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1. INTRODUCTION

The rapidly increasing use of the Internet in recent years has made email
one of the most common forms of business and personal communication.
How to manage the large and dynamic collections of email documents for
efficient storage and information retrieval and how to provide conversions
between email and other forms of messages (e.g., voice mail and fax) to
allow convenient access whenever and wherever the user needs are some of
the most important research areas in multimedia messaging.

The content of modern-day email has expanded beyond text to include
encoded documents, images, even audio and video clips. However, un-
marked text is still the prevailing format for communication with email,
due to its simplicity and sufficiency in terms of conveying ideas, conducting
discussions, making announcements, etc. One of the most common struc-
tured elements in text email is the signature block. It contains information
about the sender, such as email address, Web address, telephone and fax
numbers, personal name, postal address, etc., and is usually separated
from the rest of the message by some sort of border. Accurate identification
and parsing of signature blocks is important for many multimedia messag-
ing applications such as email text-to-speech (TTS) rendering, automatic
construction of personal address databases, and interactive message re-
trieval.

However, parsing of signature blocks is also a very challenging task due
to the fact that they often appear in complex two-dimensional layouts
which are guided only by loose conventions. Figure 1 shows one example of
such layouts. Apparently a straightforward line-by-line analysis using
conventional text analysis methods will fail to extract fields such as the
postal address. The only way to extract functional fields from such layouts
is to combine two-dimensional layout analysis with linguistic constraints.

In this article, we describe a new approach to combining two-dimensional
structural analysis with one-dimensional grammatical constraints for sig-
nature block parsing. The information obtained from both layout and
linguistic analysis is integrated in the form of weighted finite-state trans-
ducers (WFST) [Mohri et al. 1997; Pereira and Riley 1996], and the final
solution is the optimal interpretation under both constraints. We will focus
on the parsing of the signature block, assuming it is already identified, and
will briefly explain how a different version of the algorithm can be used to
improve the identification of signature blocks as well.

The algorithm is currently implemented as a component of an email
text-to-speech rendering system called Emu [Sproat et al. 1998]. Automatic
conversion of email into speech is one of the most important commercial

Fig. 1. A signature block.
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applications of text-to-speech technology, and is one technological compo-
nent of the growing interest in media conversion.

In the Emu system, an email message is first parsed into different
regions (headers, quoted material, and signature blocks, among others),
and these regions are marked with tags that indicate the regions’ proper-
ties: the algorithm described in the current article is used in this first
phase to identify signature blocks, and to parse them into meaningful
components. Second, a normalization of the text is computed. The normal-
ization performed in this second phase largely involves the expansion of
unusual “words” (WinNT), as well as email addresses, URLs and other
nonstandard material. The output of the normalization phase is “device
independent” in the sense that the normalizations performed produce text
that is appropriate as input to any (English) TTS system. Finally, in the
third phase, the marked-up and normalized text is rendered by converting
it into text interspersed with control sequences for the Bell Labs American
English TTS system [Sproat 1997].

2. RELATED WORK

Document layout segmentation and logical structure analysis have been
studied by many researchers in the context of understanding of printed
documents, including journal pages, newspaper articles, business letters,
mail pieces, forms, catalogs, etc. While in some sense email text can be
viewed as a special form of printed document, there are also important
differences. On the one hand, unlike printed documents, the text content in
the case of email is readily available and free of noise. On the other hand,
since email messages are not formal publications, there are few rules
regarding the layout structure of signature blocks, as demonstrated by
examples shown in Figures 2, 3, 4, and 5. This higher degree of variability
makes layout segmentation a more challenging task.

Many different approaches have been developed over the years for
printed document layout segmentation, which can be roughly defined as the
segmentation of a document page into blocks of more or less coherent
content. The most notable ones include the recursive projection profile cuts
method [Mizuno et al. 1991; Nagy and Stoddard 1985; Wang and Srihari
1989], the approach based on maximal white rectangles [Baird 1992; Baird
et al. 1990], and some other methods based on the analysis of background
white spaces [Antonacopoulos and Ritchings 1994; Pavlidis 1991; Rahgozar
et al. 1994; Rus and Summers 1994]. Each of these techniques relies, to a
different extent, on assumptions about the generic document layout struc-
ture, particularly, rectangularity of text blocks and white spacing around
each block. Unfortunately such assumptions do not always hold in the case

Fig. 2. One-column layout of a signature block.
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of email signature blocks. For example, Figure 5 shows an example contain-
ing nonrectangular blocks which cannot be separated by a vertical cut, and
Figure 4 shows an example where different layout structures (one-column
and two-column) are placed directly on top of each other with no white
space in between. We introduce a new approach based on recursive fore-
ground-background connected-component analysis to handle such “uncon-
ventional” layout structures encountered in email signature blocks.

