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Machine learning techniques offer a viable approach to cluster discovery from mi-
croarray data, which involves identifying and classifying biologically relevant groups in
genes and conditions. It has been recognized that genes (whether or not they belong to
the same gene group) may be co-expressed via a variety of pathways. Therefore, they
can be adequately described by a diversity of coherence models. In fact, it is known that
a gene may participate in multiple pathways that may or may not be co-active under
all conditions. It is therefore biologically meaningful to simultaneously divide genes into
functional groups and conditions into co-active categories – leading to the so-called bi-
clustering analysis. For this, we have proposed a comprehensive set of coherence models
to cope with various plausible regulation processes. Furthermore, a multivariate biclus-
tering analysis based on fusion of different coherence models appears to be promising
because the expression level of genes from the same group may follow more than one
coherence models. The simulation studies further confirm that the proposed framework
enjoys the advantage of high prediction performance.

Keywords: Microarray; gene expression patterns; biclustering; computational bioinfor-
matics; finite mixture models; machine learning.

1. Introduction

The genome is not just a collection of genes working in isolation, but rather it
encompasses the global and highly coordinated control of information to carry out
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a range of cellular functions. Any cellular activity requires elaborate patterns of
gene interaction to marshal appropriate processes. In addition, the genome also
incorporates information that controls when and where the parts of living organisms
should be made. Therefore, it is imperative to conduct genome-wide studies so as to
facilitate (1) effective identification of correlated genes and (2) better understanding
of the mechanisms underlying gene transcription and regulation.

Expression of several thousands of genes can be measured simultaneously by
DNA microarrays. Microarrays have been effectively used to classify clinical sam-
ples, to investigate the mechanism of drug action and to examine the effects of
drugs on gene expression in various organisms.1,3,8 The upside of microarrays is
that gene expression analysis is computationally less demanding than sequencing.
Furthermore, recent advances in machine learning tools for expression profiling have
become more mature and cost effective. However, microarrays also have their own
limitations. In particular, the data are very noisy and contain artifacts, making
gene prediction very difficult. Moreover, the gene dimension of the data matrix is
usually too large (causing large search space) while the condition dimension is too
small (causing statistic error).

Suppose that a set of (independent or time-course) microarray experimental data
is obtained. The data is often framed into a data matrix, which can be expressed
as an M × N matrix of real numbers: A = [aij ], where M is the number of genes
and N the number of conditions. Each entry aij represents the logarithm of the
relative abundance of the mRNA of the i-th gene under the j-th condition. The
gene expression profile of each condition (sample) is described as an M -dimensional
vector in which each element represents the expression level of one gene. Similarly,
the profile of each gene is described as an N -dimensional vector in which each
element represents the expression level of the corresponding condition.

For the development of microarray data mining tools, a critical and common
approach is cluster analysis, i.e., grouping genes or conditions that have comparable
patterns of variation of expression levels. Three types of cluster analysis have been
studied:

(1) Clustering of genes, where genes are divided into functionally similar or geno-
typically related categories.

(2) Clustering of conditions, where conditions are divided into co-active or
phenotype-related groups.

(3) Biclustering analysis, for which the goal is to simultaneously divide genes into
functional categories and conditions into co-active groups.

Several distinct and challenging properties differentiating biclustering from tra-
ditional clustering are highlighted here.

(1) Since biclustering involves simultaneous grouping of both genes and conditions,
the corresponding coherence models become more complex. Moreover, the suit-
able models for a gene/condition group are usually unknown a priori. To tackle
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this problem, we study a comprehensive list of coherence models to first assure
a broad spectrum of representation of the gene expression data. In order to pin-
point the most suitable coherent model(s), we shall apply supervised machine
learning techniques to guide our selection process.

(2) It has been observed that many genes are co-expressed via a diversity of co-
herence models. In other words, a gene may be co-expressed via more than
one coherence models. Therefore, a multi-modality adaptive fusion network is
adopted to improve the performance in the prediction phase.

(3) Yet a third property pertaining to bicluster analysis – existence of overlapping
between biclusters – is potentially advantageous in terms of simplification of
the clustering procedure. Overlapping implies that genes with multiple func-
tions may be simultaneously associated with more than one group. There is no
loyalty issue, i.e., a gene (or condition) is no longer exclusively assigned to one
cluster only. Such overlapping allows a gene or condition to be simultaneously
associated with multiple biclusters. As there is no mutual dependence or conflict
of interest among various biclusters, each of the biclusters can be independently
searched. Thus, this paper adopts an independent bicluster searching strategy.

The biclustering analysis can be viewed as a special application of a general ma-
chine learning system. A machine learning system has in general three subsystems:
(1) feature extraction, (2) cluster analysis, and (3) gene classification/prediction.
More elaborately, the feature extraction subsystem is discussed in Section 2. Note
that for biclustering analysis, the most crucial is not how to cluster data but how
to find an appropriate way of looking at the data because the raw data may not
be directly usable. This section proposes several preprocessing methods used for
converting the raw data into a new representation that can better reflect the un-
derlying coherence models. In Section 3, biclusters are identified via a supervised
machine learning technique, i.e., a subset of genes from the targeted gene group are
assumed to be known a priori. We used this small set of known genes to select a
subset of co-active conditions. Then each gene can be represented by a feature vec-
tor, with the selected conditions as its elements. The feature vectors are then used
as the basis for classification. Afterward, based on a (single) coherence model, the
gene prediction can be conducted with performance recorded in terms of precision,
sensitivity, and specificity. In Section 4, a multi-modality adaptive fusion network
is proposed to further improve the prediction performance.

