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ABSTRACT 
Bacteria are some of the most ubiquitous, simple and fastest 
evolving life forms in the planet, yet even in their case, evolution 
is painstakingly difficult to trace in a laboratory setting. However, 
evolution of microorganisms in controlled and/or accelerated 
settings is crucial to advance our understanding on how various 
behavioral patterns emerge, or to engineer new strains with 
desired proprieties (e.g. resilient strains for recombinant protein or 
bio-fuels production). We present a microbial evolution simulator, 
a tool to study and analyze hypotheses regarding microbial 
evolution dynamics. The simulator employs multi-scale models 
and data structures that capture a whole ecology of interactions 
between the environment, populations, organisms, and their 
respective gene regulatory and biochemical networks. For each 
time point, the evolutionary “fossil record” is recorded in each 
run. This dataset (stored in HDF5 format for scalability) includes 
all environmental and cellular parameters, cellular (division, 
death) and evolutionary events (mutations, Horizontal Gene 
Transfer). This leads to the creation of a coherent dataset that 
could not have been obtained experimentally. To efficiently 
analyze it, we have developed a novel visualization tool that 
projects information in multiple levels (population, phylogeny, 
networks, and phenotypes). Additionally, we present some of the 
unique insights in microbial evolution that were possible through 
simulations in TeraGrid, and we describe further steps to address 
scalability issues for populations beyond 32,000 cells. 

Categories and Subject Descriptors 
D.1.3 [Software] Concurrent Programming – Distributed 
programming; E.1 [Data] Data Structures – Graphs and 
networks; I.2.11 [Artificial Intelligence] Distributed Artificial 
Intelligence – Multiagent systems, Intelligent agents; I.6.0 
[Simulation And Modeling] – General; J.3 [Life and Medical 
Sciences] – Biology and genetics.  

General Terms 
Experimentation, Design, Algorithms, Performance. 

Keywords 
Microbial Evolution, Biological Networks, Simulation, 
Visualization, Multi-scale Modeling, High Performance 
Computing.  

1. INTRODUCTION: BIOLOGICAL 
CHALLANGE 
All life forms, from microbes to higher vertebrates, are constantly 
subjected to evolutionary processes that lead to adaptation and 
phenotypic variation. Whether evolutionary forces lead to new 
and rapidly evolving species, as in the case of adaptive radiation, 
or are responsible for phenotypic divergence within a species, the 
underlying mechanism by which complex behavior arises remains 
the same: gradual accumulation of selected genetic mutations and 
epigenetic changes gives rise to a myriad of anatomical, 
physiological and behavioral expressions. Although the notion 
that evolution, niche adaptation, and phenotypic variation leads to 
“endless forms most beautiful” can be traced back to Darwin [1], 
it was only in the last decades that with the advent of high-
throughput sequencing and profiling techniques, we were able to 
understand the mechanisms by which mutations 
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Figure 1. Cartoon in the background shows a model of a cell population. Examples of possible cell events include: division, 

apoptosis followed by a release of DNA fragments into the environment, and two types of Lateral Gene Transfer: transformation 
and conjugation. Inserts demonstrate important details of the cell model. From top-left clockwise: (i) “triplet” – mRNA, protein, 
and modified protein model the central dogma of molecular biology; (ii) gene regulatory network of the cell consists of “triplets”; 

nodes activate or inhibit each other, the network mutates over time to adopt to the external signals from the environment; (iii) 
examples of network mutation events: insertion, deletion, mild and strong mutation; (iv) probability of expression of a particular 
molecule is defined by the sum of regulations by other nodes, each described with a sigmoid function; three parameters are used 

for each activation or inhibition: regulation strength, midpoint and slope for the sigmoid action function. 

give rise to novel traits. Remarkably, it has been shown that even 
single mutations, such as nucleotide polymorphisms, can yield 
phenotypes that are significantly dissimilar [2]. The same holds 
for the rewiring of the gene regulatory and biochemical networks, 
as they were found to exhibit a high degree of evolvability [3, 4], 
yet preserve phenotypic robustness when under stabilizing 
selection and in the presence of disrupting mutations [5, 6]. 
A challenging task is to identify the environmental and organism-
specific characteristics that allow the rapid adaptation from past to 
new environments. We present a multi-scale simulation 
framework which helps to investigate various hypotheses in 
microbial evolution before they can be tested in the laboratory. 
This includes the microbial evolution simulator and the 
visualization tool, which will be described in the next sections.     