Fewer studies have been carried out on logical layout analysis, which
involves functional labeling of document blocks. Most of the previous
approaches rely on geometric features alone. Some researchers have used
texture analysis or other visual features such as font size, location and
aspect ratio of the block, indentation attributes of the block, etc. to
distinguish text blocks from images and graphics, or to assign high-level
labels to text blocks such as titles, captions, paragraphs, itemized lists,
tables, etc. [Etemad et al. 1997; Jain and Bhattacharjee 1992; Rus and
Summers 1994; Wang and Srihari 1989]. The features used in these
approaches do not always translate to email documents. Furthermore, finer
logical labels are not obtained by such analysis. In Porter and Rainero
[1992], more details of logical layout structure are recovered using labels
provided in a particular formatting language (e.g., Latex or PostScript).
The method does not apply to generic, unmarked documents. Other re-
searchers have applied more detailed domain knowledge in the forms of
block grammars [Nagy et al. 1992], array grammars [Takasu et al. 1993;
1994], geometric trees [Dengel and Barth 1988], or specialized tools [Sri-
hari et al. 1987] to obtain finer-level logical labels in specific document

Fig. 3. Two-column layout of a signature block.

Fig. 4. Variable number of columns layout of a signature block.

Fig. 5. Nonrectangular columns in a signature block.
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forms such as business letters, pages from a particular journal, and postal
pieces, based on strict layout rules. These techniques cannot be applied to
email signature block analysis, where the layout design is highly uncon-
strained and where geometric attributes alone are not sufficient to distin-
guish between different functional entities (e.g., postal address versus
telephone numbers). In our system, loose geometric layout conventions are
integrated with linguistic analysis to achieve reliable logical labeling of all
major functional classes encountered in email signature blocks.

3. PROBLEM DEFINITION

A signature block usually appears at the end of a message, although it may
also be in the middle of a message if there is a postscript or quoted
message. It is used to indicate contact information, such as an email
address, Web address, telephone and fax numbers, name, postal address,
and even quotes and other miscellaneous text. Unlike other parts of the
email message, the signature block is highly unconstrained in that it is
quite personalized and in that there are hardly any style restrictions. We
are faced with both geometrical complexity and linguistic complexity when
analyzing the signature block.

—Geometrical Complexity: Geometrical properties indicate the reading
sequence in a signature block. The simplest layout of a signature block
has only one column, and we read from top to bottom, and left to right on
each line (Figure 2). However, for esthetic reasons, and to shrink the
length, signature blocks often have rather complicated layouts, as dis-
cussed in the previous section. These various styles complicate the
analysis task.

—Linguistic Complexity: Some components of the signature block, such as
email and Web addresses, have strict patterns and are easily recogniz-
able. Others, such as personal names and postal addresses, have few
lexical constraints. Worse yet, occasionally there are quotes or other
miscellaneous text in the signature blocks, which have no lexical con-
straints at all. Humans identify these components by the semantics of
natural language. However, natural language understanding by com-
puter is as yet an unsolved problem.

Before further discussion, we define some terms used in the following
analysis. A signature block, as shown in the previous examples, is part of
an email message. It is composed of several continuous lines of text which
are used primarily to indicate personal contact information. A signature
block may be decomposed into reading blocks. Text in a reading block can
be read out in a meaningful order by simply following the sequence from
top to bottom, and from left to right on each line. Text in one reading block
is normally read out completely before going into another reading block. A
reading block is decomposed further into functional blocks. Text in each
functional block belongs to the same functional class. Ten functional
classes are defined in the current system: (1) email address, (2) Web
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address, (3) telephone number, (4) fax number, (5) personal name, (6)
postal address, (7) title, (8) quote, (9) stub (auxiliary words, such as “home”
or “office ” after a telephone number), and (10) miscellaneous text. Any
text that is not related to any of the first nine functional classes is
miscellaneous text. Signature blocks, reading blocks, and functional blocks
constitute a hierarchical text structure, as shown in Figure 6.

The flowchart of signature block analysis is shown in Figure 7. The input
to the system is a signature block extracted from a message with TAB
characters expanded to space characters. Then, geometrical analysis and
linguistic analysis are applied. Finally, the signature block is broken down
to several functional blocks, each related to a functional class.

4. GEOMETRICAL ANALYSIS

Geometrical analysis breaks a signature block down to one or more reading
blocks, where text in each reading block can be read out continuously. Text
in a reading block is usually grouped together, which is easily identified
using connected-component analysis (Section 4.2). However, there are cases
where different reading blocks are connected (Figure 4) and where the
standard connected-component analysis technique needs to be modified
(Section 4.3).

There are several algorithms for connected-component analysis, and we
choose the Line Adjacency Graph (LAG) algorithm [Pavlidis 1982]. This is a
bottom-up approach, where each line in the text region is broken into
several line segments. Overlapping line segments on adjacent lines are
placed into the same connected component, and all line segments in a
connected component are found from the transitive closure.

