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Abstract—Generating a shared key between two parties from
the wireless channel is of increasing interest. The procedure for
obtaining information from wireless channel is called channel
probing. Previous works used a constant channel probing rate to
generate a key, but they neither consider the tradeoff between
the bit generation rate (BGR) and channel resource consumption,
nor adjust the probing rate according to different scenarios.
In order to satisfy users’ requirement for BGR and to use the
wireless channel efficiently, we first build a mathematical model
of channel probing and derive the relationship between BGR
and probing rate. Second, we introduce an adaptive channel
probing system based on Lempel-Ziv complexity (LZ76) and
Proportional-Integral-Derivative (PID) controller. Our scheme
uses LZ76 to estimate the entropy rate of the channel statistics,
e.g. the Received Signal Strength (RSS), and uses the PID
controller to control the channel probing rate. Our experiments
show that this system is able to dynamically adjust its probing
rate to achieve a desired BGR under different moving speeds,
different mobile types, and different sites. Our results also show
that the standard deviation of the LZ76 calculator is less than 0.15
bits/s. The PID controller is able to stabilize the bit generation
rate at a desired value with mean error of less than 0.9 bits/s.

I. INTRODUCTION

Generating a shared key between two parties via public
communication is a challenging problem in symmetric key
cryptography systems. Diffie-Hellman (D-H) key exchange
protocol is widely used for this purpose. However, it works
under the assumption of the hardness of the discrete logarithm
problem, which has been proven breakable in polynomial
time using quantum computers [1]. Although realistic quantum
computers may not become reality in years, it is desirable
to search for other key agreement mechanisms which do
not depend on the assumption of computational hardness.
Furthermore, in practical implementations, D-H key exchange
protocol may not produce a truly random key due to the use
of pseudorandom generators.

With the spur of wireless communications, there is an
increasing interest in generating a shared key between two
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parties from the wireless channel [2]–[5]. Two wireless en-
tities exploit reciprocity, randomness, and location-specific
properties of a wireless fading channel, and obtain highly
correlated channel states and produce shared keys. A third
party (that is more than half a wavelength away from the
legitimate users) can eavesdrop but would not be able to
generate the same key [6]. Therefore, unlike the D-H key
exchange protocol, generating keys from the wireless channel
is information-theoretically secure, i.e., no matter how much
computing resources the attacker has, the attacker cannot break
the key even if it eavesdrops all the key generation messages
exchanged between the two entities.

In recent implementations and experiments, the received
signal strength (RSS) is widely used as the parameter from
wireless channel to generate the shared key [3]–[5]. The RSS
can be easily obtained from current wireless device drivers, so
it makes key generation using off-the-shelf devices feasible.
In order to generate a shared key, two parties need to send
channel probing frames to each other to measure the RSS. We
call this process channel probing. After channel probing, both
parties quantize the measured RSS sequences into bits, and
apply reconciliation methods to make the bits agree. Finally
they apply privacy amplification method to discard the bit
information revealed to an eavesdropper to generate a shared
key.

As far as we know, all the existing key generation imple-
mentations probe the channel at a preset and constant rate
without any consideration of channel variation or probing
efficiency. On the one hand, if the channel does not change
very frequently or drastically, even if a user could probe the
channel at a high probing rate, it will get an RSS sequence with
many consecutive duplicated RSS values. These duplicated
RSS values do not contribute new bit information to the final
key, thus, result in a low probing efficiency, i.e., redundant
probings. On the other hand, it will take an intolerably long
time to generate a key when probing at a very low rate.

The key generation rate (KGR) measures the number of
shared secret bits generated per second between two parties.
We call the bit information generated at each side per second



during the channel probing process as bit generation rate
(BGR). Assume there is a relatively constant efficiency of
the reconciliation and privacy amplification processes (i.e. the
two processes discard a relatively constant portion of the bits
generated at each side), then we can use BGR to infer KGR.

The BGR is largely determined by the channel variation
and probing rate. More specifically, it is largely determined
by the entropy rate of the RSS sequence and the time used to
obtain the sequence. The entropy rate is, informally, the time
density of the average information in a stochastic process [7].
In practice, since users always have requirements about how
much time they can afford to generate a certain length of
key, we could control the probing rate according to different
channel variations to satisfy a certain BGR. That is, the system
does not have to probe too fast to achieve a desirable BGR;
only fast enough to avoid using the channel inefficiently.