2. Biological Coherence Models for Microarray Data Matrix

2.1. Basic Bicluster Criterion: Constant-Value Matrix Norm

First of all, it is critical that we establish a precise and working definition on what
constitutes a bicluster in the expression data. A bicluster is often based on a simi-
larity function of the rows and columns in the expression matrix. Such a function
is traditionally represented by the matrix norm of a submatrix of A. The most
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(a) (b)

Fig. 1. Example illustrating an exhaustive approach to finding a constant-value submatrix. Ideally
speaking, given a randomly ordered gene expression data matrix, one can try all the possible
sorting orders on both genes and conditions. Hopefully, in one of such sorting results, we can find
one most contiguous and at the same time flattest rectangular region. The corresponding gene and
condition subsets can then be identified as a constant-value bicluster.

commonly used matrix norm is the Frobenius norm, denoted by ||As||F , which is
defined as the square-root of the sum of squares of all elements in the submatrix
As.

Hartigan proposed a constant-value matrix norm which has a very broad appli-
cation spectrum.4 In the definition, perfect biclusters are those with constant-value
elements, denoted by c, in every matrix entry. The proximity of elements in a matrix
depends on their deviation from an optimally chosen constant-value:

||A||constant-value ≡ min
c

∥∥∥∥∥∥∥∥∥
A−




c c . . . c

c c . . . c
...

...
...

...
c c . . . c




∥∥∥∥∥∥∥∥∥
F

(1)

where || · ||F denotes the Frobenius norm. The norm is smaller when the family is
more similar. For example, a nearly perfect matrix is one such that

||A||constant-value ≈ 0.

Figure 1 shows an example in which a submatrix A can be identified as a constant-
value matrix after shuffling the original matrix.

2.2. Coherence Models and Preprocessing Methods

For gene expression analysis, it is not only natural but also appealing to incorporate
biologically relevant coherence models for both genes and conditions. However, in
many practical situations, the constant-value matrix norm (Eq. 1) is simply not
rich enough to handle the underlying complex biological process for co-regulated
genes. For example, genes that have different expression levels but similar patterns
may be co-regulated by a combination of transcription factors. Factors such as
the transcription factor binding affinity, mRNA degradation rate, and transcription
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initiation rate can produce displaced and scaled expression of gene products. There
are also artifacts during the preparation of samples as well as systematic biases due
to their heterogeneities (e.g., different patients).

In fact, several basic coherence models and their corresponding similar-
ity measures for cluster discovery have already been proposed by microarray
researchers.16,12,2 In particular, two popular coherence models regulating the rel-
ative abundance of mRNA are additive and multiplicative coherence models and
the corresponding preprocessing methods are normalization and standardization,
respectively.16,2 The raw data must be preprocessed to reflect the coherence mod-
els.

Let us further elaborate these two coherence models and their corresponding
preprocessing methods.

(1) Additive coherence model: A scaling relation between mRNAa and mRNAb

is expressed as mRNAb = λ(mRNAa), where λ is a scaling factor. The loga-
rithm transformation

a = log(mRNAa) and b = log(mRNAb)

allows conversion of multiplicative changes of the relative abundance into ad-
ditive increments:2 b = λ′ + a where λ′ ≡ log(λ). There are several causes
of the additive coherence model, e.g. (a) genes with different epigenetic mod-
ifications could be transcribed at different rates; (b) different topology of the
promoter region could result in different efficiency of transcription of genes; and
(c) different half lifetimes of the mRNAs could lead to different transcription
rates.
Preprocessing for additive models: Two feature vectors a and b are said
to belong to the same additive family if and only if they are equivalent except
for a constant shift λ′. A “normalization” step is often adopted to alleviate the
perturbation caused by the additive increments. Computationally, “normaliza-
tion” is a process that subtracts each row (or column) by row (or column) mean,
i.e., (x− µ).

(2) Multiplicative coherence model: An exponential relation between mRNAa

and mRNAb is expressed as mRNAb = (mRNAa)γ . Now the logarithm converts
the exponential changes of the relative abundance into multiplicative factors,
leading to a “multiplicative model” governing dependence between a and b:
b = γ×a. Multiplicative coherence models can cope with the event of dissimilar
transcription factor (TF) binding stoichiometry in a group. A simple example
is when only a single TF molecule is needed to regulate a certain gene, but
two or more TF molecules are required for the regulation of another. This
model can also represent the situation when a modulator molecule(s) binds on
multiple locations on the TF protein. The number of modulator molecules and
the position they are bound affect regulation of target genes. In both cases,
the mRNA concentrations of two co-regulated genes will exhibit a power law
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Table 1. List of various coherence models for rows (genes) and columns (conditions). If the same
preprocessing is applied to both rows and columns, it is referred to as a symmetrical coherence
model. Otherwise, it is categorized into the asymmetrical coherence model. The entries in the
table indicate the type of coherent model (far from being exclusive). For example, if normalization
is applied to rows or columns (but not both), then the resulting clustering is equivalent to mean
normalization. For Box (2,2), applying optimal normalization (c.f. Eq. 7) to both rows and columns
will result in Cheng and Church’s coherence model. The similar argument carries through to the
remaining boxes. Here, the term “Generalized Z-norm” means that standardization is applied to
rows and/or columns.