2. BIOLOGICAL MODEL 
EVE (Evolution in Variable Environments) simulator employs 
abstract, multi-scale models of basic sub-cellular phenomena 
related to expression (transcription, translation, protein 

modification, degradation, etc.), evolution (mutation, gene 
duplication, gene deletion, etc.), network regulation and other 
evolutionary processes such as natural selection (Figure 1). The 
serial code  has been used successfully in the past to generate 
hypotheses related to regulatory network evolution in nutrient-
limited microbial communities [7], and it has been documented 
elsewhere [8]. The code was recently parallelized to scale to 
populations of at least 32,000 cells. Further optimization is an 
ongoing project. 

A population is composed of a fixed number of organisms. Each 
cell is described by its gene regulatory and biochemical network 
with abstract molecular representations. The network comprises of 
a number of “triplets” (three nodes): Gene/mRNA, Protein, and 
Modified Protein (Figure 1, top left panel). The 
Promoter/Gene/RNA node captures gene regulation and 
transcription, while the Protein and Modified Protein nodes 
capture translation and post-translational modification 
(acetylation, phosphorylation, etc.), respectively. Therefore 
triplets capture the “central dogma” of molecular biology. Each 



organism has its own distinct gene regulatory and biochemical 
network (i.e. a collection of various triplets and weighted 
regulatory edges) that can be depicted as a directed weighted 
graph (Figure 1, top right panel). 

The probability of molecule creation at each node and at each 
time step is a function of the regulatory effect of other nodes 
(activation or inhibitions) on that specific node, and the 
availability of substrate molecules (Figure 1, bottom left panel). 
We model the molecule production probability as a two-level 
sigmoid function that captures a threshold and saturation effects 
for any given regulator and for the expression of any given node: 

 

where the sigmoid function Fij describes the regulatory effect of 
node j on node i: 

 
where wij is the regulatory matrix element (i.e. the strength and 
direction that exerts node j to node i), vj is the value of node j, mi 
and si the midpoint and slope of the target-specific sigmoid 
function,  and  the midpoint and slope of the regulator 
specific sigmoid function, n is number of regulating nodes, basali 
is the basal expression parameter.  

In addition to its regulatory network, each organism has a unique 
metabolic pathway which, when expressed, can metabolize 
available resources in the environment. 

Mutational events (e.g. transcription rate changes, node 
duplications, node deletions, etc.) occur stochastically at any time 
point and on any node, thus changing its internal network and 
potentially its phenotype, which in this context is synonymous to 
the regulatory and metabolic pathway expression (possible 
mutational events are shown in Figure 1, bottom right panel). The 
production and destruction of any molecule has an energy cost, as 
does the maintenance of molecular species (nodes). Organisms 
cannot directly sense the presence of resources; however they can 
potentially infer their future presence, if they are able to process 
information from various environmental signals through 
biochemical and regulatory interactions. Once an organism 
reaches a certain energy level, it undergoes division, increasing its 
genotype representation in the population, while its progeny 
replaces an existing organism so that the fixed size of the 
population is preserved (probability of an organism being replaced 
is inversely proportional to its energy level in our model). 

For our simulations here, we used environments where two 
signals, s1 and s2, carry information regarding the presence of 
nutrients in the environment (Figure 2). The I/O characteristic of 
environments A and B is given by the logic Nutrients Presence 
[A] = Delayed (s1 AND NOT(s2)) and Nutrients Presence [B] = 
Delayed (NOT(s1) AND s2), respectively. This logic produces a 
single peak when s1 and s2 have the temporal characteristics of the 
waveform presented in Figure 2. Environments that encode an 
AND, OR and XOR gate were also used. The latter is also the 
environment with the most complex correlation structure, due to 

 
Figure 2. Environments: Environmental signals (green) and 
nutrient abundance for five environments (bottom to top: 
AND, OR, A, B, XOR) is a delayed function of two signals. 