In this work, we build a mathematical model of the channel
probing system and derive the relationship between the BGR
and probing rate, and use the entropy rate of the RSS sequence
to estimate the BGR. In experimental situations, the compu-
tation of entropy rates requires a statistical estimator that is
unbiased and converging fast enough to be accurate on a finite
data sample. Unfortunately, since the classical definition of
entropy rate is based on an asymptotic limit, it does not easily
lead to an accurate estimator in the case of a finite-size time
series [8]. The concept of Lempel-Ziv complexity (LZ76) [9],
which will be discussed in Section IV, can be used to obtain
accurate estimation of the entropy rate.

In our paper, we borrow the Proportional-Integral-Derivative
(PID) controller, a generic feedback control loop mechanism
widely used in industrial control systems, to dynamically tune
the probing rate in order to stabilize the BGR according to the
user’s requirement under dynamic conditions.

Our experimental results show that the adaptive channel
probing system can adaptively change its probing rate accord-
ing to user movement and environment dynamics. Moreover,
it can stabilize BGR by using the PID controller and satisfy
the users’ BGR requirement.

The contributions of our paper are:
• Mathematical model of the channel probing is built and

the relationship between BGR and probing rate is derived.
• Desired BGR is satisfied by using a PID controller under

different scenarios.
The rest of this paper is organized as follows. In Sec-

tion II, we discuss the related works. Section III introduces
the mathematical analysis of channel probing in shared key
generation. Then, we detail the components of the adaptive
probing system: Lempel-Ziv complexity and PID controller,
in Section IV and Section V, respectively. We present the
experimental results and analysis in Section VI. We conclude
this paper and discuss future work in Section VII.

II. RELATED WORK

There has been an increasing interest in exploiting the
randomness and reciprocity of the wireless channel to generate
shared keys between two parties [2]–[5], [10]–[16]. Early

research in this area focused on theoretical analysis [13]–
[15], while most recent works are more interested in practical
implementations of the key generation schemes using off-
the-shelf wireless devices [2]–[4]. Previous work assumed
an authenticated channel while generating shared keys [10]–
[12]. One recent work removed this assumption and proposed
a shared key generation algorithm using level-crossings and
quantization to extract secret bits from an unauthenticated
wireless channel [3]. Another work proposed a method for key
generation based on phase reciprocity of frequency selective
fading channels [16].

To the best of our knowledge, there is no previous work
discussing the trade-off among the channel probing rate, bit
generation rate and channel resource consumption, or adap-
tively tuning the channel probing rate according to the channel
dynamics introduced by user mobility and/or the environment.
In this paper, we address these problems and build a system
to achieve adaptive channel probing in real scenarios using
off-the-shelf devices.

III. CHANNEL PROBING IN SHARED KEY GENERATION

We introduce the process of generating shared key and
measuring RSS in this section. We define the utility function
and the BGR function. Then, we derive the relationship
between utility, BGR and probing rate. Finally, we show how
our adaptive probing system works.

A. Shared Key Generation

In general, there are three steps to generate a shared key:
advance distillation, information reconciliation, and privacy
amplification [17]. First, advance distillation is used to collect
information. This could be considered as two questions: what
kind of information to collect and how to collect it. In our
work, we extract the RSS from the wireless channel using off-
the-shelf devices. A sender transmits a request frame directly
to a desired receiver and waits for a reply. The receiver
instantly echoes a reply when it receives the request. Thus,
both the sender and receiver will receive a frame nearly
at the same time and measure the corresponding RSS. Due
to the principle of wireless reciprocity, the train of RSS
measurements will have the same characteristics (i.e., same
variations) on both sides. Second, information reconciliation
is a form of error correction carried out between legitimate
users in order to ensure the keys generated separately on both
sides are identical. Last, privacy amplification is a method for
reducing (and effectively eliminating) a third party’s partial
information about the legitimate key. This paper only focuses
on the first step.

B. Received Signal Strength

In telecommunications, the received signal strength (RSS)
is a measurement of the power present in a received radio
signal. It is often done in the intermediate frequency (IF) stage
before the IF amplifier and can also be sampled by an internal
Analog-to-Digital Converter (ADC). The 802.11 standard does
not define any relationship between RSS value and power
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Fig. 1. Received signal strength and stagnant time

level in mW or dBm. Vendors provide their own accuracy,
granularity, and range for the actual power (measured as mW
or dBm) and their range of RSS values.