Condition Coherence
Coherence Model No adjustment Normalization Standardization

No adjustment Constant-value Mean-
normalization

Z-norm

Gene
Coherence

Normalization Mean-
normalization

Cheng and
Church Type

Generalized
Z-norm

Standardization Z-norm Generalized
Z-norm

Generalized
Z-norm

dependency leading to a multiplicative model.a It is common to assume that
the multiplicative variation is imposed on top of the additive variation. This
leads to the “additive-multiplicative” coherence model: b = λ′ + γ × a.
Preprocessing for additive-multiplicative models: Two feature vectors
a and b are said to be multiplicatively coherent if they are equivalent except
for a constant scaling factor γ. Additive-multiplicative preprocessing is a “stan-
dardization” step that can be adopted to compensate for the additive as well
as multiplicative variations. Computationally, “standardization” is a process
that subtracts the expression levels by their mean and then divided by their
variance, i.e., ((x− µ)/σ).

Normalization and standardization are especially important when the microar-
ray contains a large assortment of random genes (or alternatively all genes in the
species’ genome), where we do not expect to see a large bias in each sample.14

Figure 2 shows the effect of applying normalization preprocessing (additive coher-
ence model) and standardization preprocessing (additive-multiplicative coherence
model) on gene expression data.

2.3. Comprehensive Coherence Models for Bicluster Discovery

In order to explore a more comprehensive set of plausible coherence models, it is
important that we provide a maximum flexibility in allowing all possible combi-
nations of (row and column) preprocessing. This leads to two types of coherence
models: symmetrical and asymmetrical models, as depicted in Table 1.

aFor a detailed analysis of several coherence models and their biological derivation, see Tagkopoulos
et al.15
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(A) (B) (C)

No Preprocessing Normalization (Additive Model) Standardization (Multiplicative Model)

Fig. 2. Effect of applying preprocessing on raw expression data, including normalization (addi-
tive coherence model) and standardization preprocessing (multiplicative coherence model). In the
graphs, each line represents the expression level of one gene across nine conditions in the yeast data
set. Shown here are three time-course gene groups: A(upper-left), B(upper-center), and C(upper-
right). By the naked eye, it would not be very persuasive to claim that Group B forms a tighter
family than Group A, because the former exhibits a wider spread data structure. However, if
we probe into the underlying data structure, it can then be revealed that Group B has a wider
spread only because there is a large variation of the additive shifts. If such an additive varia-
tion can be properly compensated by additive preprocessing, cf. lower-center-box, the remaining
spread becomes relative smaller than Group A. Similarly, Group C will be tightened up if the
underlying multiplicative variation is also compensated in addition to additive normalization, cf.
lower-right-box.

(1) Symmetrical coherence models: A prevailing assumption in the literature
is that genes (rows) and conditions (columns) must share the same coherence
model. Such a symmetry assumption leads to a type of preprocessing method
in which the rows and columns undergo the the same kind of preprocessing.
The symmetrical preprocessing methods are shown on the main diagonal boxes
in Table 1, i.e., Models (1,1), (2,2) and (3,3). For example, for the center box,
i.e., Model (2,2), “normalization” preprocessing is applied to both rows and
columns, just like the Cheng and Church model.2 Moreover, in the right-lower
box, i.e., Model (3,3), the “normalization and standardization” preprocessing is
applied to both rows and columns, leading to a generalized Z-norm. However,
There is no biological evidence that the genes and the condition have to follow
the same coherence model.

(2) Asymmetrical coherence models: The above-mentioned symmetry prop-
erty is, however, neither truly biologically justifiable nor necessarily yielding a
more effective tool for bicluster analysis. Therefore, in Table 1, six additional
asymmetric models are introduced: (1,2), (1,3), (2,1),(2,3), (3,1) and (3,2). Ac-
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Table 2. A numerical example that further elaborates the preprocessing operations corresponding
to the coherent models listed in Table 1. Three types of preprocessing operations are used: no
adjustment, normalization (i.e., x − µ), and standardization (i.e., (x − µ)/σ). The preprocessed
matrices after the completion of the corresponding preprocessing procedures are listed in the table.
For example, Box (2,1) is a result from Eq. 2 while Box (2,2) is from Eq. 4. Given a preprocessed
matrix, the final similarity measure can readily be obtained by using Eq. 1.

Consider a matrix A =

24 10 20 30
11 22 32
20 42 61

35 , with ~α =

24 20
21.7
41

35 and ~β =

24 13.7
28
41

35. Here, the amount

of adjustment in rows and column (~α and ~β) has been set to row means and column means,

respectively.

