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ABSTRACT: Mathematical modeling and numerical simu-
lation are crucial to support design decisions in synthetic
biology. Accurate estimation of parameter values is key, as
direct experimental measurements are difficult and time-
consuming. Insufficient data, incompatible measurements,
and specialized models that lack universal parameters make
this task challenging. Here, we have created a database
(PAMDB) that integrates data from 135 publications that
contain 118 circuits and 165 genetic parts of the bacterium
Escherichia coli. We used a succinct, universal model
formulation to describe the part behavior in each circuit. We
introduce a constrained consensus inference method that was
used to infer the value of the model parameters and evaluated its performance through cross-validation in a benchmark of 23
circuits. We discuss these results and summarize the challenges in data integration and parameter inference. This work provides a
resource and a methodology that can be used as a point of reference for synthetic circuit modeling.

KEYWORDS: parameter estimation, data integration, parameter inference, gene circuit, mathematical model

Mathematical modeling and numerical simulation are
crucial to support design decisions in synthetic

biology.1−3 For the models to be predictive rather than
descriptive, it is important that the key processes are captured
in the model and the modeling parameters are accurate enough
so that the simulation outcome reflects reality. Currently, there is
a plethora of models, most of them built to support experimental
work, which are fitted to describe the observed data. Similarly,
although some parameters are common, many are not, which
makes interoperability difficult or impossible. Given the cost in
time and expenses to experimentally measure them, parameter
inference and easy access to a parameter repository for parts is
important to move the field forward.4

Table 1 summarizes the current databases and inventories
related to synthetic biology that are relevant for computational
modeling. In addition to these efforts, there is a current need for a
resource that stores information regarding parts, modules, and
circuits together with categorized metadata.5 Incorporating
parameter values in a way that can be imported to a
computational model and used for simulation is both useful
and desired.6 Normalization and standarization of the circuit,
part, and parameter measurements is a formidable challenge due
to the diversity of instruments, techniques, reporting guidelines,
and units used.7,8

For the parameter inference problem, numerous approaches
have been proposed over the years,9−12 with reviews covering
methods from all relevant fields.13−16 Common approaches
include fitting a single system to estimate the model parameters,
or fitting parameters on multiple systems sequentially by

propagating parameter values inferred at each step.17−20

However, in most cases this estimation is inaccurate due to the
many degrees of freedom, the lack of training data, and the
existence of many local optima in the solution space. As an
example, consider the system shown in Figure 1. In that example,
two different parameter value sets have identical likelihood with
respect to explaining the observed experimental data (Figure
1E), despite the fact that their inferred parameter values have an
order of magnitude difference. In contrast, when the same
parameter value combinations are used to predict the behavior of
another circuit, as in Figure 1F, the respective simulations yield
substantially different results. Model sloppiness, a phenomenon
where a change in one parameter can be compensated by changes
in other parameters with the output remaining the same,21,22 is
one of the main reasons behind this behavior. Noise and
measurement errors can further reduce the accuracy of inferred
parameter values, hence decreasing the predictive performance
of the model.
To address these challenges, we resort to a data-driven

approach in which available published data from circuits with
shared parts are used to further constrain the inference
procedure. Figure 2 illustrates our approach. First, we performed
literature curation to build a database that contains the
architecture and the dynamics (i.e., input−output data set) of
each published circuit. Then, we built a model for each circuit, by
using a consistent minimal set of universal functions that can
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describe regulatory and other biological behavior (see Methods).
If a part is used in two or more circuits, then its parameters will
appear in their respective models. This overlap of parameters
with circuit models and the simultaneous parameter optimization
during the training phase leads to additional constraints, which
reduces the parameter space and hence the likelihood of
overfitting and sloppiness effects.

To make available our curation and parameter inference
results, we constructed the Parts and Modules Database
(PAMDB), a database for quantitative characterization of parts
and modules in synthetic biology. In this first version, PAMDB
contains 135 publications, 165 parts, and the characterization
data of 118 circuits. We also evaluated our parameter inference
approach with a benchmark that combines the data of three

Table 1. A Comparison between Our Database PAMDB and Related Inventories in Synthetic Biologya

system-level experimental data measured or inferred parameters

database available machine readable formatb available machine readable formatb universal model no. of genes/parts no. of publications

part registry yes no yes no no >20000 −
JBEI-ICE yes no no − no 2302 83
virtual part no − no − no 3015 N/A
SEVA no − no − no 185 N/A
Addgene no − no − no >45000 N/A
BioNumber no − yes yes no − >1000
BioModels no − yes yes no − 1483c