Richard Sproat
Language Modeling Research Department
Multimedia Communications Research Laboratory
Bell Laboratories, Lucent Technologies  | tel (908) 582-5296
700 Mountain Avenue, Room 2d-451        | fax (908) 582-3306
Murray Hill, NJ 07974, USA              | rws@bell-labs.com 

Richard Sproat

Richard Sproat
Language Modeling Research Department
Multimedia Communications Research Laboratory
Bell Laboratories, Lucent Technologies
700 Mountain Avenue, Room 2d-451
Murray Hill, NJ 07974, USA

tel (908) 582-5296
fax (908) 582-3306
rws@bell-labs.com

tel (908) 582-5296 fax (908) 582-3306

rws@bell-labs.com
Language Modeling Research Department
Multimedia Communications Research Laboratory
Bell Laboratories, Lucent Technologies
700 Mountain Avenue, Room 2d-451
Murray Hill, NJ 07974, USA

Signature Block

Reading Block

Functional Block

Fig. 6. Hierarchical text structure.
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4.1 Line Segment Extraction

A line is first broken into line segments, which are the smallest units for
functional class labeling. It is important to use line segments instead of
lines because in some layout styles (e.g., Figure 2) a single line contains
multiple line segments, each belonging to a different functional class.
Obviously, characters in the same line segment should belong to the same
reading block, but different line segments may or may not be in the same
reading block. Intuitively, characters that are close to each other should be
assigned to the same line segment, whereas visually separated characters
should be assigned to different line segments. The assignment is performed
using disconnectedness scores and threshold values on nonalphanumerics.
Those which visually indicate segmentation points, such as “| ” and “, ”, are
assigned high positive disconnectedness scores, while those which visually
indicate connection points, such as “: ” and “- ”, are assigned high negative
disconnectedness scores. Each string of nonalphanumerics whose sum of
disconnectedness scores is greater than the threshold is considered as a
separator, which assigns its surrounding text into two different line seg-
ments.

The disconnectedness scores and threshold values are estimated empiri-
cally. Apparently, certain segmentation ambiguities cannot be resolved
completely using geometrical information alone. They will be further ana-
lyzed with linguistic information taken into account in the linguistic
analysis stage as discussed in Sections 5.2.2 and 5.3.1.

4.2 Connected-Component Analysis

Line segment extraction horizontally connects closely related individual
characters into line segments. The next step is to extract vertically con-
nected line segments.

In the traditional LAG algorithm [Pavlidis 1982], two line segments on
adjacent lines are considered vertically connected if they overlap, i.e., they
have at least one x-coordinate in common. However, this simple rule causes
some problems in the signature block analysis. In Figure 4, although the
line segment on the first line overlaps with each of the line segments on the
second line, they actually belong to different reading blocks. For human
vision, two vertically adjacent line segments must overlap considerably to
have the effect of being visually connected, which is reflected in our
definition of vertical connectedness.

Two line segments L1~~xA, y!, ~xB, y!! and L2~~xC, y 1 1!, ~xD, y 1 1!!
are considered vertically connected if and only if

(1) xA , xD and xB . xC (i.e., L1 and L2 overlap) and

Geometrical
Analysis

Linguistic
Analysis

Signature
Block

Reading
Blocks

Functional
Blocks

Fig. 7. Flowchart of signature block analysis.
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(2) min~xB 2 xC, xD 2 xA! / min~xB 2 xA, xD 2 xC! . threshold.

The transitive closure of all pairs of vertically connected line segments
defines a connected component. There are many existing algorithms for
efficiently computing the transitive closure. We choose the algorithm for
computing equivalence classes as described in Horowitz et al. [1993]. It has
the time complexity of O~M 1 N!, where M is the number of line seg-
ments, and N is the number of pairs of vertically connected line segments.

4.3 Mixed Reading Blocks

Usually a connected component contains only one reading block. However,
there are a few cases where there is more than one reading block in a
connected component. Figure 8 is a typical example where several reading
blocks are juxtaposed in the middle and where the reading block at the top
or bottom connects them together. The top or bottom reading block is so
long that the principle of vertical connectedness does not help to break them
from the middle ones.

To detect the mixed reading block, line segment extraction and connect-
ed-component analysis are performed on all background characters. Back-
ground characters are space characters, and a background connected
component is comprised of connected space characters. A background
connected component is a separator if (1) at least one line segment of the
background connected component is in the middle of the reading block; in
other words, it does not touch the left or right margin of the reading block;
and (2) the total height of the background connected component is greater
than a threshold. Figure 9 shows a case where the background connected
component is a separator. (The background connected component is filled
with “#”)

If a separator is found, the corresponding reading block is broken into
three new blocks. The first one contains line segments which are above the
separator. The second one contains line segments which are below the
separator. The third one contains the remaining line segments from the old
reading block. In fact, the first and second new reading blocks are the top
and bottom block in the old reading block, respectively, and the third one
contains all the juxtaposed blocks in the middle of the old block. After that,
each new reading block goes through the ordinary connected-component
analysis again. Figure 10 shows the procedure and the result.

Fig. 8. Mixed reading blocks.
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4.4 Remaining Errors

Due to the empirical selection of disconnectedness scores and the limitation
of connected-component analysis to resolve geometrical ambiguity, both
undersegmentation and oversegmentation errors could result from the
geometrical analysis. In fact, most of them are not remediable unless
lexical knowledge is applied. While the next stage, linguistic analysis,
serves primarily to detect functional classes, it will also correct most of the
remaining segmentation errors by combining geometrical analysis with
linguistic constraints.

5. LINGUISTIC ANALYSIS

Linguistic analysis breaks a reading block into several functional blocks
and relates each functional block with a functional class. Linguistic analy-
sis is carried out using weighted finite-state transducers (WFST) [Mohri et
al. 1997; Pereira and Riley 1996] as shown in Figure 11. First, the cost of

Fig. 9. Background connected component which is a separator.