Column Preprocessing

Preprocessing Methods No adjustment Normalization Standardization

No
adjustment

264 10 20 30

11 22 32

20 42 61

375 264−3.7 −8.0 −11.0

−2.7 −6.0 −9.0

6.4 14 20

375 264−0.8 −0.8 −0.8

−0.6 −0.6 −0.6

1.4 1.4 1.4

375
Row
Prepro-
cessing

Normalization

264 −10 0 10

−10.6 0.3 10.3

−21 1 20

375 264−23.7 −28.0 −31.0

−24.3 −27.7 −30.7

−34.7 −27.0 −21.0

375 264 0.8 −1.0 −0.7

0.6 −0.3 −0.7

−1.4 1.4 1.4

375
Standardization

264 −1.2 0.0 1.2

−1.2 0.0 1.2

−1.25 0.05 1.2

375 264 0.02 − 0.03 0.02

0.00 0.00 0.00

0.01 0.03 −0.01

375 264 1.3 −1.3 1.3

−0.3 0.4 −0.2

−1.0 1.0 −1.1

375
cording to the simulation study in Section 3.2 (Figure 3), the performance of
the super-diagonal asymmetric model (1,2) in Table 1 appears to outperform
the symmetric model (2,2), i.e., Cheng and Church model.

2.4. Combine Preprocessing with Constant-value Norm

To determine the closeness of a bicluster pertaining to a specific coherence model,
there are two stages involved: (1) apply the preprocessing method corresponding
to the coherence model and (2) apply the constant-value matrix norm (Eq. 1) to
measure the similarity of the gene/condition family.

(1) Preprocessing: For example, if additive preprocessing is applied to only the
rows (or the columns or both), then the mathematical operations are as follows:

Arow-normalized = A− ~α[ 1 1 · · · 1] (2)

Acolumn-normalized = A− [ 1 1 · · · 1]T ~βT (3)

Aboth-normalized = A− ~α[ 1 1 · · · 1]− [ 1 1 · · · 1]T ~βT (4)

where the elements of ~α and ~β reflect the amount of adjustment in rows and
columns, respectively.

To help illustrate the operations of various preprocessing methods, numerical
examples are provided in Table 2. For each box in Table 2, row operations



April 28, 2006 11:10 WSPC/INSTRUCTION FILE kung-jbcb

Symmetric and Asymmetric Multi-Modality Biclustering Analysis 9

precede column operations.b For example, the preprocessed matrix in Box (2,2)
is obtained as follows. Before preprocessing, we have

A =




10 20 30
11 22 32
20 42 61


 .

After row normalization (Eq. 2), we have

A21 = A− ~α[1 1 1] = A−



20.0
21.7
41.0


 [1 1 1] =



−10 0 10
−10.6 0.3 10.3
−21 1 20


 .

After row and column normalization (Eq. 4), we have

A22 = A21 − [1 1 1]T ~βT

=



−10 0 10
−10.6 0.3 10.3
−21 1 20


−




1
1
1


 [13.7 28.0 41] =



−23.7 − 28.0 − 31.0
−24.3 − 27.7 − 30.7
−34.7 − 27.0 − 21.0


 .

For Box(2,3), the matrix after row normalization is identical to A21, and the
matrix after column normalization and standardization is

A23 =


A21 −




1
1
1


 [−13.89 0.44 13.44]







1/5.04 0 0
0 1/0.42 0
0 0 1/4.64




=




0.8 −1.0 −0.7
0.6 −0.3 −0.7
−1.4 1.4 1.4




where [−13.89 0.44 13.44]T and diag{5.04, 0.42, 4.64} contain the column
means and column standard derivations of A21, respectively.

(2) Apply the constant-value matrix norm after preprocessing opera-
tions: Once preprocessing corresponding to a specific coherence model is ap-
plied, the constant-value matrix norm can again be used to compute the close-
ness of the bicluster. For example, based on Eq. 4, Cheng and Church’s residue
can be computed as:

||A||C&C = ||A22||constant-value (5)

=

∥∥∥∥∥∥



−23.7 − 28.0 − 31.0
−24.3 − 27.7 − 30.7
−34.7 − 27.0 − 21.0


−



−27.6 − 27.6 − 27.6
−27.6 − 27.6 − 27.6
−27.6 − 27.6 − 27.6




∥∥∥∥∥∥
F

(6)

bFor “normalization” preprocessing, the order of whether row before column or vice versa is im-
material. For “standardization” preprocessing, such order does make some difference. Throughout
this paper, we assume that row-wise preprocessing precedes column-wise preprocessing.
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=

∥∥∥∥∥∥




3.9 − 0.4 − 3.4
3.3 − 0.1 − 3.1
−7.1 0.6 6.6




∥∥∥∥∥∥
F

= 11.88.

If optimal normalization is applied to both columns and row as below,

||A||C&C ≡ min
~α,~β

||A− ~α[ 1 · · · 1]− [ 1 · · · 1]T ~βT ||F . (7)

It can be shown that (details omitted here) this leads to Cheng and Church’s
residuec

3. Bicluster Analysis Based on Single Coherence Model

Section 3.1 discusses how to discover bicluster in the supervised training phase,
while Section 3.2 addresses the performance analysis in the gene prediction phase.

3.1. Supervised Biclustering Scheme

We adopted a supervised biclustering strategy proposed recently for condition
selection.11 There are two reasons to pursue a supervised biclustering scheme. One
is due to the complexity of coherence models for bicluster discovery, i.e., the number
of plausible coherence models for the bicluster analysis is far more than traditional
cluster analysis. A more important justification is that there are plenty of prior
information on some gene groups (e.g., ribosomal of yeast) ready to be utilized to
guide the bicluster discovery.