PAMDB yes yes yes yes yes 165 45
aThese inventories include part registry,43 JBEI-ICE,44 virtual part,45 SEVA,46 Addgene,47 BioNumber,48 BioModels,49 and PAMDB. System-level
experimental data from experiments do not measure any parameter directly (illustrated in Figure S1). bData that can be directly downloaded and
serve as an input to modeling tools (not the case for which there is no API, numerical values are mixed with text in a nonstructured format, or data
are stored in images). “−” corresponds to “not applicable”; “N/A” corresponds to “not available”. cNumber of curated models.

Figure 1. An illustrative example on a sloppy model. (A) The architecture of the circuit pOR20 from ref 20 that was used to characterize the tetR-Ptet
system. (B) A model from ref 20 with two equations that capture the dynamics of the tetR-Ptet system. (C) The relationship between aTc and tetR (eq
E1) with two different values of Kd, with the other parameters having the same value (α1 = 1, n = 1) in both cases. (D) Relationship between tetR and
YFP (eq E2) with two different values ofK2, with the other parameters having the same value (α2 =K1 = 350) in both cases. (E) Two different parameter
value combinations that can fit with the experimental data from ref 20 although they have different intermediate relationships as depicted in panels C and
D. (F) Two parameter value combinations from panel E lead to two different predictions for the circuit pOR20* that is the same as pOR20 with the
exception of the constitutive promoter J23117 being replaced by a weaker promoter J23112.
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common regulation systems, namely pLAC, pTET, and pBAD.
We discuss the challenges of the problem of integrating and
mining quantitative data for synthetic biology and propose
approaches to address these challenges.

■ RESULTS

PAMDB: A Quantitative Database for Parts and
Modules. Database Organization. At the conceptual level,
PAMDB contains seven entity classes or tables (Figure 3A). The
publication class is the central class that organizes information for
any given specific publication. Each publication entity contains a
list of parts, plasmids, strains, media, and general experiment
settings. Each of those elements has its own class in the database,
where pertinent information is stored and queried. For instance,
the media class contains the supplemental chemical components
for each medium label. In addition to the curated data and
metadata, PAMDB stores structured information related to
model parameters and simulations. An example of a database
entry is shown in Figure 3B.
Database Content. We curated 135 publications (see

Methods) that contained gene circuits for E. coli with complete
information about both the sequence and the characterization
data. For parameter inference, to avoid introducing a complex
model with many not well-constrained parameters, we limited
our model to apply for all circuits with steady state character-
ization and without feed-back loops, protein−protein inter-
actions, RNA−RNA interactions, metabolic interactions,
recombination, or cell−cell communication; 45 of the 135
publications contained circuits that adhere to those specifica-
tions. In total, the current PAMDB version contains 165 parts,
118 experiments, and 26 strains. These experiments contain 538
data points. For the inferred data, 239 parameter values were
included. The content of the database was summarized in Table
2.
Parameter Inference with PAMDB. There are two

methodological advances in PAMDB that allow parameter

inference to be performed in a cohesive manner. First, we
adopted a succinct universal model for all circuit components. The
model does not capture each process in detail, but it allowsmodel
training with small sample sizes. Second, we developed a new
parameter inference method that can best be described as
constrained simultaneous f itting tailored for synthetic gene circuits.
In contrast to methods that train a model for each circuit
independently (independent f itting) or sequentially, by fitting
independently each circuit and propagating parameter values to
circuits with overlapping parameters (sequential f itting), this
method solves the optimization problem of fitting all parameters
simultaneously (see Methods). To create a benchmark for these
methods, we extracted circuits with promoters that were either
constitutive or variants of the pLAC, pTET, and pBAD
promoters. This resulted to a collection of 35 circuits, 38 genetic
parts (promoter, ribosomal binding site, coding region), and 169

Figure 2. An overview of our proposed approach.

