
\qquad
\qquad

Digital Data

- Binary and Hexadecimal numbers
- ASCII code and UNICODE
- Sampling and Quantitizing
- Example: sound

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Number representation

Computers use a different system: base 2:

| 1024 | 512 | 256 | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | \qquad $\begin{array}{lllllllllll}2^{10} & 2^{9} & 2^{8} & 2^{7} & 2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0}\end{array}$

Example:

$\begin{array}{llllllllllll}1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & \longleftarrow\end{array}$ | 1024 | 512 | 256 | 128 | 64 | 32 | 16 | 8 | 4 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\qquad
\qquad
\qquad
\qquad
$1 \times 1024+1 \times 512+0 \times 256+1 \times 1128+1 \times 64+0 \times 32+0 \times 16+0 \times 8+1 \times 4+0 \times 2+0 \times 1=1732$ \qquad
\qquad
\qquad

Number representation	
Base 10 Base 2 0 0 1 1 2 10 3 11 4 100 5 101 6 110 \ldots \ldots 253 1111101 254 1111110 25 \ldots \ldots	

\qquad
\qquad

Facts about Binary Numbers
-Each "digit" of a binary number (each 0 or 1) is called a bit \qquad
-1 byte $=8$ bits
$-1 \mathrm{~KB}=1$ kilobyte $=2^{10}$ bytes $=1024$ bytes (≈ 1 thousand bytes)
$-1 \mathrm{MB}=1$ Megabyte $=2^{20}$ bytes $=1,048,580$ bytes (≈ 1 million bytes)
$-1 \mathrm{~GB}=1$ Gigabyte $=2^{30}$ bytes $=1,073,741,824$ bytes (≈ 1 billion bytes)
$-1 \mathrm{~TB}=1$ Tetabyte $=2{ }^{40}$ bytes $=1,099,511,627,776$ bytes $(\approx 1$ trillion bytes)
-A byte can represent numbers up to 255: 11111111 (base 2) $=255$ (base 10) -The largest number represented by a binary number of size N is $2^{\mathrm{N}}-1$

Big Data: Volume
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Hexadecimal numbers
While base 10 and base 2 are the most common bases used to represent numbers, others are also possible: \qquad base 16 is another popular one, corresponding to hexadecimal numbers \qquad

256	16	1
16^{2}	16^{1}	16^{6}

\qquad
\qquad
The "digits" are: 0123456789 A B C D E F
Example:
\qquad

\qquad

Base 10	Base 2	Base 16
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F

\qquad

Conversion: From base 2 to base 16, and back \qquad
This is in fact easy!!
-From base 2 to base 16:
\qquad
Example: 11011000100
Step 1: break into groups of 4 (starting from the right): \qquad
\qquad
$\begin{array}{lll}\text { Step 2: pad with } 0 \text {, if needed: } & \\ 0110 \quad 1100 & 0100\end{array}$
Step 3: convert each group of 4 , using table:

Step 4: regroup:
$6 \subset 4$ \qquad
11011000100 (base 2) $=6 \mathrm{C4}$ (base 16)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Digital Data

- Binary and Hexadecimal numbers
- ASCII code and UNICODE
- Sampling and Quantitizing
- Example: sound

ASCII

American Standard Code for Information Interchange

So far, we have seen how computers can handle numbers. What about letters / characters?
The ASCII code was designed for that: it assigns a number to each character:

A-Z: 65-90
a-z: 97-122
0-9: 48-57

\qquad
UNICODE
ASCII only contains 127 characters (though an extended
version exists with 257 characters).
This is by far not enough as it is too restrictive to the
English language.
UNICODE was developed to alleviate this problem:
the latest version, UNICODE 5.1.0 contains more than
100,000 characters, covering most existing languages.
For more information, see:
http://www.unicode.org/versions/Unicode5.1.0/
\qquad
\qquad version exists with 257 characters).
This is by far not enough as it is too restrictive to the English language. \qquad
\qquad
\qquad
\qquad
\qquad

Digital Data
- Binary and Hexadecimal numbers
- ASCII code and UNICODE
- Sampling and Quantitizing
- Example: sound

Sampling

Sampling is the process of examining the value of a continuous function at regular intervals.

Sampling usually occurs at uniform intervals, which are referred to as sampling intervals. The reciprocal of sampling interval is referred to as the sampling frequency or sampling rate.
If the sampling is done in time domain, the unit of sampling interval is second and the unit of sampling rate is Hz , which means cycles per second.

\qquad

Quantization
The number of bits used to store each intensity defines the accuracy of the digital sound: \qquad

Adding one bit makes the sample twice as accurate \qquad
\qquad

Audio Sound
Sampling:
The human ear can hear sound up to $20,000 \mathrm{~Hz}$: a sampling rate of
$40,000 \mathrm{~Hz}$ is therefore sufficient. The standard for digital audio is
$44,100 \mathrm{~Hz}$.
Quantization:
The current standard for the digital representation of audio sound is to use
16 bits (i.e 65536 levels, half positive and half negative)
How much space do we need to store one minute of music?
- 60 seconds
$-44,100$ samples
-16 bits (2 bytes) per sample
-2 channels (stereo)
$\mathrm{S}=60 \times 44100 \times 2 \times 2=10,534,000$ bytes $\approx 10 \mathrm{MB} ~!!$
1 hour of music would be more than 600 MB !

Advantages of digital recording:

- can make multiple identical copies

Can be processed

- compression (MP3)
www.atpm.com/6.02/digitalaudio.shtml

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