Our procedure begins with a core set of vectors that are a priori known to be from
the same gene group; then similar vectors are admitted to the group in a one-by-one
basis. A proper criterion for expansion has to be designed so that it will first admit
the candidate gene (or condition) that bears closest resemblance with the current
group. The process continues until all candidate vectors are properly evaluated and
those closest vectors are admitted to the group. The bicluster ultimately formed will
depend on an optimal tradeoff between a maximum size (in terms of the number of
genes/conditions) and the closeness of intra-group genes/conditions.

Without loss of generality, we use an exemplar case to describe the general
procedure. More precisely, we shall focus our discussion on the identification of

cWe note that the optimal solution is not unique. One possible optimal solution is given below:

~αopt =
1

J

XJ

j=1
~a·j − 1

2
µ and ~βT

opt =
1

I

XI

i=1
~ai· − 1

2
µ

where µ is the global mean of A (i.e., µ = 1
IJ

PI
i=1

PJ
j=1 aij), ~a·j and ~ai· are the j-th column

and i-th row of A, respectively. Substituting the above into Eq. 7 results in

||A||C&C =
1

IJ

XI

i=1

XJ

j=1

�
aij − 1

J

XJ

j′=1
aij′ −

1

I

XI

i′=1
ai′j + µ

�2

,

which is the equation used by Cheng and Church.
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ribosomal biclusters in the yeast data set.5 To facilitate the supervised training
process, we shall assume that 80 of the true ribosomal genes are provided. In other
words, they are known a priori to belong to the positive category.

(1) Condition initialization: Based on the set of all (80) known ribosomal genes,
we search the best condition pair (out of a total of C17

2 = 136 pairs) with the
shortest distance. The names of ribosomal genes can be found in a yeast genome
website.7 Note that among the ribosomal genes specified in this website, 121 of
them match the genes in the data set we obtained from Cheng and Church’s
website.5 Among these 121 ribosomal genes, we randomly selected 80 to be the
positive training data.

(2) Condition selection: Starting from the two best conditions, given a coherent
model, we grow the condition group according to the corresponding closeness
metric. We continue the growing until the closeness metric reaches a predefined
threshold or the number of conditions reaches a predefined maximum value.
Naturally, we wish to select a column such that it bears the strongest resem-
blance with the current condition group, i.e., it incurs a minimum increase in
the closeness metric. For simplicity, we choose to fix the number of selected
conditions to be 9 (out of the total of 17) conditions in the yeast data. After
this condition selection process, we will have eighty 9-dimensional ribosomal
gene vectors x(p)

t for training the gene predictor (see Section 3.2).

After identifying a bicluster, one can proceed with the discovery of another gene
bicluster. Before the search of the next gene group, there are two ways to handle
those genes identified to be positive in the first gene group. If a gene has to be
exclusively assigned to one and only one cluster, then the positive genes just selected
must be first exempted from the gene pool before the next search commences. This
precautionary step effectively prevents the same gene to be selected by another gene
group.

On the contrary, we assume in this paper that there can be overlapping be-
tween different gene groups. More precisely, we allow a gene (or condition) to be
simultaneously associated with multiple groups. Consequently, the positive genes
can now remain in the gene set used in the next search. In other words, instead of
determining one (and only one) most relevant gene group for a targeted gene, the
focus is to determine whether a gene should be admitted to any gene group. Note
that such independent bicluster searching strategy, forming one-group at a time,
was proposed by Mirkin (1996),13 which starts with a single cell in the matrix and
gradually expands it to reach a maximal constant bicluster.

3.2. Gene Prediction Based on Single Coherence Model

To build classifiers for gene prediction, it is necessary to convert the feature vectors
into scores. This can be achieved by using Fisher Discriminant Analysis (FDA) in
which the positive (e.g., ribosomal) and negative (e.g., non-ribosomal) gene vec-
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tors are projected onto a direction parallel to the vectors that connect the means
of positive and negative gene vectors.9 More precisely, let us denote the positive
and negative gene vectors as x(p)

t and x(n)
t , respectively.d The projection vector is

obtained by w = (x̄(n) − x̄(p))/‖x̄(n) − x̄(p)‖ where

x̄(p) =
1
Tp

∑Tp

t=1
x(p)

t and x̄(n) =
1
Tn

∑Tn

t=1
x(n)

t , (8)

where Tp and Tn are the numbers of positive and negative training genes, respec-
tively. Given a test gene vector yt, its FDA-projected value is

s(t) = yT
t w, (9)

where T represents transpose.
Let the distribution of the FDA-projected values s(t)’s corresponding to riboso-

mal and non-ribosomal be p(s(t)|Λ(p)) and p(s(t)|Λ(n)), respectively. A test gene t

is classified as ribosomal if

log p(s(t)|Λ(p)) > log p(s(t)|Λ(n)); (10)

otherwise it will be classified as non-ribosomal. By counting the number of mis-
classified test genes, we can compute the precision, sensitivity, and specificity cor-
responding to a single point on the ROC curve.e These performance measures are
defined as follows:

Precision =
TP

TP + FP
=

1
1 + FP/TP

(11)

Sensitivity =
TP

TP + FN
=

1
1 + FN/TP

(12)

Specificity =
TN

FP + TN
=

1
1 + FP/TN

(13)

where TP, TN, FP, and FN are the numbers of true-positives, true-negatives, false-
positives, and false-negatives, respectively. Verbally speaking, precision is the pro-
portion of predicted positive (i.e. ribosomal) genes that are indeed positive, sensi-
tivity refers to the ability to correctly predict positive (i.e. ribosomal) genes, and
specificity refers to the ability to correctly predict negative (i.e. non-ribosomal)
genes. For example, perfect precision implies that every predicted positive genes
is indeed positive, perfect sensitive implies that every positive gene (in the testing
pool) must be predicted positive, and perfect specificity implies that every negative
gene (in the testing pool) must be predicted negative.

