, if the attacker has some
knowledge or heuristics to distinguish between noise
queries and real user queries, the mutual information
measure needs to be changed to accommodate such
prior knowledge about Qu, which may lead to more
sophisticated protection models.

• Our approach requires that the probability distribution of
Qu is known in advance, while in real world it is hard
to predict the future queries for a user. An adaptive noise
generator, which actively adjusts Qn according to the
empirical distribution of Qu, will be an important step
towards practical applications.

• We have no assumptions on the user profiling methods
employed by the attacker, which makes protection ex-
tremely challenging. Having some computational con-
straints for the attacker would help reducing the num-
ber of noise queries. For example, most computational
PIR [16] allows servers with polynomial-time compu-
tational capabilities only. Moreover, breaking assump-
tions of user profiling methods, such as query contex-
tual integrity, will be another interesting direction to
explore [11].

IX. CONCLUSION

Privacy issues in the search engine context have become
a new threat to Internet/Web users. Currently many search
engines claim that obsolete user queries will be removed or
anonymized, while their data retention window ranges from
months to years. Vulnerable privacy protection methods and
practices have caused user privacy leakage. Notable examples
include the search log released by AOL in 2006 and the movie
rental history released by Netflix [33] in 2006. Existing pri-
vate information retrieval and privacy preserving data mining
approaches require prohibitive server-side deployments which
makes them infeasible for search privacy protection. Moreover,
server-side solutions are always subject to insider attacks.

This paper proposes a user-side noise injection model,
which grants users with the power to protect their privacy
from a malicious search engine with no assumptions on the
user profiling algorithms. We prove the lower bound for
the expected number of noise queries needed by a perfect
protection in the information-theoretical sense. Then we show
how to compute the optimal noise when the number of noise
queries is insufficient and give an approximate solution for the
special case when equal number of noise queries are injected
into user queries. Our simulation results show that the noise
generated by our approach greatly reduces the privacy leakage
and provides much better protection than uniform noise.

We believe that the theoretical analysis presented in this
paper complements existing research and sheds light on the
design and implementation of better privacy protection appli-
cations.

APPENDIX
PROOF OF THEOREM 1

Proof: Assuming a set of noise queries following the
probability distribution P (Qn) which makes I(Qs;Qu) = 0,
hence Qu and Qs are independent, i.e.

P (Qs|Qu) = P (Qs) (13)

Here we require ∀qi, P (u = i) 6= 0, otherwise the
conditional probability is undefined. We assume that we select
all the non-zero qi for our discussion without losing generality.

On the other hand, according to Equation 1, we have

P (s = i) = εP (u = i) + (1− ε)P (n = i|u = i)P (u = i)
+(1− ε)P (n = i|u 6= i)P (u 6= i)

Condition both sides with u = i

P (s = i|u = i) = ε+ (1− ε)P (n = i|u = i) (14)

Combining Equation 1, 13 and 14, we have

ε+ (1− ε)P (n = i|u = i) = εP (u = i) + (1− ε)P (n = i)

Rearranging terms and dividing by P (u 6= i), we get

P (n = i|u 6= i)− P (n = i|u = i) =
ε

1− ε
(15)



Notice that

P (n = i|u 6= i) =
∑
j,j 6=i

[P (n = i|u = j)P (u = j|u 6= i)]

=
P (n = i)− P (n = i|u = i)P (u = i)

P (u 6= i)
(16)

Plug Equation 16 into Equation 15, we get

P (n = i|u = i) +
ε

1− ε
P (u 6= i) = P (n = i)

Considering
∑
i P (n = i) = 1, we have

1 =
∑
i

[P (n = i|u = i) +
ε

1− ε
P (u 6= i)]

1 =
∑
i

P (n = i|u = i) +
ε

1− ε
∑
i

(1− P (u = i))

1 =
∑
i

P (n = i|u = i) +
ε

1− ε
(NQ − 1)

ε

1− ε
=

1−
∑
i P (n = i|u = i)
NQ − 1

Thus
ε

1− ε
≤ 1

NQ − 1

ε ≤ 1
NQ

(17)
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