-- "A friend in need is a friend in deed." --
Nematollaah Shiri            Office: LB 1041-1
Concordia University         Tel: (514) 848-3033
1455 de Maisonneuve West     Fax: (514) 848-2830
Montreal, Quebec, H3G 1M8    shiri@cs.concordia.ca
URL http://www.cs.concordia.ca/~grad/shiri/
  

-- "A friend in need is a friend in deed." --

URL http://www.cs.concordia.ca/~grad/shiri/

Nematollaah Shiri            Office: LB 1041-1
Concordia University         Tel: (514) 848-3033
1455 de Maisonneuve West     Fax: (514) 848-2830
Montreal, Quebec, H3G 1M8    shiri@cs.concordia.ca

Old Reading Block New Reading Blocks

Nematollaah Shiri
Concordia University
1455 de Maisonneuve West
Montreal, Quebec, H3G 1M8

Office: LB 1041-1
Tel: (514) 848-3033
Fax: (514) 848-2830
shiri@cs.concordia.ca

Connected Component Analysis

Fig. 10. Breaking mixed reading blocks.
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Fig. 11. Linguistic analysis.
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relating a line segment with each functional class is estimated. Then, an
input WFST is built, which incorporates all possible choices with their
costs. The input WFST is then composed with a lexicon WFST describing
the construction of a functional block from line segments, and a grammar
WFST describing the construction of a reading block from functional blocks.
Finally, the functional class of each line segment is revealed from the
optimal path in the composed WFST. Most of the oversegmentation and
undersegmentation errors resulting from geometrical analysis are also
corrected in linguistic analysis.

In the following we give a brief and informal description of weighted
finite-state transducers and the relevant operations. The formal definition
as well as detailed discussions on their properties and operations can be
found in Pereira and Riley [1996] and Mohri et al. [1997].

5.1 Weighted Finite-State Transducers

A weighted finite-state transducer contains a set of states with a distin-
guished start state and one or more final states. Each state except the final
state has a number of arcs to other states. Each arc has an input symbol, an
output symbol, and a cost. Figure 18 shows a WFST. A finite-state acceptor
(FSA) (Figure 14) can be thought of as a particular case of WFST, where
the input symbol is identical to the output symbol on each arc, and where
the cost on each arc is the free cost (usually 0).

Following any path leading from the start state to the final state in an
WFST, there are an input string (string of input symbols), an output string
(string of output symbols), and a total cost (the sum of all costs on the
path). The WFST is said to transduce the input string into the output
string with the total cost.

The composition of two WFSTs is a new WFST such that if the first
WFST transduces string s1 into s2 with cost c1 and the second WFST
transduces string s2 into s3 with cost c2, the new WFST transduces s1
into s3 with cost c1 1 c2.

The best-path algorithm searches an WFST for the optimal path leading
from the start state to the final state in the sense that it has the minimum
total cost. This best path is represented as a single-path WFST.

WFSTs have been widely used in natural language processing [Sproat
1996]. They have also been shown to be powerful techniques for speech and
handwriting recognition, where the recognition process is viewed as a
cascade of weighted finite-state transductions from the input signal se-
quence to a word or sentence in a given language [Guyon et al. 1996]. In
our current problem, the process of linguistic analysis is formalized as a
cascade of transductions from line segments to functional blocks.

5.2 Cost Estimation

For each line segment in the reading block, there are a pair of neighboring
nodes in the input WFST connected by several arcs. On each arc, the
input/output symbol represents a functional class, and the cost reflects how
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likely the line segment is related to that functional class. We have identi-
fied nine major functional classes, plus a 10th miscellaneous text class
(Table I). In addition, two more symbols are used to represent the line
break (L) and boundary between reading blocks (B).

Text relating to the first four functional classes (email address, Web
address, telephone and fax numbers) has a relatively strict pattern. These
classes are termed strict classes. The remaining six classes (personal name,
postal address, title, quote, stub, and miscellaneous text) are termed loose
classes, since they have rather free styles. Cost estimation is quite different
between strict classes and loose classes.

5.2.1 Cost Estimation for Strict Classes. Text belonging to strict classes
is identified by regular-expression matching, using a finite-state linguistic
analysis toolkit, described briefly in Sproat [1996]. Care is taken to account
for different writing styles of email address, Web address, and telephone
and fax numbers. If the entire text in a line segment matches the regular
expression, the corresponding functional class is assigned a low cost, and
all other classes are assigned higher costs.

5.2.2 Correction of Undersegmentation Errors. Many undersegmenta-
tion errors resulting from geometrical analysis for line segment extraction
can be detected during the cost estimation for strict classes. Figure 12
shows a typical undersegmentation error where the email address is placed
in the same line segment as the telephone number because they are so close
to each other. This kind of error cannot be detected by geometrical analysis
alone. To detect it, after successfully matching the entire text against the
regular expression for telephone number, the matched telephone number
as well as keywords indicating a telephone number (such as tel , phone ,
voice ) are removed from the original text. The remaining text is checked
for any alphanumerics. If such are found, it indicates that the line segment
contains other text, which signals an undersegmentation error. Then,
resegmentation is performed on the line segment by breaking it at each
word boundary. This seems to lead to oversegmentation very easily, but
that problem will be taken care of by the language-directed segmentation
algorithm to be discussed in Section 5.3.1.