One epoch is shown for each environment, which consists of 
4,500 time units. 

the fact that the XOR gate is not linearly separable. In addition, 
we introduced a delay in the signal/nutrient correlation to further 
increase the evolutionary complexity of the environment, as 
organisms now have to account for it through the topology and 
dynamics of the respective underlying networks. Similar 
observations were obtained with the absence of delay, although 
evolution was faster and resulted in simpler underlying networks.  

To assess the fitness level of each organism, we report the Pearson 
correlation between nutrient abundance and response protein 
expression level over a predefined interval of time, which we call 
an “epoch” (4,500 time units in our simulations). We stress that 
this similarity measure is used for visualization purposes as a 
proxy to each organism’s fitness, and at no point participates or 
interferes with the selection or evolutionary trajectory of cells 
during the simulation. High correlation between nutrients and 
response protein concentration implies an efficient underlying 
mechanism to metabolize nutrients, as activation of this costly 
pathway takes place only when it confers an advantage to the 
organism. 

A general structure of the serial version of the code is as follows: 
Input: population and environment  
For (each Epoch) 
 For (each Time_step) 
  For (each Cell) 
    Update_cell()  
    if ( Energy == 0 ) 
      Replace_cell() // new random cell 
    if ( Energy > Division_threshold )  
      // dividing cell replaces the weakest 
      Cell_divide( this-->weakest)  
  Output: Phylogenetic information  
 Output: Cell fossil history and statistics 
 

The model has been extended to incorporate Horizontal Gene 
Transfer in addition to the other cellular (transcription, translation, 
modification, growth, death, etc.) and evolutionary (mutation and 
natural selection) processes. There are three mechanisms for 
Horizontal Gene Transfer (HGT) by which bacteria can acquire 
external DNA: transformation, conjugation and transduction (e.g. 



review [9]), which we capture through a probabilistic pair-wise 
model, where an HGT event between any two organisms in the 
population, or one organism and a genomic “fragment” (e.g. 
naked DNA present in the solution) occurs with a fixed 
probability.  
In our model a gene and its products are represented by triplets, 
and therefore HGT can be treated as inter-cellular transfer of one 
or more triplets. For every HGT event a random subset of triplets 
(sub-network) is copied from the donor cell and inserted into the 
regulatory network of the recipient cell. Original regulation of the 
metabolic pathway RP0 and triplet T0 by the transferred sub-
network is preserved. Upon a parameter sweep for HGT 
frequency from fully evolved XOR networks to non-evolved 
organisms, we select an “optimal frequency” 5·10-5 (per cell, per 
time step) of HGT events. It is in the upper range of the 
experimentally observed values, and consistent with the rest of 
biological and evolutionary model.  
Distribution of the fragment sizes in HGT events may vary greatly 
in the bacterial world and depends on the type of the transfer and 
the experimental conditions. However in all three types of HGT 
the maximum size of the transferred DNA is limited by different 
parameters: in transduction by the capacity of the viral capsid, in 
conjugation by the time two organisms stay connected by a pilus, 
and in transformation by the stability of the naked DNA in the 
environment. In general the probability of transfering small 
fragments of meaningful DNA is higher than of larger ones.  In 
our model triplets with preserved regulatory network are 
transferred from one organism to another, and the fragment size 
for an established HGT event is chosen using a probability density 
function as a normalized sigmoid function: 

, 

where n is the fragment size in triplets, m and s are the middle 
point and slope of the probability density function, respectively; 
the denominator is a normalization coefficient. In most cases s=m 
was used throughout the paper, and therefore 67% of all 
transferred fragments were not larger than m triplets. The default 
parameters for HGT were set to s=m=5, which results in the 
expectation value for the size of HGT fragments equal to 4 triplets 
and slightly smaller than the average size of the minimal network 
(which is usually 5 to 7 triplets). 
To elucidate the modus operandi of each evolved network, which 
may have hundreds of nodes and links, we developed the 
following heuristic to reduce the network to its “minimal” form, 
in which only essential nodes and links remain. In this iterative 
procedure, the fitness effect of a link is assessed after its 
severance. The link is permanently removed if it is deemed non-
essential (less than 5% fitness change). The procedure is repeated 
until the network cannot be reduced any further. Due to the 
stochastic nature of the expression model, fitness of a cell can 
vary as much as 30% between sequential epochs. For that reason 
the average fitness is evaluated over 10 epochs to reduce that 
variation to 2%. Multiples iterations over all edges with a tight 
removal threshold ensure gradual and stable reduction on the 
network to a near-optimal minimal sub-network.  