dThe derivation is simplified by assuming that the variances of the positive and negative clusters
are the same, i.e., no weighting is applied to the vectors.
eROC stands for receiver operating characteristic that displays the trade-off of two of these mea-
surements over their entire range.
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To produce the entire spectrum of sensitivity-precision-specificity, a disparity
between the positive and negative log-likelihoods is introduced, i.e, a test gene t is
classified as ribosomal if

log p(s(t)|Λ(p)) > log p(s(t)|Λ(n)) + α, (14)

where α > 0 (respectively α < 0) if a higher specificity (respectively sensitivity)
is desired. Note that because s(t)’s are scalers, the ROC can also be obtained by
sweeping a decision threshold ζ from the minimum to the maximum value of the
test scores s(t)’s in the following decision rule:

If s(t)
{

< ζ t is ribosomal
≥ ζ t is not ribosomal.

(15)

Figure 3 shows the sensitivity against precision (ROC) corresponding to nine
different preprocessing methods for the detection of ribosomal genes. Note that
Models (1,1), (1,2), and (1,3) have better performance in high precision region,
while Model (3,1) performs better in low precision region. This provides very crucial
information for the fusion strategy proposed in the next section.

Although it is true that when FP increases FN will decreases, when the change
in TP overshadows the change in FP, both FP/TP and FN/TP could decrease,
as illustrated in Figure 4. Therefore, when TP rapidly increases (decreases), both
precision and sensitivity may be simultaneously compromised (enhanced). For ex-
ample, for Models (2,1), (2,2), and (2,3), there is a region in the ROCs at which
both sensitivity and precision are increasing (c.f. the lower-left region of Figure 3).
Figure 4 also shows that the minimum of FP/TP (solid line) may not be equal to
zero. This result together with Eq. 11 explain why in some cases the precision can
never get higher than an upper limit.

4. Multi-Modaltiy Fusion: Combining Multiple Coherence Models

It is known that there may exist multiple sub-structure within the same gene group
and the genes may participate in multiple pathways. Therefore, multi-modality
fusion may be used as an effective tool for expansion (and possibly consolidation) of
biclusters discovered via single-modality methods. As will be explained momentarily,
there exists plenty of biological evidences to support the multi-modality nature of
gene groups. In contrast, such an evidence is still very much lacking to support the
application of multi-modality fusion to the expansion of condition groups. Therefore,
in this section, we will only focus on the expansion of biclusters along the gene
dimension, while leaving the condition dimension unchanged.

Figure 5 illustrates two possible fusion architectures. Figure 5(a) shows a direct
fusion scheme, where the gene vectors xt obtained by two preprocessing methods
(Box (1,3) and Box (3,1) in Table 1) are concatenated to form an expanded vector.
In the fusion layer, the long vector is processed by a supervised classifier (e.g.,
decision-based neural networks (DBNN)).10
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Fig. 3. Sensitivity against precision of nine different combinations of preprocessing methods for
the conditions and genes. (a) Prediction of ribosomal. (b) Prediction of molecular activity genes.
In the legend, “GMetric=m; CMetric=n” means that coherence models m and n were assigned
to the genes and conditions, respectively. In other words, it corresponds to Box (m,n) in Table 1.
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sus decision thresholds for Metric (2,1) in Figure 3(a). Note that for thresholds less than −25, both
FN/TP and FP/TP are decreasing, causing both sensitivity and precision to be simultaneously
compromised or enhanced (c.f. the lower-left region of Figure 3).

Alternatively, an indirect fusion scheme is shown in Figure 5(b), where each
feature vector is either compressed into a scalar (or low dimensional) feature or is
represented simply by a local score. In the fusion layer, a supervised classifier can
be adopted to combine the local features or scores. More specifically, we propose
a Mixture-of-Expert (MOE) architecture in which each local expert computes a
local score based on a single preprocessing method. Thereafter, the DBNN can be
used to fuse the scores derived from various preprocessing methods to reach a final
decision.10
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Fig. 5. Two possible Fusion Architecture. (a) Direct Fusion: multiple features are concatenated
to form an expanded feature vector. (b) Indirect Fusion: each feature vector is compressed into a
scalar (or low dimensional) feature or represented by a local score.

4.1. Biological Support for Multi-Modality

It is well known that genes may participate in more than one pathway; as a result,
their expression profiles may be better explained by using multiple models. This
fact holds even for genes that are members of a strongly correlated group, such as
the ribosomal gene group. As an example, the products of genes YBR191W and
YIL052C take part not only in protein biosynthesis but also in filamentous growth, a
process by which an organism grows in a threadlike, filamentous shape. Therefore,
it is not expected or necessary that a single model will be able to describe the
behavior of correlated genes in all conditions. This calls for a fusion strategy that
combines features produced by different preprocessing methods in order to improve
classification and prediction performance.