In order to make our derivation more clear, for an arbitrary
time t, let S(t) represent an hypothetical analog continuous-
time received signal strength, shown as a dotted line in
Figure 1. Please note that S(t) is only hypothetical and cannot
be obtained by the off-the-shelf wifi device. If the channel
probing is as fast as possible, the RSS value at nearly any
time t could be converted by ADC, denoted as Sad(t), shown
as a solid line. In contrast, Sad(t) is an actual measurement
and can be obtained by off-the-shelf wifi device. As the solid
line Sad(t) shows, we call the duration of having a consecutive
equivalent RSS values sequence as stagnant time, denoted as
s, such as the time between ta and tb. Stagnant time varies,
from less than 1 millisecond, such as tj− ti, to even hundreds
of milliseconds, such as to − tn.

As the hypothetical analog signal S(t) could increase or
decrease sharply, or it could also stay around a tiny range,
stagnant time then could tend to zero or to infinity.

To probe at each stagnant time, we are able to get only
one non-duplicated RSS value no matter how many times we
probe. We call this RSS value the effective RSS value. In a
probed RSS sequence, small number of effective RSS values
implies many duplications in the RSS measurements, which
indicates a low probing efficiency.

C. Probing Process and Probing Sequence

The process of sending and receiving a probing packet pair,
like ICMP PING and REPLY [18], is called a probing process.
The time between two probing processes is called probing
interval, or interval, denoted as θ. The larger the interval, the
lower the probing rate, denoted as ν, where ν = 1/θ. A series
of probing processes at the same interval is called a probing
sequence or a loop in online experiments with PID controller.
Duration of a loop is denoted as T .

If the interval is small, the probing process may happen
several times in a stagnant time that is larger than the interval,
but only obtain one effective RSS value; we consider this
case as inefficient probing. If the interval is large, the probing
process may not occur in a stagnant time that is smaller than
the interval; we call this case inadequate probing. An optimal
probing, which could obtain information from the channel as
much as possible and also could probe in an efficient way, is
the focus in this work.
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D. Stagnant Time Distribution

For a given stochastic process S(t) and non-constant func-
tion Sad(t), we have the discrete weighted distribution D(si)
of stagnant times for Sad(t) shown as histogram in Figure 2,
where i ∈ N+, smin ≤ si ≤ smax, smin and smax are the
minimum and maximum stagnant time, respectively. For an
arbitrary value i, sj is the next larger stagnant time after si,
then the difference between si and sj is ∆si.

Discrete weighted distribution D(si) is the function of ∆si,
and D(si)∆si equals to the total number of stagnant times
that equal to si. Therefore, the total number of all different
stagnant times is

∑max
i=min D(si)∆si. When i is an arbitrary

value, if ∆si → 0, we have

max∑
i=min

D(si)∆si =

∫ smax

smin

d(s)ds, (1)

where d(s) is a fitted continuous curve from D(si), as solid
line in Figure 2, and d(s) > 0, smin ≤ s ≤ smax.

E. Functions and Properties

Suppose that the interval of a probing sequence is θ, and 0 <
smin < θ < smax. For any s > θ, this is an inefficient probing
and we obtain a total number of effective RSS values, that is
E2(θ) =

∫ smax

θ
d(s)ds, where E2(θ) is shown in Figure 2.

How many effective RSS values can we obtain from those
stagnant time smin ≤ s ≤ θ? This is an inadequate probing
and the probing process will miss some of the stagnant
times. The smaller the stagnant time, the larger the missing
probability. Therefore, the total number of effective RSS
values we could obtain is E1(θ) =

∫ θ

smin
dE(s)ds, where

dE(s) = s
θd(s), smin ≤ s ≤ θ and dE(s) and E1(θ) are

shown in Figure 2. Then the total number of all effective RSS
values is

E(θ) = E1(θ) + E2(θ). (2)

More information obtained from the channel may result in
larger E(θ) value.

When s > θ, as an inefficient probing, some stagnant
times will be probably probed more than once. The larger
the stagnant time, the larger the re-probing probability. When
re-probing happens in a stagnant time, only one RSS value is
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Fig. 3. Relationship between E(θ) and EA(θ). This result is obtained from
an experiment with θ as 10 ms under different durations.

considered as effective, the others are called ineffective RSS
values. The total number of all ineffective RSS values is

I(θ) =

∫ smax

θ

(dI(s)− d(s))ds, (3)

where dI(s) = s
θd(s), θ < s ≤ smax. dI(s) and I(θ) are

shown in Figure 2. The larger I(θ) is, the more inefficient
probing becomes.

In addition, we define the utility function as

U(θ) =
E(θ)

I(θ)
. (4)

Lemma 1: When the probing interval becomes larger, E(θ)
and I(θ) functions both decrease. However, the utility function
increases.