Table I. Functional Classes

Symbol Functional Class Example

E Email address jws@research.bell-labs.com
W Web address http://www.bell-labs.com/who/jws
P Phone number (908)582-3433
F Fax number (908)582-7308
N Personal name John W. Smith
A Postal address 700 Mountain Avenue, Murray Hill, NJ 07974
T Title Associate Professor
Q Quote “640K ought to be enough for everyone”
S Stub home (e.g., following a phone number)
M Miscellaneous text Address valid until Aug 29, 1997
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5.2.3 Cost Estimation for Loose Classes. Since there are no strict pat-
terns for text relating to loose classes, it is mostly identified by some
commonly observed conventions. For example, the first letter of each word
is usually capitalized in names and addresses, but not in quotes or
miscellaneous text; quotes are usually contained in quotation marks; digits
tend to appear more frequently in addresses than other classes. Contrary to
strict classes where the estimated costs are either low (for likely classes) or
high (for unlikely classes), the confidence in identifying loose class text is
much lower, and the estimated costs among different functional classes do
not differ as much.

Cost estimation for loose text classes is not highly reliable due to their
vague patterns. This especially causes trouble in distinguishing personal
names from city names, since there are very few rules guiding the compo-
sition of personal names, and in fact many personal names are easily
confused with city names. Although the From: field of a message some-
times contains the personal name of the sender, it often does not. In one
rough estimate that we carried out, out of 1985 email messages collected in
a company internal mailbox, 287 (14%) do not contain personal names in
their From: fields. It is expected that this percentage would be higher for
messages from a more widely distributed set of sources. Naturally, when
the personal name does occur in the From: field we can use that informa-
tion to detect the personal name in the signature block; but when it is
absent we must resort to other methods. In general, one might assume that
identifying a personal name is simply a matter of dictionary lookup.
Unfortunately this is not sufficient. It is simply unrealistic to assume one
can have a complete dictionary of personal names. Consider that there are
over a million distinct (family) names in the United States alone; and when
one considers not just email from United States residents, but from the
entire world, the number of distinct names becomes much larger. The
problem for constructing a dictionary of names is not so much one of
storage as of acquisition: it is impractical to store beforehand all the names
that one might encounter. We have therefore explored an alternative
approach, which uses the sender’s user name as a clue to finding the
personal name in the signature block. We discuss this approach in the next
section.

5.2.4 Personal Name Identification. More often than not, the email user
name is derived from the real personal name. The derivation often observes
the following rules:

—A user name is constructed by concatenating letter strings directly with
possible additional punctuation characters.

—The letter strings must be prefixes of the first name, middle name, or
family name.

Fig. 12. Undersegmentation error (the bounding box is not part of the text).
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—Each of the first name, middle name, or family name may contribute zero
or one prefix as a substring of the user name.

User names constructed by these rules are termed well-formed user
names. For example, from personal name “John W. Smith ”, “jws ”,
“jwsmith ”, “johnsmith ”, “johns ”, “smith ” are all well-formed user names,
whereas “s_jws ” is not.

It is easy to automatically construct a finite-state transducer (FST) which
enumerates all possible well-formed user names from a given personal
name. Figure 13 shows such an FST for personal name “John W. Smith ”.
The input symbol on each arc is a letter from the personal name, and the
sequence of input symbols on any path leading from the source node to the
destination node constitutes a well-formed user name. The output symbol
on an arc indicates which part of the full name (first name, middle name, or
family name) this arc corresponds to. It is used to quantitatively estimate
how likely it is that an unknown phrase is a personal name, as discussed
later.

To estimate if a candidate phrase is a personal name, a well-formed user
name FST is constructed from the candidate phrase, assuming that it is a
personal name. Then, a single-path FSA which generates the user name is
constructed (Figure 14 shows such an FSA for user name “jws ”). The
single-path FSA is then composed with the well-formed user name FST,
and a best-path search is performed. If the best-path FST is nonempty, it
indicates that the phrase is likely to be a personal name, and thus a low
cost is assigned for relating the phrase to the personal name functional
class.

It is not sufficient to only qualitatively identify a personal name. Due to
segmentation errors from the geometrical analysis stage as well as the
requirements from the lexicon-directed segmentation algorithm (Section
5.3.1), it is imperative to quantitatively estimate how likely a candidate
phrase is to be a personal name. For example, to resolve the segmentation
ambiguity on a line which reads “John W. Smith Chairman ”, the
algorithm should be able to tell that “John W. Smith ” looks more like a
personal name than “John W. Smith Chairman ” (without a knowledge of
semantics).