In addition, it has been observed that there exist multiple substructures with
different behaviors within the same (say, ribosomal gene) group. For example, as
shown in Figure 6, the ribosomal gene group appears to contain at least two sub-
structures. The existence of multiple substructures could result in a case where
using one model would reveal a subgroup with high precision but not high sensitiv-
ity. This substructure, however, may be better characterized by another coherence
model.

4.2. Fusion of Coherence Models

Hard-Switching and Consistent Fusion. A modest fusion objective is to deliver
a consistent fusion result9, which is at least as good as any of the single model in
the entire sensitivity/specificity region. As long as the sources are complementary
to each other (w.r.t. the ROC), consistent fusion is always possible and it will yield
improvement as long as certain statistical conditions are met. Such a goal can be
achieved by a hard-switching fusion scheme, described below:

(1) Determine the crossover point of two coherence models in Figure 7. Denote the
sensitivity and specificity at the crossover point as Scrossover and Pcrossover,
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Fig. 6. This figure illustrates the existence of multiple substructures in the ribosomal gene group
under the additive coherence model. Note that, to facilitate a better display of the difference of
the substructures, an offset has been artificially added to one of the substructures so that the two
substructures will no longer overlap.

respectively. For example, in Figure 7, the crossover of Model (1,1) and Model
(3,3) is at the point Scrossover = 75% and Pcrossover = 87%.

(2) In order to guarantee a sensitivity to remain higher than or equal to Scrossover =
75%, the decision boundary pertaining to Model (1,1) of the left expert in Figure
7(a) should be adopted. On the other hand, to assure a specificity no poorer
than Pcrossover = 87%, we should switch to Model (3,3).

The decision boundaries for such a fusion scheme are illustrated in Figure 7(b).
This scheme may assure that a lower bound performance of any consistent fusion
is as good as the better of the two modalities. The consistence, however, requires
some conditions to be met. More elaborately, suppose that a set of data is reserved
in addition to the testing data set. Such data set is usually termed held-out data
set. Let us assume that the fusion result is obtained based on the held-out data set
only. Under such experimental procedure, a consistent performance can continue to
hold up only under the additional assumption that the held-out data set shares the
same statistics as the testing set.

Linear Fusion. Mathematically, denote the fusion score as Z, Z = αX+βY , where
X and Y are input scores. In the hard-switching scheme, we have either α = 1, β = 0
or α = 0, β = 1. In contrast, one may adopt a linear soft fusion scheme based on
a new fusion score Z ′ = α′X + β′Y , where α′ + β′ = 1. In many cases, such a
soft fusion scheme can lead to better-than-lower-bound performance. The optimal
values of α′ and β′ can better be derived via prominent machine learning techniques,
such as Fisher classifiers and support vector machines (SVMs).17 Unfortunately, it
is known that linear classifiers often have limited discriminating power.

Nonlinear Fusion. In order to attain most flexible decision boundaries, one has
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Fig. 7. Diagram illustrating the concept of consistent fusion. Note that the (horizontal) decision
boundaries based on Model (1,1) – boundaries #1, #2, #3, and #4 – have relatively higher
sensitivity, while the (vertical) decision boundaries based on Model (3,3) – boundaries #6, #7,
#8, and #9 – have a relatively higher specificity. Therefore, the boundaries are switched from
horizontal to vertical around the crossover point. At the crossover point, the boundary (#5) can
be either horizontal or vertical as they deliver exactly the same sensitivity-specificity performance.
In short, boundaries #1 to #5 are for high sensitivity while boundaries #5 to #9 are meant for
high specificity.

to opt for nonlinear fusion schemes, which can be implemented by neural networks
such as SVMs or decision based neural networks (DBNNs).10 For the DBNN fusion
classifier, there are two processing phases (c.f. Figure 5(b)): (1) a local expert (lower
layer) uses a Gaussian mixture model to represent the patterns of the positive (or
negative) class; (2) a “gating agent” (upper layer) can then be adopted to fuse the
local scores and reach a Bayesian optimal decision.

4.3. Adjustment of Decision Boundary for ROC Evaluation

Without loss of generality, let us consider the indirect fusion of scores derived
from two preprocessing methods. The ROC can be obtained by extending the
idea introduced in Section 3.2 to multi-dimensional cases. More specifically, s(t)
in Eq. 14 become two-dimensional vectors s(t) = [s1(t) s2(t)]T comprising of
FDA-projected scores derived from two preprocessing methods (see Eq. 9), and
Λ(p) = {π(p)

i , µ
(p)
i , Σ(p)

i }K(p)

i=1 and Λ(n) = {π(n)
i , µ

(n)
i , Σ(n)

i }K(n)

i=1 are 2-D Gaussian
mixture models representing the positive and negative genes, respectively. By sim-
ply counting the number of test vectors s(t) falling on the wrong side of the decision
boundary, we can estimate the precision, specificity, and sensitivity corresponding
to a single point on the ROC curve. The entire spectrum of sensitivity-precision-
specificity and their corresponding decision boundaries (see Figure 8) can then be
obtained by adjusting the value of α in Eq. 14.
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Fig. 8. Illustration of the use of 41 positive test patterns (ribosomal, represented by pink “¤”)
and 200 test patterns (non-ribosomal, represented by green “+”) from the yeast data set. The
decision boundary is produced by a DBNN classifier trained by 80 positive training data and 200
negative training data. The dashed and dashed-dotted curves represents the decision boundaries
for decreasing and increasing decision thresholds α, respectively. The solid-blue line represents the
decision boundary when α = 0 in Eq. 14.