Proof: According to Eq. 2 and Eq. 3, the derivatives of
θ for functions E(θ) and I(θ) are

E′(θ) = [ 1θ
∫ θ

smin
d(s)sds]′ + [

∫ smax

θ
d(s)ds]′

= − 1
θ2

∫ θ

smin
d(s)sds

(5)

I ′(θ) = [

∫ smax

θ

(
s

θ
d(s)− d(s))ds]′ = − 1

θ2

∫ smax

θ

d(s)sds.

(6)
As 0 < smin < θ < smax and d(s) > 0, we have E′(θ) <

0, I ′(θ) < 0. Therefore, E(θ) and I(θ) functions are both
decreasing with θ.

The derivative of utility function U(θ) is

U ′(θ) = 1
(I(θ))2 [E

′(θ)I(θ)− E(θ)I ′(θ)]

= 1
(I(θ)θ)2 [

∫ smax

θ
d(s)ds

∫ smax

θ
d(s)sds

+
∫ smax

θ
d(s)ds

∫ θ

smin
d(s)sds].

(7)

As 0 < smin < θ < smax and d(s) > 0, we have U ′(θ) >
0. Therefore, utility function increases with θ.

Note that even if 0 < θ ≤ smin or θ ≥ smax, all lemmas
in this paper are valid.

F. Bit Generation Rate

We define the bit generation rate as

B(θ) =
EA(θ)

T
, (8)

where EA(θ) is the information estimation function based
on Lempel-Ziv complexity (detailed in Section IV) and is
proportional to E(θ), and T is the duration of a probing
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Fig. 4. Workflow of adaptive channel probing system

sequence. The relationship between E(θ) and EA(θ) is shown
in Figure 3. If a user’s BGR requirement is β, the probing
interval should be θ = B−1(β), where B−1(·) is the inverse
function of B(·).

Lemma 2: When the interval θ becomes larger, the bit
generation rate decreases.

Proof: As derived in Lemma 1, E(·) is a decreasing
function, and so is EA(·). Therefore, B(θ) = EA(θ)/T is
also a decreasing function.

Lemma 3: When BGR becomes larger, utility decreases.
Proof: When B(θ) increases, according to Eq. 8, we have

EA(θ) increasing and E(θ) increasing. As E′(θ) < 0, in
order to increase E(θ), we decrease θ. As U ′(θ) > 0, when θ
decreases, we have U(θ) decreasing.

G. Adaptive Wireless Channel Probing System

In order to resolve θ = B−1(β), we introduce a PID
controller to dynamically alter the probing interval and then
to reduce the error between β and actual BGR, which will
be detailed in Section V. Figure 4 represents a workflow
of adaptive wireless channel probing system. After tuning
parameters, such as the probing rate, the system starts to
monitor the radio channel. Two parties probe the channel by
continually exchanging ICMP PING and REPLY packets for
a fixed duration, denoted as T . The RSS values of the probing
packets are recorded, and the entropy rate is estimated by LZ76
calculator (detailed in Section IV) and thereafter the BGR is
calculated. Finally, the PID controller compares BGR obtained
in the current loop with a desired BGR β, then makes a new
probing rate for the next loop.

IV. LEMPEL-ZIV COMPLEXITY

In order to measure the quantity of information from a
stochastic process, we give a brief introduction about entropy
and entropy rate, which is practically estimated by Lempel-Ziv
complexity. Then, the information estimation function EA(θ)
and a new BGR function are given.

A. Entropy and Entropy Rate

Let X be a random variable or random vector, taking values
in an arbitrary finite set A, its alphabet, and with distribution



probability p(x) = Pr{X = x} for x ∈ A. The entropy of
X [7] is defined as,

H(X) = H(p) = −
∑
x∈A

p(x) log p(x). (9)

The entropy rate H , or per-symbol entropy, of X is

H = H(x) = lim
n→∞

1

n
H(X1, X2, · · · , Xn), (10)

whenever the limit exists, where H(X1, X2, · · · , Xn) is
the entropy of the jointly distributed random variables
(X1, X2, · · · , Xn).

B. Lempel-Ziv Complexity

We want to stress that the entropy rate is a property of
a random process and therefore difficult to evaluate [19]. In
fact, the knowledge of the probability distribution involved in
its calculation requires, in principle, an extensive sampling that
usually cannot be performed [20]. In contrast, the complexity
as originally formulated by Lempel and Ziv (LZ76) [9] is a
property of individual sequences that can be used to estimate
the entropy rate. Because of page limitations, we only give
a brief introduction to show how LZ76 works. Any further
properties and formal expression can be found in reference [9].