Table 2. A Summary of the Content of PAMDB

description quantity

number of publications 135
with curated data 45

number of plasmids 136
number of parts 165

promoter 38
RBS 42
CDS 34
terminator 8
origin 11
antibiotic resistance 5
composite part 27

number of strains 26
number of experiments 118

curve 94
single data point 24

number of data points 538
number of parameters 239
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data points. We applied the universal modeling framework with
58 parameters for all circuits and their parts.
Uncertainty Reduction through Data Integration. First, we

assess what benefits, if any, are conferred by data integration. To

evaluate improvements due to the data integration, we calculated
the confidence intervals (CI) of the predicted parameters for all
circuits by either with(simultaneous fitting) or without
(independent fitting) data integration (Figure S3). From the

Figure 3. (A) An overview on the design of PAMDB where the blue color represents the curated data and the orange color represents the inferred data.
(B) An example of a representative publication.50

Figure 4. A comparison between the simultaneous fitting approach and the sequential fitting approach on the leave-one-circuit-out cross-validation
(LOCOCV)mean absolute percentage error (MAPE) of the 23 circuits in the benchmark. Inset plots: simulated vs experimental data for all 35 circuits.
Note that for the inset plots, all data sets were used.
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58 parameters, 21 of them (36%) had a confidence interval more
than 1 order of magnitude around their value, hence could not be
adequately constrained. The largest uncertainty on parameter
values was observed in basal promoter activity, followed by TF
binding activity, RBS, and promoter strength. In 47 out of the 58
cases measured (81%), the CI of the prediction for the parameter
values was reduced by an average of 1 order of magnitude (0.97±
0.18; Figure S3). The uncertainty reduction was most profound
in the parameters that were associated in promoter strength,
which also had the largest coverage in the data set. Additionally,
there was a positive correlation between the number of models
covering a specific parameter and its uncertainty reduction as
measured in its CI (Figure S3 inset).
Simultaneous vs Sequential Fitting. In synthetic biology,

sequential fitting is the method of choice.19,23 We evaluated the
sequential and simultaneous fitting on the benchmark data set
applying both on the universal model. Strikingly, there is a 46%
increase on the correlation coefficient between simulated and
actual circuit measurements on all 35 circuits of the benchmark
when simultaneous fitting is used (Figure 4, inset plot; R2 = 0.95
and 0.65 for simultaneous and sequential fitting, respectively).
We also performed leave-one-circuit-out cross-validation
(LOCO CV), where we estimated the parameter values of a
single circuit by using the data from all other circuits. The
method could only be applied in 23 out of the 35 circuits in our
benchmark, since all inferred parameters should be present in the
training data set. As shown in Figure 4, simultaneous fitting had a
better performance in 17 out of the 23 circuits measured bymean
absolute percent error (MAPE). We also used another two
metrics, the normalized RMSD and the RMSPE (see Methods),
which are all in agreement (Figures S3 and S5).
Performance Impact of the Universal Model. A universal

model is less complex, usually more phenomenological than
mechanistic and potentially less accurate than a specialized
model that is tailored for any given circuit. If experimental
measurements allow for the latter, then it is likely that it will
perform better. Of course parts are rarely well-characterized and
parameter data are scarce, a fact that necessitates the adoption of
an universal model if we aspire to perform parameter inference
from a collection of circuits. To evaluate its impact on
performance, we applied simultaneous fitting with either the
universal model or with the specialized models of Moon et al.19

or Ellis et al.23, respectively. The comparison on cross-validation
results with the MAPE metric (Figure S6) showed that the
universal model was slightly better than the Ellis specialized
model (16 of 23 cases) and performed as well as the Moon
specialized model (each of them outperformed 11 of 23 cases).
The results are similar when the normalized RMSD metric is
used (Figure S7), with the universal model outperforming the
Ellis model (15 out of 23 cases) and being slightly worse than the
Moon model (14 out of 23 cases). To summarize, our results
show that any decrease in the performance due to using a
universal model is either absent or small. As the database grows,
re-examining this point with a larger benchmark and more
specialized models can provide a baseline for model improve-
ment.

■ DISCUSSION
Model parameter estimation is a well-known problem in
engineering24,25 and computational biology.9,13,14 So far,
parameter inference has been applied in a circuit-by-circuit
analysis which has been more descriptive than predictive. In this
work, we propose a method which is based on three critical

points: the adoption of a universal, succinct model for describing
key circuit dynamics; the integration and mining of all published
data sets for circuits with overlapping parameters for restricting
the solution space; and the application of simultaneous
parameter inference from all available data. Our results show
that by doing so, we achieve a reduction in both the parameter
estimation uncertainty and the resulting error in circuit behavior
prediction.
We are still facing several challenges when it comes to