 

Figure 3. Parallel implementation of simulation framework. 
Diagram shows data distribution between MPI processes: cell 
population is divided to run on N MPI processes with n cells 

per process (total population size n·N). 

3. PARALLEL FRAMEWORK 
The code is based on a stochastic simulation algorithm where 
mutational events occur randomly based on predefined probability 
distributions. We use an MPI model to distribute a population of 
cells to a set MPI processes (Figure 3). At every time step 
organisms mutate with predefined probabilities and node values 
are updated using the stochastic expression model described 
above; cells which exhausted their energy are removed from the 
population and replaced with new random cells (to start from a 
new point on the fitness landscape); cells which reach an energy 
above the division threshold are duplicated, and   

 
Figure 4 Correlation of the computational time (µsec per 
organism, per time step) with the square of the number of 

nodes in its gene regulatory and biochemical network. 



 
Figure 5. (a) Strong scaling for a population 256 cells. Code 
scales well for loads of 8 cells/core or more. (b) Weak scaling 

up to 8192 cells.  
 

daughter cells replace cell with low energies to maintain a 
constant population size. 
The simulations described here are of unprecedented scale and 
scope, with integrated models of the environment, population, 
organism, biological network and molecular species. This level of 
detail is necessary in order to model phenomena that transcend 
multiple scales, as in the case of Horizontal Gene Transfer. We 
had to develop efficient algorithms for HPC communication, 
balancing and process migration, as cell death and division creates 
unforeseen loads to the various computational cores. In addition, 
as organisms adapt and evolve, the complexity of their internal 
networks constantly increases, and with that the need for 
computational power. Cells with larger networks can be more 
efficient in nutrients metabolism and therefore grow and divide 
faster in real time.  On the contrary, the computational time for 
cells with extended genomes is always larger, and scales with 
O(K2), where K is the number of nodes within the cellular 
network (Figure 4). This calls for a synchronization point at each 
time-point during our simulations, which may lead to poor 
scalability due to load imbalance. 
Initially, cells were distributed to MPI processes with one cell per 
process per computational core; MPI processes were synchronized 
at the end of each time step. However, in this initial 
implementation the imbalance was a problem even for a small 
number of cells, and the code did not scale beyond 64 cores. The 
model was improved when a group of cells were assigned to each 
MPI process, because of averaging effects (i.e. the average 
computational load was similar among processes). Strong scaling 
results (Figure 5a) showed that for our problem size, a load of 8 
cells per MPI process (per core) was ideal as the imbalance 
between processes was minimal. 
One of the evolutionary trajectories for evolving XOR population 
is shown in Figure 6. Each step in average and maximum fitness 

 
Figure 6. Population evolving in XOR environment. (A) 

Maximum (red) and average (black) population fitness as a 
function of time (B) Average computational time (µsec.) per 

cell per time step (4500 time steps per epoch) is shown in red. 
Black shade shows the variation (the standard deviation) in 

the computational time between cells in this evolving 
population. 

 

 
Figure 7. Dynamic MPI load balancing. Top: in an evolving 
population, computational time for cells varies with the cell 
network size. This results in idle cores (dashed lines) with 

smaller (i.e. fast-to-compute) cells, as they synchronize at each 
time-point. Each bar segment depicts the computational time 
of a single cell, and multiple cells, of various complexities, are 
assigned to a single core. The maximum of these loads (here, 

the load of core N) defines the speed of the simulation. 
Bottom: with the addition of a dynamic load balancer, cells 

are redistributed to minimize idling time. 