For a bitstring XN = [x1, · · · , xN ] of length N with xi ∈
{0, 1}, a procedure that partitions XN into non-overlapping
substrings is called a parsing. A substring starting at position
i and ending at position j of XN which is the result of a
parsing procedure is called a phrase XN (i, j). The set of
phrases generated by a parsing of XN is denoted with PXN

and the number of phrases |PXN | is denoted by q. As an
illustration, the string 0011001010100111 will be parsed as

0 · 01 · 10 · 010 · 10100 · 111,

where q = 6.
In general, we define LZ76 value as

CLZ(XN ) =
q(logd q + 1)

N
, (11)

where d is diversity of samples in X or range of x, and

0 ≤ CLZ(XN ) ≤ log2 d. (12)

For a random sequence XN from an ergodic and stationary
source [7], [21], entropy rate tends to

H = lim
N→∞

CLZ(XN ). (13)

In our paper, the RSS sequence is considered to be an
ergodic and stationary source in a given time T , like 1 second,
if the moving speed of the user is not extremely high.

C. BGR Function

During time T of a probing sequence, the total number
of the received RSS values is N , where N = T/θ. We
could estimate the information by EA(θ) = CLZ(XN )N .
Furthermore, from Eq. 8 and Eq. 11, we have the BGR
function as

B(θ) =
q(logd q + 1)

T
, (14)
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Fig. 5. Framework of the PID control system

where 0 < θ ≤ θmax, and θmax will be discussed in
Section VI. Note that q is an unknown function of θ and
stochastic channel variations.

V. PID CONTROLLER

Resolving θ = B−1(β) is critical. Unfortunately, an accu-
rate relationship between β and θ is not known in advance.
Even though we take many tests to successfully get the
function of B−1(·), we will fail to resolve when users or other
objects move, or when the radio environment varies. That is
why we have to introduce feedback control to let the system
reduce the error between actual BGR and a desired BGR β,
also called setpoint, by adjusting the probing interval.

A. System Model

A series of probing processes with same interval is a probing
sequence. We also call it a loop for the controller. In the ith
loop, we set probing interval θi as input to probe channel.
At the end of this loop, we get entropy rate CLZ(i) and bit
generation rate bi as output and feedback to compare with β.
The PID controller then calculates a new interval θi+1 for the
next loop. The controller model is

θi+1 =θi +GP (bi − β)

+GI

∑i
j=i−α(bj − β) +GD(bi − bi−1),

(15)

where i = 1, 2, · · · , and α is the order of integral gain.
GP , GI and GD are proportional gain, integral gain and
derivative gain, respectively. Figure 5 shows the framework
of the control system.

Duration of a loop is T , and setting an appropriate T is
very important. A large T would decrease control performance
while a small T would decrease the stability of LZ76 calcu-
lator to estimate the entropy rate. T is a fixed parameter in
our system, as 1 second. In order to keep the LZ76 calculator
stable, we should limit the upper bound of θ, denoted as θmax.
As the limitation of hardware, we set the lower bound of θ at
1 ms. Thus, we have

1ms < θ ≤ θmax. (16)

B. Stability

Definition 1 (BIBO stability): BIBO stands for Bounded-
Input Bounded-Output. If a system is BIBO stable, then the
output will be bounded for every input to the system that is
bounded.

Lemma 4: Our proposed PID control system is BIBO sta-
ble.



Proof: In our system, the interval is considered as input
while BGR as output. Input θ is bounded in Eq. 16. Eq. 12
tells CLZ(XN ) is bounded between 0 and log2 d, and B(·) in
Eq. 14 is bounded. Therefore, our system is BIBO stable.

C. Gain Parameters Tuning

The Ziegler-Nichols tuning method is a heuristic method of
tuning a PID controller [22]. It is performed by setting the I
and D gains to zero. The P gain is then increased (from zero)
until it reaches the ultimate gain Gu, at which the output of
the control loop oscillates with a constant amplitude. Gu and
the oscillation period Tu are used to set the GP , GI , and GD

gains. They are GP = Gu/1.7, GI = Tu/2, GD = Tu/8.

VI. EXPERIMENT AND RESULTS

Our adaptive probing system runs on a platform that is
composed of two DELL E5400 laptops (called Alice and Bob,
respectively) with Intel WiFi Link 5300 802.11a/g/n wireless
card. They both run a modified Fedora Linux kernel version
2.6.29-rc5-wl based on the wireless-testing tree. We made
modifications to the Linux wireless device driver (iwlagn), the
802.11 stack (mac80211) and the kernel-to-userspace commu-
nication library (radiotap) for instrumentation purposes. The
modifications allow the nodes to fix the transmitter antenna
and to record the antenna RSS values per frame on frame
reception. The RSS provided by the driver is an integer value
in the range [-95,-20].