extracting parameter values and training models from published
data. In our analysis we struggled with lack of consistent data
reporting methodology and data types. In most cases, gene
expression was reported in arbitrary units without a reference,
which forced us to use a scaling factor for each data set that we
estimated together with other model parameters. The
assumption here is that arbitrary units are a linear function of
relative units and that the scaling factor should have a value that
maximizes the likelihood of the fitted model. While these are
reasonable assumptions necessary to move forward with data
integration, it remains to be seen if they hold. In many cases, the
associated metadata were missing, which creates training issues
during parameter inference. Even when the data accompanying a
publication are consistent, they reflect measurements for a
specific environmental setting (strain, medium, etc.). Given that
the number of possible settings are infinite and changing even
one abiotic factor in the environment can have serious
repercussions to gene expression and cellular behavior, the
challenge is how to extrapolate from one condition into the other
in a way that is predictive. Table 3 summarizes these and other
challenges and lists our recommendations on how to move the
field forward in this direction.
Given the biological complexity and the degrees of freedom

that are present in biological design, it is practically impossible to
avoid model sloppiness and overfitting. We can, however, reduce
their undesired effects by leveraging data-driven techniques as
the one presented in this paper. The synthetic biology
community has yet to adopt and follow standards on reporting
experimental values and depositing the resulting data sets into
the public domain in a coherent, consistent format (although
some exceptions exist7,8,26−28). In contrast, circuit design
standards have been significantly improved over the years,
largely because of the efforts by the SBOL consortium.29 We
argue that if we are to realize the potential of data-driven
techniques for automated design30−36 and predictive synthetic
biology, we have to develop equivalent standards for data
repositories, measurements, methodologies, and controls, so that
they can be efficiently mined and used in pertinent computa-
tional methods. Although we are far from exploiting “Big Data”
techniques in this area, what we propose are steps toward
building the foundations that can enable this vision in the future.

■ METHODS
Data Curation. We limited our curation for novel

publications that describe experimentally validated synthetic
circuits for E. coli. As such, we did not include review papers or
papers with only computational results. We started with the top
10most cited publications that were results from searching with a
combination of three keywords “synthetic biology”, “gene
circuit” and “E coli”. Then we extended this set recursively by
adding publications that cited (forward) or were cited (back-
ward) by publications that were already in the set. More
specifically, at each forward step, we added all publications that
cited one or more publications in the current set. Conversely, at
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each backward step, we added all publications that were cited by
one or more publications in the current set. By repeating forward
steps and backward steps alternatively up to four times, we
curated a total of 135 publications that published experimental
circuit characterization for E. coli. Since we limited the model to
the one without feed-back loops, protein−protein interactions,
RNA−RNA interactions, metabolic interactions, recombination
or cell−cell communication, we only manually curated the
characterized data of 45 publications.

Data Integration. Characterization data are usually reported
with arbitrary units, so it is important to normalize their values
across the entire data set. In the case of fluorescent measure-
ments, we chose as our standard the relative expression unit
(REU26). Ideally, the conversion of an arbitrary unit to REU is
performed through a reference system (a constitutive promoter,
e.g. J23101, and a strong RBS, e.g. B0032 from the part registry).
However, in most publications (111 out of 118) this information
was not available. For this reason, we introduced a scaling
parameter, or “scale factor”, ω that linearly translates REUs to
arbitrary units (see Methods). The scaling factor was estimated
simultaneously with all other model parameters.

Database Design and Implementation. At the physical
level, PAMDB was organized as a document-based database
(MongoDB) in which each curated publication was represented
by a pair of documents (Figure S2), one that contained curated
data and another one that contained all the inferred data. The
organization of the database and a summary of its contents were
shown in Figure 3.

Model.To avoid adding ill-constrained parameters, we used a
simple model based on Hill and linear functions. This model
captured both the processes of transcription, translation and
ligand-protein binding. More specifically, when a transcription
factor TF is bound to a promoter Pr, the expression level νg of a
gene g at the downstream of Pr is modeled by
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where μTF is the protein expression level (from eq 3 below).
[LTF]is the ligand concentration when a ligand binds to the TF.
Parameters KLTF and nLTF correspond to the dissociation constant
and the Hill coefficient of the ligand, respectively. For the
translation, the protein expression level μg of a gene g is modeled
by

μ α ν=g r g (3)

where αr is the strength of the ribosome binding site r in the
upstream of g. In the case where g is a reporter protein (e.g., gfp,
yfp), the protein expression level μg in relative units is converted
to the protein expression level μg

au in arbitrary units to fit with the
experimental data. This is achieved by applying the following
conversion formula:

μ ω μ=g
au

g
ref

g (4)

where ωg
ref is the scale factor for the reporter protein g as

presented in publication ref. The value of this scale factor will be
estimated simultaneously with the value of other parameters to fit
the experimental data with the model through the parameter
inference process. The units of all parameters are summarized in
Table 4.