0

1

j/1 4

0/0

0/0

2
o/1

5
w/2

0/0

0/0

3

h/1
n/1

0/0

6

s/3
10 /0

0/0

0/0

7
m/3

0/0

8

i/3

0/0

9

t/3 h/3

0/0

Fig. 13. Well-formed user name FST for “John W. Smith”. Here, and elsewhere, “0” after “/”
on an arc represents a cost (the free cost), and any other “0” on an arc represents the null
string e (which allows one to transition to the next state without consuming any input). Thus
“0/0” represents an e-labeled arc with a free transition cost.
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This is achieved by making use of the output symbols in the well-formed
user name FST. The output symbol indicates which part of the personal
name a letter in the user name comes from. By counting the number of
different output symbols in the best-path FST, it is revealed how many
parts of the personal name contribute to the user name. The more parts
that do not contribute to the user name, the less likely that the candidate
phrase is a personal name. For example, each part of “John W. Smith ”
contributes to the user name “jws ”; but the last part of “John W. Smith
Chairman ” does not, so “John W. Smith ” is assigned a lower cost qua
personal name than “John W. Smith Chairman ”.

Personal name identification is complicated when the name is comprised
of a one-word first name and a one-word family name. This could belong to
one of the following three common cases:

—The person does not have a middle initial.

—The person has a middle initial, but it is omitted in this instance.

—The person does not have a middle initial. However, the first name
actually represents two Asian, e.g., Chinese, characters.

To deal with the second case where the middle initial is omitted (and
therefore unknown) from the written personal name, all 26 letters are
considered as candidates for the middle initial. Figure 15 shows the
well-formed user name FST from personal name “John Smith ” where the
middle initial “W” is omitted. Note, that, since the user name is case
insensitive, all letters in the personal name are changed to lowercase. All
punctuation symbols in the user name, if any, are removed before the user
name is matched against the FST.

In the third scenario, the first name is actually composed of two seg-
ments, each of which represents an Asian character. Since the boundary of
the two segments is unknown, all possible boundary positions are pre-
sented to the well-formed user name FST.

Based on the concept of well-formed user name and through the use of
FST, personal names, which belong to the loose functional class, can be
identified with much higher confidence.

5.3 The Input WFST

An input WFST is built for each reading block. For each line segment in the
reading block, there are a pair of neighboring nodes in the WFST connected
by several arcs. The input/output symbol of the arc represents a functional
class, and the cost indicates the likelihood that the line segment is related
to that functional class. Figure 16 shows a reading block and its input
WFST. (Arcs whose symbols represent line breaks are removed from the

0 1
j

2
w

3
s

Fig. 14. User Name FSA for “jws”.
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WFST in the figure for ease of reading.) This WFST is called input WFST,
since it is the first in a cascade of WFSTs. Note, that, although in this
example the input and output symbols on each arc are identical, they could
be different due to encoding in the language-directed segmentation algo-
rithm to be discussed in Section 5.3.1. Note also that the number of pairs of
neighboring nodes is equivalent to the number of line segments in the
reading block, not the number of lines, because a line may be divided into
several line segments. In Figure 16, the fifth line in the reading block is
divided into two line segments.

It is worth noticing that cost estimation is context free. It tries to
estimate the costs of relating the line segment to various functional classes
as if it appears alone without any preceding or following line segments in a
signature block. We try to make the estimate optimal locally, but it may or
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0/0

0/0

2
o/1

5

0/0

a/2

b/2

. . .
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3
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n/1

0/0

6

s/3
10 /0
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0/0

7
m/3

0/0

8

i/3

0/0

9

t/3 h/3

0/0

Fig. 15. Well-formed user name FST for “John Smith”.

E:  email address
W: web address
P:   phone number
F:   fax number
N:  personal name 

A:  postal address
T:  title
Q:  quote
S:   stub
M:  miscellaneous
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Fig. 16. A reading block and its input WFST.
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may not also be optimal globally, when the context is taken into account.
For example, in Figure 16, for the line segment “John W. Smith ” the
personal name functional class has the lowest cost; however, for the line
segment “Murray Hill ” the true functional class (address) is not the one
with the lowest cost.

This ambiguity is resolved by contextual knowledge, as incorporated in
the subsequent lexicon and grammar WFSTs. For example, the fact that an
address is usually composed of multiple line segments, while a personal
name is composed of a single line segment is represented, and a penalty is
applied for violating it in the lexicon and grammar WFSTs. The functional
class of a line segment is finally determined by finding the global optimum
under both the context-free cost estimations (represented in the input
WFST) and the contextual information (incorporated in the lexicon and
grammar WFSTs). For example, in Figure 20, which is the globally optimal
path for Figure 16, “Murray Hill ” is correctly identified as an address.

5.3.1 Language-Directed Segmentation. Oversegmentation errors re-
sulting from geometric analysis cause serious problems for cost estimation
of line segments. A pattern in an entire line segment may not be retained
by its subsegments. For example, while “John Smith ” is identified as a
personal name with regard to the user name “jws ” by the personal name
identification algorithm, neither of the first name or family name alone can
be identified in this way.

Since the oversegmentation problem cannot be solved by geometrical
analysis alone, a language-directed segmentation approach is proposed. For
all the line segments on the same line in a reading block, all possible
segmentation positions are evaluated. In other words, we try to combine
any two or more adjacent line segments on the same line into a new line
segment, and all the possible combinations are built into the input WFST.
Therefore, the input WFST contains choices for not only functional class of
each line segment but also segmentation positions on each line of the
reading block. The best choices of both of them are to be determined
together after the input WFST is composed with the lexicon and grammar
WFSTs.