A. Experimental Setup

Outdoor and Indoor: The outdoor experiments are conduct-
ed at the Adams Terrace community in Davis, CA, USA. As
shown in Figure 6, it is an open narrow straight road with
several cars parked along the side and there are few people or
cars moving around. The indoor experiments are conducted in
a second floor bedroom of a townhouse.

Offline and Online: The procedure, where laptops PING
each other for a given duration (60 seconds in all experiments)
at a constant interval without the PID controller, is called the
offline experiment, which is used to collect RSS logs and
analyze the relationship between the interval and other metrics.
The online experiment uses the PID controller to make BGR
stable at a setpoint, and, at the same time, logs necessary
running parameters, which are used to analyze the performance
of the system. All online experiments run 100 loops.

Static and Mobile (Line and Random): From Figure 6, we
consider a static experiment if Alice and Bob are both fixed
and no people or cars running through the road. We call it a
mobile experiment if Bob is moving. The mobile type includes
line and random movements, shown as solid line and broken
line, respectively.

The two laptops’ transmission power are both set at 15 dBm.
The moving speed is measured by a hand-held GPS.

B. Parameters: LZ76 Calculator (offline)

According to Eq. 11, Lempel-Ziv complexity of a finite
sequence is determined by q, d,N . In a loop, q is calculated
by a Python script after a finite sequence of RSS values. N is

Adams Terrace
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line random

about 

4m

about 50m

Fig. 6. Mobile type in Adams Community
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Fig. 7. Standard deviation of LZ76 calculator

the length of an RSS sequence, that relates to the interval θ
and duration time of a loop. d is a fixed number and is related
to the diversity of RSS values. As our wireless card provides
RSS from -95 to -20 dBm, we consider diversity d as the total
range, d = 75.

From Eq. 13, LZ76 calculator cannot work well if N is not
large enough. In order to make LZ76 calculator stable, we
should carefully consider T and θmax. Stable here means the
outputs of LZ76 calculator have a small variation.

We conduct a series of offline-outdoor-line-mobile exper-
iments. In the experiments, the probing interval θ is set as
1, 5, 25, 45, · · · , 205 milliseconds (ms), respectively. After
recording all the 12 RSS log files, for each log file, we process
the data in the following way. We first truncate the items in
the log file into groups for every 200ms timeslot according to
timestamps. We then calculate the entropy rate of each group
by LZ76 calculator, and also the mean and standard deviation.
We then increase the timeslot from 200 ms to 400 ms, and do
the same calculation. Next, we continue to increase timeslot,
stepping at 200 ms, till 4 seconds. The same processing is
repeated on all the log files.

Figure 7 shows the standard deviation of the entropy rate at
different probing rates when the timeslot increases from 200ms
to 4s. Also shown in Table I, when the timeslot is set as 1
second, standard deviations are all less than 0.15 (bits/s). As
entropy rate in our experiments are mainly distributed from 0.6
to 1.2, standard deviation less than 0.15 could be considered as
small enough. Therefore, a timeslot of 1 second (i.e., T = 1s)
and a probing interval of no more than 200ms (i.e., θmax =
200ms) could make LZ76 calculator stable.

C. Probing Rate vs Entropy Rate (offline)

We examine the relationship between entropy rate and prob-
ing rate under static and mobile scenarios in this subsection.



TABLE I
STD OF ENTROPY RATE IN 1 SECOND TIMESLOT

Interval(ms) 1 45 125 205
Standard Deviation 0.0725 0.0380 0.1013 0.1401
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Fig. 8. Entropy rate vs probing rate (mobile and static)

According to Lemma 1 and Fig. 3, given a channel condition,
a high probing rate (i.e., small probing interval) would produce
low entropy rate, and vice versa. We adopt log files from
the experiment in Section VI-B as mobile scenario, and the
timeslot is set as 1 second. In static scenario, both laptops are
static and separated away from each other about 40 meters.
The probing intervals are the same as that in the mobile
scenario. The mean and standard deviation of the entropy rates
of these two scenarios under different probing intervals are
drawn in Figure 8. We can see that, generally, the entropy
rate is increased when the probing interval is increased in
both scenarios. The entropy rate at any interval in the mobile
scenario is larger than the one in the static scenario. The
entropy rate of the static scenario could only rise to 0.79 at
interval of 205 ms, while in mobile scenario it reaches 0.9 at
interval of 25 ms. This result is reasonable. If two users are
static, the channel is relatively stable. We are not able to obtain
much randomness from this channel in a given duration. While
when the users are mobile, the channel is more variable, thus
provide more randomness.