 
Figure 8. Initial design for multiscale visualization. Upper left panel shows a population clustered according to cell 

genotype/phenotype (network similarity). In the lower left, the phylogenetic tree is shown divided into clusters based on network 
similarity. At the upper right, the cellular network diagram for one of the cells is displayed. At the lower right, the expression 

profiles for the selected cell are displayed both as a heatmap and overlapping line plots. 
strongly beneficiary mutation. Averaged computational time for 
this population is shown in Figure 6B in red. As cells adapt to a 
XOR environment, gene regulatory and biochemical network of 
each organism increases, and therefore computational time grows 
as well. Interestingly, standard deviation of computational time 
(black shade in Figure 6B) drops after each jump in fitness. 
Indeed, after one of the cells acquires a strongly beneficial 
mutation, its descendants quickly outcompete the rest of the 
population. Resulting population becomes much more uniform, 
than it was before that mutation, and computational time becomes 
almost identical for all cells in population. As offsprings 
accumulate additional mutations, standard deviation in 
computational time grows until the next fixation of a strongly 
beneficial mutation. Rare strong beneficial mutations drive 
evolution; at the same time they are completely unpredictable. 
This unpredictability could pose a serious challenge for the MPI 
load balancer, but these events do not increase the load imbalance, 
and in general almost always decrease it. The rest of the 
population dynamics is quite continuous and therefore can be 
predicted well by the load balancer described below. 
Next, we further extended our model by implementing a hybrid 
MPI/OpenMP solution: each MPI process is executed on a multi-
core computational node; cells assigned to each MPI process are 
stored in the node’s shared memory; computational cycles for 
each cell update in an MPI process are dynamically distributed 
between available cores. Dynamic cell distribution is carried out 
by creating a pool of cycles and cores, and aims to eliminate the 
idling time during communication. Weak and strong scaling 
shows scalability up to 8192 cells with near-linear speedup 
(Figure 5b). 
Finally, by adding dynamic MPI load balancing (Figure 7), 
computational time is monitored for each cell and is used to 
redistribute cells between MPI processes in order to have a more 
balanced load between cores. The cell growth rate is used to 
predict cell division/death events. Although the current load-
balancing implementation is a distributed process, a scalable 
hierarchical implementation can further increase the performance 
of the simulator. 

We have integrated HDF5 into the EVE simulator as a default 
format for the “fossil record” of microbial evolution. HDF5 is a 
library used to store data in an efficient, extensible format that is 
easily accessible through various APIs. HDF5 uses b-tree indexes 
to quickly access, allowing for fast random access. The HDF5 
format stores the data in a hierarchical, or filesystem-like, 
structure, as opposed to the relational approach common in most 
databases. An HDF5 system can span multiple physical files, or 
exist in a single file.  HDF5 is used in EVE to save and load the 
cell objects. Within each epoch every cell in population at that 
time point is represented as an HDF5 group. 
 

4. MULTI-SCALE VISUALIZATION 
One of the problems encountered during the analysis of the 
simulation was the enormous amount of data generated, and the 
lack of existing visualization tools that could handle the 
relationships between the various types of data produced by the 
simulator. A multi-scale visualization tool was designed 
specifically for analysis of simulated evolutionary data. 
 For effective analysis of the data produced during a simulation 
run, there are four different scales that need to be considered: 
1. Phylogenetic information: When tracking how new traits 
evolve in the population, it is important to be able to determine 
the relationships between cells at different timesteps. For this 
purpose, we display a simple node-link diagram of the 
phylogenetic tree, using the FM3 method for graph layout, as it is 
shown in the lower left corner of Figure 8 and 9. 
2. Population information: Some information, such as the 
development of multiple behavioral groups, requires the analysis 
of the living population at a moment in time. The left panel of 
Figure 8 is an example of such a snapshot. 
3. Cellular network information: In order to determine the 
mechanism by which a cell process environmental information, it 
is necessary to view the cell's gene regulatory and biochemical 
network directly, as in the central panel of Figure 9. 



 
Figure 9. Multiscale visualization showing phylogenetic tree 
with ancestors of the selected cell highlighted in blue (lower 

left), population statistics for the simulation over time (upper 
left/top), and cellular network diagram for a selected cell 

(lower right). This view also allows the user to trace the fitness 
trajectory, zoom in, and trace mutations in underlying 

networks. 
4. Expression profiles: Although the cellular network diagram 
shows how different nodes within the simulated cell influence 
each other, it provides no insight into the temporal dynamics of 
expression levels of individual nodes. For this purpose, a 
microarray-like heatmap or line plot is used as in the lower right 
panel of Figure 8. 
For effective analysis, the visualization tool needs to be able to 
show any of the above four levels individually, and provide the 
user with the ability to navigate through the different scales being 
visualized. From the phylogenetic view, the user is able to either 
select an individual cell to see its cellular network, or the user can 
select a group of cells to construct a population snapshot. 
Currently, the visualization tool runs on a local machine after the 
simulation data has been generated, but the next iteration of the 
tool is intended to run in-situ with the simulation. This would also 
allow for an on-the-fly visualization to be generated for analysis 
during the simulation run. This could then be used to control the 

simulation in progress, to save more data in key portions of the 
simulation or to filter out unnecessary data to improve simulation 
speed and to lower storage requirements. 