For example, consider the text line “Dr. John W. Smith ”. Since the
words are written very far apart, this line is broken into four line segments
during the geometrical analysis, where each line segment contains only one
word. In order to determine the best segmentation positions, the WFST in
Figure 17 is built, which enumerates all possible combinations of the four
line segments (represented as A, B, C, and D respectively in the figure). Note
that each arc in Figure 17 represents several actual arcs, where each actual
arc is associated with a different functional class and its associated cost.

5.3.2 Encoding. After the input WFST is composed with the lexicon and
grammar WFSTs, a best-path search is performed to find the functional
class of each line segment (or combination of line segments). In order to
trace back the segmentation positions, i.e., the combination of line seg-
ments, the input symbol in the input WFST must be encoded to contain
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information on both functional class and number of combined line seg-
ments. Let K be the number of functional classes; the actual input symbol
used is computed as follows:

input symbol 5 index of functional class

1 ~number of combined line segments 2 1! 3 K

The output symbol of the arc need not be encoded, as this is just the
index of the functional class.

For example, assume that the indices of functional classes for email
address, Web address, telephone number, fax number, personal name,
postal address, title, quote, stub, and miscellaneous text are from 0 to 9
respectively. If an arc represents the combination of three line segments
and is related to a personal name, its input symbol is 4 1 ~3 2 1! 3 10
5 24, and its output symbol is 4.

After the best-path search in the composed WFST, each input symbol is
decoded to recover the functional class and the number of combined line
segments by the following:

index of functional class 5 input symbol MOD K

number of combined line segments 5 input symbol DIV K 1 1

5.4 The Lexicon WFST

The lexicon WFST describes the construction of a functional block from line
segments (Figure 18). For example, a complete postal address could be
composed of one or more lines, where each line could, in turn, be composed
of one or more line segments. However, a personal name is not usually
written in more than one line. Such observations are incorporated in the
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Fig. 17. Input WFST incorporating segmentation choices.
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lexicon WFST. As we have noted previously it is at this stage that errors of
the kind instantiated in Figure 16 are corrected.

5.5 The Grammar WFST

The grammar WFST describes the construction of a reading block from
functional blocks, as shown in Figure 19. To discourage transitions between
different lexical units, a moderate cost is assigned to the back-loop transi-
tion. We decided to separate the lexicon WFST from the grammar WFST
because they represent different levels of abstraction. Furthermore, it will
make our future work on the N-gram functional block model easier (Section
8).

5.6 Determination of Functional Classes and Segmentation Points

To determine the functional class of each line segment as well as the
segmentation positions on each line, the input WFST is composed with the

E:  email address
W: web address
P:   phone number
F:   fax number
N:  personal name 

A:  postal address
T:  title
Q:  quote
S:   stub
M:  miscellaneous
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Fig. 18. Lexicon WFST.
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lexicon and grammar WFSTs. By examining the optimal path in the final
WFST, adjacent line segments relating to the same functional class are
grouped into one functional block, and therefore a reading block is broken
into several functional blocks. Figure 20 shows the global optimal path in
the composition of the input WFST from Figure 16, the lexicon WFST
(Figure 18), and the grammar WFST (Figure 19). Note that paths with no
input symbol, no output symbol, and zero cost are pruned from the figure,
for clarity.

6. SIGNATURE BLOCK IDENTIFICATION

A different version of the algorithms for geometrical and linguistic analysis
can be used for the identification of signature blocks. In the email text-to-
speech rendering system, signature blocks are identified from the email
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Fig. 19. Grammar WFST.
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message by an N-gram character class model [Sproat et al. 1998], which is
not highly reliable for signature blocks, and a more accurate algorithm is
necessary.

It is observed, in the signature block, that we expect to see text repre-
senting email address, Web address, telephone number, fax number, name
and postal address (nonmiscellaneous text) more often than miscellaneous
text, while in the nonsignature block the opposite is often true. It is also
observed usually that there are at least two different nonmiscellaneous
functional blocks in a signature block. Therefore, by counting the number
of different nonmiscellaneous functional blocks and comparing the ratio of
the lengths of miscellaneous text and nonmiscellaneous text in a candidate
signature block, identification is achieved.

7. EXPERIMENTS

Experiments were carried out on both signature block analysis and identi-
fication. For these experiments, the thresholds used in geometric analysis
and the relative costs in the WFSTs were not obtained through formal
training due to lack of training data. Rather, they were chosen manually
based on common observations of signature samples not used in testing.

7.1 Signature Block Analysis

Signature block analysis was tested on 1361 signature blocks collected from
Lucent Technologies, the Department of Computer Science at Concordia
University, and various other external sources.1 They represent a variety of
geometrical layouts and writing styles. Neither Lucent nor Concordia has
any standard for the composition of signature blocks. There are, all
together, 5491 functional blocks in the testing samples, and 97% of them
are analyzed correctly. The average speed is 0.58 seconds per signature
block on a 150MHz SGI Indy.

The errors can be divided into two categories: geometrical errors and
linguistic errors.