D. Probing Rate vs Bit Generation Rate (offline)

Logs from previous mobile and static offline experiments
are analyzed in order to get the relationship between probing
rate and BGR, which is calculated by Eq. 14. Figure 9 shows
the results. At the same interval, the BGR is lower in the
static scenario than that in the mobile scenario. To produce
the same BGR, it has to probe faster in the static scenario
than in the mobile scenario. This indicates the necessity of
adaptively tuning the probing interval to achieve a desirable
BGR under different scenarios. Furthermore, the BGR in both
scenarios decrease with interval θ increased, which validated
the mathematical analysis in Lemma 2.

E. Experimental Parameters: PID Controller

According to the Ziegler-Nichols method [22], the tuning
parameters of PID controller are: GP = 0.0001, GI =
0.000044, GD = 0.000011. The setpoint of the controller (i.e.,
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Fig. 9. BGR vs probing rate (mobile and static)

desired BGR), is 50 bits/s and T = 1s. The order of integral
gain α = 2.

F. Metrics of Performance

Before listing other metrics for online experiments, we
introduce Duplicated Index (DI) to indicate the efficiency
of the probing sequence. Although entropy rate could be
used to indicate efficiency, we think DI is more visualized
and easy to understand. The larger the DI, the lower the
efficiency. If we have a sequence like: “AABBBCCCCC”,
character “A” has one duplicate and ineffective copy, and
the weight of A over the whole sequence is 2/10. The same
process is repeated on the other characters. Thus, we have
DI = 1× 2

10 + 2× 3
10 + 4× 5

10 = 2.8.
Denote bi as the bit generation rate at the ith loop, i =

1, 2, · · · , N , and N is determined by online running time. Here
is the list of performance metrics studied:

• BGR mean error: |
∑N

i=1 bi/N − β|.
• BGR oscillation frequency (BGR Osc. Freq.): the times

that bi crosses through setpoint, denoted as Nosc, and
oscillation frequency fosc = Nosc/N .

• BGR overshooting (BGR Oversht.): overshoot refers to
an output exceeding its final steady-state expected value.

• BGR settling time: when bi first reaches setpoint, consider
the loop number as settling time.

• Probing interval: the interval between two probing pro-
cesses. It is dynamic in the online experiments, and we
calculate the mean and standard deviation of it.

• Efficiency: duplicated index DI .
All metrics above are used from Table II to Table IV.

G. Variable Motion (online)

All the following online experiments setup are the same as
the offline experiments, except that T is 1 second, setpoint
β is 50 bits/s, θmin = 1ms and θmax = 200ms, and each
experiment runs 100 loops.

The first group of experiments shows how the interval varies
when Bob’s moving speed changes from 0 m/s to about 1
m/s then back to 0 m/s within 90 seconds. As shown in
Figure 10, at the beginning, Alice and Bob are both static
and BGR is stabilized around 50 bits/s but with a very large
overshoot. At about 32 seconds, Bob starts to move. Suddenly,
BGR increases sharply as a response, as movement introduces
more randomness. Then, the PID controller makes the probing
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TABLE II
DIFFERENT SPEEDS

Moving Speed 0.3 m/s 0.8 m/s 1.5 m/s
BGR Mean Error 0.0984 0.2426 0.1350

BGR Osc. Freq. 0.6000 0.5167 0.4583

BGR Oversht. mean 7.6733 6.0464 5.3605
BGR Oversht. std 8.1752 5.5041 4.6627

Settling Time (loop) 3 3 4

Probing Interval-mean 0.0171 0.0191 0.0282
Probing Interval-std 0.0036 0.0026 0.0022

Duplicated Index 1.7137 0.8969 0.6120

interval increase in order to stabilize the BGR back to 50 bits/s.
At about 60 seconds, Bob stops. The BGR decreases and then
the probing interval decreases. It shows that the BGR in the
mobile phase is more stable than that in the static phase, and
the probing interval is larger in the mobile phase than that
in the static phase. The reason why the BGR overshoot in the
mobile phase is much smaller than that in the static phase will
be discussed in Section VII.

The second group of experiments shows how Bob’s moving
speed affects the system performance, shown in Table II. The
mean errors of BGR in three different speeds are smaller than
0.3, we consider this as a contribution of PID controller. The
faster the user moves, the smaller the oscillation frequency,
and the smaller the overshoot. The most important results are
that the faster the user moves, the larger the probing interval,
and the larger the efficiency. Our adaptive probing system can
adapt to speed variations; it decreases probing rate when the
moving speed rises.