Parameter Estimation. Suppose that we need to fit n
circuits, each circuit Ci is modeled by

θ= =y M x i n( , ) 1, ...,i i i i (5)

where xi,yi,θi represent the input, the output, and the set of model
parameters, respectively, all for circuit Ci. Each parameter can
appear in more than a single model, so we denote the set of all
parameters as

θ θ= ∪
=i

n
i

1 (6)

Let Di = {(xi
(1), yi

(1), σi
(1)), ..., (xi

(di), yi
(di), σi

(di))} be an
experimental characterization data set with di data points of the
circuit Ci and σi

(j) capturing the standard deviation of the output
yi
(j). If we assume that all data points are independent and the
output value yi of circuit Ci has a Gaussian distribution then the
log-likelihood37 is given by

∑θ
θ

σ
| = −

−
+

=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟D

M x y
LL( )

1
2

( , )
consti i

j

d
i i

j
i i

j

i
j

1

( ) ( )

( )

2
i

(7)

We evaluated three parameter inference methods:

(i) Independent fitting: The value θi* of parameters of each
circuit Ci was fitted independently by maximum log-
likelihood estimation:

θ θ* = |
θ

Dargmax LL( )i i i
i (8)

(ii) Sequential fitting: Circuits were fitted one by one; the
best-fitted solution of former circuits were propagated to
fit latter circuits. This sequential fitting method is common
in practice in which we fix some model parameters with
values inferred in past work and estimate the value of other
parameters by fitting the model with experimental data.

(iii) Simultaneous fitting: The value θ* of all parameters was
fitted at the same time by solving the optimization
problem

∑θ θ* = |
θ =

Dargmax LL( )
i

n

i i
1 (9)

To solve the optimization problem, we used the trust region
method38 with multiple starting values. This method has been
shown to outperform others in reliability and efficiency.39 To
improve computational performance, we also converted all
circuit models (represented by graphs as in ref 40) to
computational functions (represented by inline code), to avoid
repeating this conversion during the optimization phase. To
estimate the parameter value uncertainty, we calculate the
confidence interval, which is based on the bootstrapping
method.41 As such, the 95% confidence interval of a parameter
p∈ θ is an interval CI(p), and the confidence interval length (log
scale) in the comparison (Figure S3) was calculated as

⎛
⎝⎜

⎞
⎠⎟

CI p
CI p

log
max( ( ))
min( ( ))10

(10)

The simulation (Figure 4 inset) and prediction (Figures 4 and
S4−S7) were calculated from the best-fitted parameter values of
both approaches since we estimated the deviation between the
best prediction of each approach and the experimental data.
For the cross validation, we needed to compare the prediction

error for different data sets, which can vary widely on their values.
Therefore, we used three different normalization error metrics.
Let n be the number of data points of a circuit and si and di be the
simulated and the desired value at each data point, respectively.
The prediction error of each circuit was calculated with the
following three metrics:

(i) Mean absolute percentage error (MAPE42)

∑ | − |

=n
s d

d
1

i

n
i i

i1 (11)

(ii) Root mean square percentage error (RMSPE42)

∑ −

=

⎛
⎝⎜

⎞
⎠⎟n

s d
d

1

i

n
i i

i1

2

(12)

(iii) These above metrics may be not applicable when di = 0 or
when diwas very small. Therefore, we normalized the root-
mean-square-deviation by the mean of experimental data.

Table 4. Description and Units for Model Parameters

parameter description unit

αr RBS strength relative RBS unit (RRU),
normalized by BBa_B0032

αPr, βPr promoter strength and basal
level

relative promoter unit (RPU),
normalized by BBa_J231017

νg gene expression level of g RPU
μg, μTF protein expression level of g,

TF
REU (= RRU × RPU)

ωg
ref scale factor of g from

publication ref
au/REU

KPr binding affinity REU
[LTF],
KLTF

ligand concentration and
dissociation constant

mM

nLTF, nPr,
Ng

Hill coefficient,
cooperativity and copy
number

N/A
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We called the new metric normalized root-mean-square-
deviation (normalized RMSD) that was calculated as

∑ −

∑
=

=

s d n

d n

( ( ) )/

( )/
i
n

i i

i
n

i

1
2

1 (13)
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