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ABSTRACT
Synthetic biology aspires to revolutionize the way we con-
struct biological circuits, as it promises fast time-to-market
synthetic systems through part standardization, model ab-
straction, design and process automation. However, the au-
tomated design of synthetic circuits remains an unsolved
problem, despite the increasing number of practitioners in
the field. One reason behind that, is the absence of an ef-
ficient mathematical formulation for the combinatorial op-
timization problem of selecting genes and promoters when
synthesizing the candidate circuits. Here, we propose an
optimization framework that is based on a linear relaxation
of the non-linear optimization problem, which proves to be
a good approximation of the non-linear dynamics present
in biological systems. Further evaluation of the proposed
framework in a real non-linear synthetic circuit (a toggle
switch), and with the use of a mutant promoter library, re-
sulted in a rapid and reproducible convergence to a synthetic
circuit that exhibits the desired characteristics and temporal
expression profiles. This work is a step towards a unifying,
realistic framework for the automated construction of biolog-
ical circuits with desired temporal profiles and user-defined
constraints.

1. INTRODUCTION
When it comes to automated biological circuit design, CAD
tools are still in their infancy despite notable developments
in the field. In this context, the use of mathematical opti-
mization has been very limited [2] and with mixed results,
while the main challenge still remains: how can we develop
algorithms that cope with the combinatorial explosion and
complex models that describe biological behavior? Here, we
introduce a novel optimization formulation for synthetic cir-
cuit design that finds the optimal part configuration, given
a library of biological parts, an objective function (e.g. the
desired temporal profile of the output protein), user-defined
constraints (e.g. circuit size), and an existing topology that
provides connectivity (e.g. gene A must positively regulate

gene B) but not individual parts (e.g. gene A, gene B, regu-
lation strength).The optimization method translates the cir-
cuit design problem into a nonlinear integer programming
formulation that it solves using spatial branch and bound
techniques.

2. METHODS
Linear formulation: For the current analysis, assume a
database of parts that has m promoters and n proteins. We
introduce the following equation to express the concentra-
tion of protein i as a function of the available promoters and
proteins:

dfi
dt

=
n∑

j=1
j !=i

m∑

k=1

ajkyikfj − (di + µ)fi + bi (1)

where the parameter ajk is proportional to the production
rate of protein i if protein j is bound at the promoter k
upstream of gene i. Parameter di captures both the degra-
dation and auto-regulation of protein i. The yik are binary
variables defined as:

yik =






1 If promoter k is upstream
of protein i

0 Otherwise

Furthermore, we can add inducers in the system, by adding
the term −Kinducerfi into equation 1. The solution of the
linear ODE system is given by

Ḟ = AF +B (2)

where the elements of the A matrix are defined as

Aij =

{ ∑m
k=1 ajkyik If i "= j

−di − µ If i = j
(3)

and with F and B given as

F = (f1(t), f2(t), ..., fn(t))
T , B = (b1, b2, ..., bn)

T

Assuming that A is diagonalizable, there exists a matrix
S = (sij), and a diagonal matrix D with its diagonal el-
ements the eigenvalues of the system, i.e. (λ1,λ2, ...,λn).
Then S−1AS = D and thus S−1Ḟ = DS−1F + S−1B.
Substituting G = S−1F and E = S−1B, we end up with
Ġ = DG+ E, which has the following solution:

gi(t) = Cie
λit − Ei

λi
(4)
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As expected, the solution of a linear ODE system is non-
linear, and thus can describe dynamics of basic biological
functions, since the latter are usually expressed with expo-
nential functions. Mapping back to F , and since F = SG
we end up with the solution :

fi(t) =
n∑

j=1

sijgj(t) (5)

Objective function: Our optimization framework will try
to obtain the parts set that minimize the difference between
the desired temporal profile and the actual one. As such,
if fp(t) and f∗

p (t) are the estimated concentration and the
desired concentration of protein p at the time point t, re-
spectively, then our objective function is the following:

Z =
∑

t∈T

(fp(t)− f∗
p (t))

2 (6)

Linear constraints: The user may add additional con-
straints to the optimization system. For example, if a spe-
cific gene i should be included (or conversely, should be ab-
sent) in the design, then we can introduce a binary variable
xi, that will denote the presence or absence of gene i in the
final circuit. In addition, the user may restrict the number
of promoters for any given gene, limit the number of genes
per promoter, or disallow large polycistronic promoters in
the circuit:

m∑

k=1

yik ≤ M1xi ∀i = 1...n (7)

n∑

i=1

yik ≤ M2 ∀k = 1...m (8)

m∑

k=1

yik ≥ xi ∀i = 1...n (9)

Constraints are also in place due to stability issues of the
resulting circuit. In order for the system to have stable dy-
namics, all eigenvalues must be distinct and their real parts
must be negative. This leads to the following constraint:

Re(λi) ≤ −ε and ||λi − λj || ≥ ε ∀i %= j = 1...n (10)

Finally, after the addition of standard diagonalization equa-
tions, normalization of eigenvalue vector space, and the ad-
dition of boundary conditions as constraints on the initial
concentration of each protein i, the concentration of the de-
sired protein is given by:

n∑

j=1

(Cje
λjt − Ej/λj) = fp(t) (11)

Optimization problem : Now that we have defined all
constraints in our system, we can formulate the optimization
problem as solving for variables xi and yik so that

Minimize Z subject to (4), (6)− (11)

This is a mixed integer non-linear programming (MINLP)
problem which can be efficiently solved in practice using
spatial branch & bound (e.g. Couenne [1]).
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Figure 1: Expression profile of the resulting syn-
thetic circuit, with promoters T7 (in upstream of
LacI) and L3 (in upstream of TetR). The desired
profile (input, depicted with blue dots) and actual
profile (cyan line) for the TetR protein is shown.
The temporal profile was split into four phases,
based on changes in the inducer concentrations.
Phase 1: IPTG high, aTc low; Phase 2: IPTG low,
aTc low; Phase 3: IPTG low, aTc higt; Phase 4:
IPTG low, aTc low.

3. RESULTS
To evaluate the capacity of our optimization framework, we
assessed its performance in the case of a toggle switch design
[4]. As an input to our optimization framework, we collected
a mutant library for the TetO and LacO promoter that was
experimentally characterized recently [3]. The values of ajk

are estimated from data in this library and other parame-
ters such as degradation rates and association constants are
chosen from [2]. As shown in figure 1, the system was able
to find a set of parts (promoters T7 and L3, upstream of
LacI and TetR, respectively) that led to a synthetic circuit
that approximates well the desired transient dynamics.We
further simulated these solutions, which resulted to circuits
that also exhibit flip-flop characteristics at various degrees.
From the complete solution space, less than 2% (7 sets) had
this property.
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