4.4. Which Models to Fuse

It is important to have a good criterion to select proper features to fuse. First of all,
the individual features must by themselves deliver a sound performance. Moreover,
they must offer complementary information. On one hand, fusion of features which
are positively correlated can assure improvement by fusion. On the other hand,
features with strong resemblance may prove to be too redundant to produce a
useful fusion. Fortunately, ROCs provide a very clear indication on when and which
features are most advantageous to fuse. The ROC curves as depicted in Figure 3
show the sensitivity against precision for all the nine coherence models. Indeed,
such ROCs offer an effective tool for selecting candidate models for fusion. For
example, Model (3,1) has a relatively higher sensitivity in the low-precision region
but a relatively lower sensitivity in the high-precision region. In contrast, Model
(1,3) has just the opposite performance. In this case, these two models are truly
complementary to each other and can serve as ideal fusion candidates as far as
sensitivity-precision ROC is concerned.

4.5. Gene Prediction Based on Multi-Modality Fusion

Figure 8 illustrates the test data and the decision boundary created by a DBNN for
the classification of ribosomal and non-ribosomal genes in the yeast’s microarray
data set.5 It was found that a single elliptical basis-function per class is adequate—
this sufficiently simplifies the training phase.

Let us now take a closer look at the cross-validation accuracies in terms of sensi-
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Fig. 9. The sensitivity-precision-specificity results of ribosomal detection supporting the idea of
teaming up the constant-value coherence model with the additive-multiplicative coherent model
for fusion purposes. (a) and (b) fusion of Models (1,3) and (3,1); (c) and (d) fusion of Models (1,1)
and (3,1). In the legend, (m, n) means that coherence models m and n were assigned to genes and
conditions, respectively. The green area represents the region of consistent performance.

tivity, precision, and specificity. Figure 9 illustrates the sensitivity-precision curves
and sensitivity-specificity curves based on various fusion models: (1) direct (feature)
fusion and (2) indirect (FDA or score) fusion. To assure statistically significance,
each curve is based on 50 simulations, each with a different set of training genes. Ev-
idently, the fusion of FDA-projected scores attains the highest performance, which
is followed by the fusion of DBNN scores. The results show that feature fusion
is consistently inferior to other fusion approaches. This may be attributed to the
large feature dimension after feature concatenation. Although the DBNN in fea-
ture fusion considers all features (18 dimensions in this case), it may have difficulty
in modelling the distribution of 18-dimensional vectors, given the limited amount
of positive training vectors. On the other hand, the score fusion and FDA fusion
consider the feature vectors (9 dimensions) derived from individual preprocessing
methods independently, which helps alleviate the difficulty encountered by feature
fusion.
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Fig. 10. The performance of ribosomal detection using all of the 17 conditions in the yeast data set
and the fusion of Models (1,3) and (3,1). (a) Sensitivity vs. precision. (b) Sensitivity vs. specificity.
The green area represents the region of consistent performance.

It is of interest to see the performance when all of the 17 conditions are used
for the FDA projection. Figure 10 shows the ROC of different types of fusion.
A comparison between Figure 10(a) and Figure 9 suggests that when we aim at
achieving high precision, we may opt for using more conditions. On the other hand,
if achieving high sensitivity is the goal, we may instead prefer a selected subset
of conditions. It is not uncommon to have different performance requirements in
different applications, i.e., some applications may need high precision and some
others high sensitivity. Our results suggest that the number of conditions is an
important factor that determines the ROC performance. Therefore, the number of
conditions can be optimized to best serve the purpose of a particular application.

Based on the above gene prediction method, the multi-modality fusion approach
can also be used to expand the row size of a bicluster. For example, the row size
of the ribosomal bicluster was 80 genes in the training set. After gene prediction,
the row size was expanded to (80 + TP + FP), where TP and FP are the numbers
of true-positives and false-positives in the prediction, respectively. Figure 11 shows
the histogram of the expanded row size when the precision is set to be around 70%.
The expansion has to be reduced (or increased) if higher precision (or sensitivity)
is desired.

Relatively speaking, the ribosomal group is considered by us as an “easy case”,
while the molecular activity group, for example, is considered as a “hard case”.
(The latter is however by far not the hardest case we are aware of.) Figure 12
illustrates the performance of detecting the molecular activity gene group. Unlike
the detection of ribosomal, fusion could not achieve dramatic improvement for the
molecular activity group; however, fusion does improve the detection performance
at the region of high precision.

The Matlab programs that produce the results in this paper can be found in the
supplementary website.6
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Fig. 11. Histogram showing the row size of biclusters after fusing the scores of Models (1,3) and
(3,1). The histogram is produced by running the fusion algorithm 200 times, each with a different
set of training and test genes. For each run, the numbers of true-positives and false-positives are
obtained by setting the decision threshold such that precision is closest to 70%.

5. Conclusion

In conclusion, preprocessing models (both symmetric and asymmetric) are found to
be useful for coping with various genotypical co-expression coherence models. The
approach considerably simplifies bicluster analysis. A multi-modality fusion classi-
fier based on a DBNN mixture-of-experts architecture is proposed. The proposed
coherence models and fusion methods have successfully achieved highly discrimi-
nant and accurate classification of known ribosomal gene group (easy case) and
molecular activity gene group (hard case).
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