# Linh Huynh 

Department of Computer Science
University of California, Davis
email:huynh@ucdavis.edu

Tagkopoulos Lab
Room 5312
Genome and Biomedical Sciences Facility


| Personal Skills | $\diamond$ Programming Languages: Java, C, C++, Perl, Prolog, Lisp, Assembly, Matlab, AMPL, GAMS, LaTeX |
| :---: | :---: |
|  | Operating Systems: UNIX/LINUX (Fedora, Ubuntu), Windows |
|  | Spoken Languages: Vietnamese (native), English |
| Selected Projects | Orthogonal arrays and their applications |
|  | Funded by the World Bank, advised by Dr. Man Nguyen The goal of this project is to improve the bounds of orthogonal arrays, construct some new non-trivial arrays and apply them to design experiments in industry. |
|  |  |
|  | Similarity estimation on students source codes <br> Funded by Ho Chi Minh City University of Technology, collaborated with Dr. Phung Nguyen In this project, we propose a new metric that can be used to estimate the similarity between different source codes and a tool that can compute this metric efficiently. Our tool is used to detect the plagiarism in student 's programming exercises at Ho Chi Minh City University of Technology. |
|  |  |
|  | Simulating diauxic growth of $E$. Coli on glucose/lactose <br> Advised by Professor Tagkopoulos <br> This project combines an ordinary differential equation model and the flux balance analysis technique to simulate the diauxic growth of bacteria on different carbon sources. |
|  |  |
|  | $\diamond$ Predicting evolution under pleiotropic constraints <br> Collaborated with Andreas Pavlogiannis and advised by Professor Tagkopoulos In this project, we simulate the evolution of gene regulatory network with different topology characteristics to observe the influence of these charecteristics on the evolution process. |
|  | $\diamond$ Analyzing the commutativity of loops <br> In this project, we propose a novel concept commutative to classify the loops. We formalize this concept and show that if a loop is commutative then it can be verified efficiently. We also build a procedure to check if a loop is commutative or not. In the case the loop is non-commutative, we propose some techniques to transform them to some standard forms which are either commutative or irreducibly non-commutative <br> Optimizing genetic modifications in biochemical production <br> Advised by Professor Tagkopoulos <br> This project will model both processes of gene regulation and metabolism and use fluxbalance analysis and mixed-integer linear programming to figure out the best way to knockout, over-express or integrate a new plasmid into host cells to optimize some given objectives such as maximizing the production of ethanol or butanol. |
|  |  |
|  |  |
| Relavant Courses | $\diamond$ ECS 201A Advanced Computer Architecture |
|  | $\diamond$ ECS 222A Design and Analysis of Algorithms |
|  | $\diamond$ ECS 240 Programming Languages |
|  | $\diamond$ ECS 270 Artificial Intelligence |
|  | $\diamond$ ECS 289K Scientific Computing |
|  | $\diamond$ ECS 289I Networks |
|  | $\diamond$ ECS 289L Biological Networks |
|  | $\diamond$ ECS 289A Convex Optimization |
| References | Prof. Ilias Tagkopoulos |
|  | Department of Computer Science |
|  | University of California, Davis |
|  | 3063 Kemper Hall |
|  | Email: iliast@ucdavis.edu |

## Prof. Matthias Koeppe

Department of Mathematics
University of California, Davis
3143 Mathematical Science Building
Email: mkoeppe@math.ucdavis.edu
Dr. Man Nguyen
Department of Computer Science
Ho Chi Minh City University of Technology, Viet Nam
A3 Computer Science Building
Email: mnguyen@cse.hcmut.edu.vn