5. APPLICATION: ACCELERATED 
MICROBIAL EVOLUTION 
Recent theoretical predictions [11-12] suggest that evolution 
generalizes to new environments through facilitated variation, a 
process in which genetic changes are channeled in useful 
phenotypic directions. Here we hypothesize that evolution can be 
accelerated by exposing evolving populations in similar, 
correlated environments of increasing complexity, and we assess 
whether Horizontal Gene Transfer (HGT) further accelerates 
evolution in such settings (these results were published in [12]). 
When random populations are exposed directly to the XOR 
environment, more than 4,000 epochs are needed to evolve the 
delayed XOR function (Table 1). In contrast, populations evolve 
faster in environments of lower complexity, such as the 
environments A and B. Remarkably, if we sample equal amounts 
of cells from A and B and expose the new population in the 
complex environment AB with all other parameters being equal 
(size of population, average nutrient concentration, etc.), XOR 
phenotypes of high fitness appear surprisingly fast (Table 1). This 
effect is even more pronounced in the presence of HGT, where the 
fittest phenotype arises twice as fast as those without HGT 
present. Analysis of individual simulation runs results in similar 
observations, with all experiments leading to phenotypes of 
increased fitness in the presence of HGT. 
Detailed statistics of the evolution probability and speed are 
shown in Table 1. In “single-step” evolution (un-evolved  XOR) 
only 18 of 32 (56%) experiments were successful and terminated 
with an evolved XOR population (after 4,000 epochs). Success 
probability of the “dual-step” adaptation process was estimated as 
a product of “single-step” probabilities and equals 91% and 82% 
percent with and without HGT, respectively. HGT accelerates 
emergence of the combined phenotype in {A, B} mixed 
populations by a factor of 1.7. However the probability and the 
speed of the phenotypic refinement for fitness levels above 0.9 is 
less affected by HGT relative to the initial emergence of the 
phenotype above the 0.75 threshold (note that any phenotype with 
0.75 Pearson correlation between metabolic pathway expression  

Table 1. Rate of adaptation a complex XOR environment in different experimental scenarios. The probability and the speed of 
phenotype emergence are shown for two fitness thresholds 0.75 (evolved organism) and 0.90 (refined evolved organism). Average 

speed is the average epoch number at which maximum fitness surpasses the threshold. 
 Emergence of the organism with fitness w 
 w>0.75 w>0.90 
 Success Rate Average speed, epochs Success Rate Average speed, epochs 
Un-evolved  XOR 18/32 2485 15/32 2489 
Un-evolved  OR 29/32 1179 13/32 >4,000 
OR  XOR 30/32 210 5/32 2093 
Acceleration by stepwise adaptation  1.8 –  
Un-evolved  A 30/32 1043 29/32 1067 
Un-evolved  B 31/32 1217 31/32 1319 
{A & B}  XOR 58/64 234 47/64 448 
Acceleration by stepwise adaptation 1.7 1.4 
{A & B}  XOR + HGT 64/64 138 48/64 406 
Acceleration by HGT 1.7 1.1 
   



and nutrients exhibits the XOR I/O characteristic). This is to be 
expected, since subsequent fine-tuning is due to mutations, and 
not insertion of new functional fragments from other organisms. 
Evolution through a single environment of intermediate 
complexity (un-evolved  OR  XOR) accelerates the evolution 
of a XOR phenotype by a factor 1.8, but with a lower probability 
of highly fit cells to appear in the final population (only in 5 out of 
32 experiments, cells with fitness higher than w>0.90 emerged). 
More details on the effect of HGT on evolution can be found in 
Reference [12]; the work on guided/accelerated evolution is 
ongoing and will be published elsewhere. 
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