7.1.1 Geometrical Error. Geometrical errors are unlikely to occur
within a reading block, since undersegmentation errors are corrected
during cost estimation, and oversegmentation errors are adjusted by the
language-directed segmentation approach. However, although rare, there
are geometrical errors across reading blocks which are not detectable by
our approach. Figure 21 shows a case where one real reading block is
mistakenly broken into two juxtaposed reading blocks because they are

1These other sources consist of the authors’ personal messages which come from sites
scattered among major universities and companies in the continental North America and a
few foreign countries.
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Fig. 20. The global optimal path for the reading block shown in Figure 16.
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very far apart. In the left reading block, there is no keyword to indicate
whether the number is a telephone or fax number, which causes an error.

7.1.2 Linguistic Errors. Linguistic errors occur when there is no strong
lexical pattern in the text. In Figure 22, 2D-436 by itself does not indicate
strongly a postal address in and of itself. Since cost estimation is not
reliable for these examples and contextual information is lacking, they are
not classified correctly.

7.2 Signature Block Identification

Signature block identification was tested on 351 complete email messages
from various sources. Emu’s preprocessor intentionally overclassifies a
considerable number of nonsignature blocks as signature blocks, and our
algorithm is then used to pick out the real cases.

The overall recall rate is 53% (97/183), and precision is 90% (97/108). The
recall rate may seem quite low. However, among the 86 recall errors, 79 are
trivial one-line signatures such as “-John ” or “-J ”. These trivial signatures
are of little interest to most applications, such as the email text-to-speech
rendering, and it causes virtually no harm to miss them. The recall rate
becomes 93% (97/104) if these trivial signatures are not counted.

8. SUMMARY AND FUTURE WORK

In this article, we describe a new approach that combines two-dimensional
structural analysis with one-dimensional grammatical constraints for ana-
lyzing the signature block in an email message. The approach consists
primarily of geometrical analysis and linguistic analysis, which are in-
tended to deal with geometrical and linguistic complexity of the signature
block respectively.

Geometrical analysis converts the two-dimensional signature block into
one-dimensional reading blocks. Aside from making the following one-
dimensional linguistic analysis possible, it also serves to ensure the coher-
ence of text inside a reading block. Geometrical analysis is done via line
segment extraction and connected-component analysis. Some segmentation
errors are detected and corrected based on their geometrical properties
alone.

Linguistic analysis identifies the functional classes of text in a reading
block. This is done by taking into account the lexicon and grammar
constraints of the signature block through the use of weighted finite-state

Fig. 21. An example of geometrical error (the bounding box is not part of the text).

Fig. 22. An example of linguistic error (the bounding box is not part of the text).
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transducers (WFST). First, an input WFST representing a reading block is
constructed after estimating the cost of relating a line segment with each
functional class. Lexicon and grammar constraints are represented, respec-
tively, as a lexicon and grammar WFST, which are composed with the input
WFST. The optimal path in the final WFST reveals the identity of each line
segment in the reading block.

Most of the segmentation errors which result from the geometrical
analysis and cannot be detected or corrected by geometrical information
alone are captured and remedied during linguistic analysis. Undersegmen-
tation errors are detected in the cost estimation phase. To deal with the
oversegmentation problem, a language-directed segmentation approach is
proposed, which incorporates the choice of not only functional classes but
also segmentation positions into the input WFST. Therefore, the optimal
functional classes and segmentation positions are not detected separately.
They are decided at the same time from the optimal path in the final
WFST.

A modified version of the algorithms for the geometrical and linguistic
analysis is also used for the identification of a signature block. Based on
some common observations, a signature block is identified by counting the
number of nonmiscellaneous functional blocks and comparing the ratio of
the lengths of miscellaneous text and nonmiscellaneous text.

Signature block analysis is currently implemented as a component of an
email text-to-speech rendering system. It was tested on 1361 signature
blocks containing 5491 functional blocks with various styles from various
sources. Ninety-seven percent functional blocks are classified correctly. The
recall and precision of signature block identification are 53% (93% if trivial
signatures are not counted) and 90% respectively.

As discussed in Section 7, our approach occasionally makes geometrical
and linguistic errors. We foresee no general solutions to linguistic errors
other than adding more ad hoc rules. However, there seem to be some
general solutions to geometrical errors.

Our current algorithm is capable of correcting most of the undersegmen-
tation and oversegmentation errors inside a reading block. However, if the
segmentation error occurs across different reading blocks, there is no
mechanism to detect or correct it, which is where most of the geometrical
errors come from. Figure 21 shows a typical example where a reading block
is mistakenly broken into two in the connected-component analysis. Once
broken, they will not be reunited.

We are currently investigating several different approaches to solving
this problem. One possibility is to try different combinations of all reading
blocks and select the combination that yields the lowest overall cost in the
final WFST, just as we try different combinations of all line segments on
the same line in the language-directed segmentation approach. Alterna-
tively, a different approach to connected-component analysis can be used to
generate multiple candidates for reading block segmentation. The chal-
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lenge is how to efficiently find the N best candidate paths each of which
traverses all the line segments once and only once.

We are also considering the use of an N-gram functional block model to
enrich the grammar model. However, much more training data are needed
for this purpose.
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