The third group of experiments studies whether the type of
movement affects performance. Line and random movements
are drawn in Figure 6 and results are listed in Table III.
The probing interval is larger in the random type than in the
line type; this means the random movement provides more
randomness in the wireless channel. Furthermore, random
movements has higher efficiency.

H. Different Sites (online)

Another group of experiments are conducted to get the
difference in performance between outdoor scenario and in-
door scenario. Bob is moving with random movement. Results
are listed in Table IV, they show that the interval in indoor

TABLE III
DIFFERENT MOBILE TYPES

Motion Type Line Random
BGR Mean Error 0.0984 0.1496

BGR Osc. Freq. 0.6000 0.5167

BGR Oversht. mean 7.6733 7.3213
BGR Oversht. std 8.1752 11.5540

Settling Time (loop) 3 2

Probing Interval-mean 0.0171 0.0195
Probing Interval-std 0.0036 0.0037

Duplicated Index 1.7137 1.6496

TABLE IV
DIFFERENT SITES

Motion Type outdoor indoor
BGR Mean Error 0.0984 0.8007

BGR Osc. Freq. 0.6000 0.5333

BGR Oversht. mean 7.6733 4.7323
BGR Oversht. std 8.1752 6.4082

Settling Time (loop) 3 3

Probing Interval-mean 0.0171 0.0212
Probing Interval-std 0.0036 0.0019

Duplicated Index 1.7137 1.5146

scenario is a little larger than that of outdoor scenario. This is
caused by more complicated reflect and multi-path effects in
indoor scenarios, so the system can probe more slowly, with
a higher efficiency.

I. Different Setpoint BGRs (online)

The BGR, as setpoint β in the PID controller, has been set
at 50 bits/s in all previous online experiments. Obviously, the
higher the setpoint, the faster we can generate a key, however,
the lower the efficiency will be. This has been derived by
mathematical analysis in Lemma 3. We conduct a new group
online-mobile-indoor experiment and set BGRs at 10, 30, 50,
100, 200 and 300 bits/s, respectively. The moving speed is
about 0.3 m/s. Figure 11 shows the relationship between the
probing interval and the efficiency (duplicated index). If we
want to generate a key fast, then the probing rate will be high
but the efficiency becomes low, and vice versa. It implies that
if the users want to use the channel efficiently, they should
not set their BGR too high.

VII. CONCLUSION AND DISCUSSION

In order to satisfy users’ requirement for bit generation
rate and to use the wireless channel in an efficient way,
we introduce an adaptive channel probing system based on
Lempel-Ziv complexity and PID controller. Theoretically, we
build a mathematical model for channel probing and derive
that the bit generation rate (BGR) is proportional to probing
rate. A utility function is also proposed and shows that the
slower the probing rate, the higher the utility. However, a
too slow probing rate is not acceptable by users who want
to generate a key within a given time. In our paper, we
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avoid making an intractable decision between probing rate and
efficiency. We instead consider satisfying the users’ BGR as
the primary goal. The PID controller is used to stabilize BGR
as output according to input, such as PING interval.

A series of experiments are conducted to test performance
in different speeds, different mobile types, different sites, and
different BGRs. Experimental results show that our channel
probing system can adaptively change its probing rate accord-
ing to user movement and environment dynamics. It not only
satisfies user’s BGR requirement, but also makes the probing
process as efficient as possible.

However, from the experiments above, the overshoot of
BGR seems a bit large. It may be due to the following
three reasons. First, as the interval in the current loop is
determined by BGR in the last loop, and channel condition
is not predictable. It is impossible to stabilize BGR exactly
at setpoint. Second, the accuracy of the LZ76 calculator to
estimate entropy rate is not high enough if the RSS sequence
is not long enough. Extending PING time may improve the
accuracy of LZ76 calculator. However, extending PING time
may result in instability of the controller. Third, the parameters
of PID controller may not be optimal.

The overshoot of BGR in static phase in Figure 10 is caused
by the PID controller. In static phase, the probing interval is
very small in order to satisfy a desired BGR. If the current
BGR error is k, PID controller will subtract 1ms from last
interval to get a new interval. However, subtracting 1ms from
2ms in the static phase is very different from subtracting
1ms from 20 ms in the mobile phase. This will cause large
overshoot in static phase. Basically, that is because the control
object is nonlinear but the controller is linear.

In order to solve the control problem mentioned above
and improve the performance of the system, we can use the
adaptive controller to cope with the fact that the parameters
of the system being controlled are slowly time-varying or
uncertain, and this approach is considered as our future work.
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