
    IJCA, Vol. 18, No. 3, Sept. 2011 

ISCA Copyright© 2011 

160

A Data Model for Analyzing User Collaborations in  
Workflow-Driven e-Science 

 
 

Ilkay Altintas* and Manish K. Anand*  
University of California, San Diego, CA, USA 

 
Trung N. Vuong* 

University of California, San Diego, CA, USA  
United States Military Academy (USMA), West Point, New York  USA 

 
Shawn Bowers† 

Gonzaga University, Spokane, WA, USA 
 

Bertram Ludäscher‡ 
University of California at Davis, Davis, CA  USA 

 
Peter M. A. Sloot§ 

University of Amsterdam, Amsterdam, The NETHERLANDS 
National Research University ITMO, St. Petersburg, RUSSIA 

Nanyang Technological University, SINGAPORE 
 

Abstract 
 
 Scientific discoveries are often the result of methodical 
execution of many interrelated scientific workflows, where 
workflows and datasets published by one set of users can be 
used by other users to perform subsequent analyses, leading to 
implicit or explicit collaboration.  In this paper, we describe a 
data model for “collaborative provenance” that extends 
common workflow provenance models by introducing 
attributes for characterizing the nature of user collaborations as 
well as their strength (or weight).  In addition, through the 
implementation of a real-world bioinformatics use case 
scenario and an associated collaborative provenance database, 
we demonstrate and evaluate the effectiveness of our model in 
understanding and analyzing user collaboration in scientific 
discoveries driven by scientific workflows.  
 Key Words:  Collaborative e-Science, user collaborations, 
scientific workflow systems, provenance, workflow runs, data 
publication, querying. 
 

1 Introduction 
 

 Today, scientists need to collaborate more than ever.  Due to 
the increasing number and sophistication of data acquisition 
technologies, the amount of raw data acquired has vastly 
increased over the last two decades [9].  This explosion of 

                                                      
*
 San Diego Supercomputer Center.  E-mail:  {altintas, 

mkanand}@sdsc.edu, trung.vuong@usma.edu. 
† Department of Computer Science.  E-mail:  bowers@gonzaga.edu. 
‡ UC Davis Genome Center.  E-mail:  ludaesch@ucdavis.edu. 
§ Computational Science.  E-mail:  p.m.a.sloot@uva.nl. 

scientific data and knowledge along with the increased number 
of scientific studies that require access to knowledge from 
multiple scientific disciplines amplify the complexity of 
scientific problems, often requiring large teams to work 
together.  To address these challenges, scientists use 
computational, data, and collaborative technologies that are 
rapidly evolving. 
 The requirements for these technologies are based on a 
common goal to enable collaborative studies serving one or 
more scientific themes or domains through a computational 
experimental infrastructure, data sharing, publication and 
preservation, and a common user interface.  Community 
portals [4] and virtual laboratories [34] are popular technolo-
gies and platforms that have emerged as a response to these 
collaborative requirements of science.  These environments 
establish a common infrastructure where community members 
can access and contribute data, middleware, and computational 
tools, and launch and manage computations through their user 
spaces under generic governance rules.  
 Scientific workflows [16] often represent repeatable patterns 
of computational activities, typically designed iteratively and 
run multiple times by one or more users.  Provenance tracking 
[28] is an important feature of scientific workflow systems as 
it helps track the origin and processing history of scientific 
data products, and validate experimental processes that were 
used to derive these scientific products.  Thus, information on 
data collection, data usage, and, especially, the computational 
outcome of a scientific workflow provides a rich source for 
conducting similar future scientific studies [17].  Scientific 
workflow provenance spans workflow design and execution, 
and includes essential information for recreating the 
associations between workflow inputs, workflow outputs, 



IJCA, Vol. 18, No. 3, Sept. 2011 

 

161

workflow definitions, and intermediate data products. 
 Collaborative processes often involve the design and 
execution of multiple scientific workflows [10] where different 
members of a team conceptualize their contribution via 
workflows and make them available through a common 
infrastructure.  In this case, a scientific discovery is often the 
result of methodical execution of multiple scientific workflows 
(executed over many datasets) invoked at different times by 
one or more users.  Collaborative platforms [26] may also 
provide end-user interfaces that allow workflows to be 
executed once or multiple times by scientists.  Workflows that 
are executable within collaborative environments may use data 
from external data sources, where the scientific outputs are 
subsequently saved within local or global repositories.  Some 
systems, e.g., [4], also allow intermediate results to be saved 
within data archives together with corresponding provenance 
information. 
 Collaboration is further supported by environments such as 
myExperiment [19] in which workflows developed using 
different workflow systems (as well as additional scientific 
resources) can be published and referenced through the 
myExperiment web site.  These workflows become available 
to scientists for reuse as well as for creating more complex 
scientific experiments involving multiple workflows, thereby 
increasing the potential for collaboration across one or more 
scientific communities. 
 Collaborative eScience platforms targeting specific scientific 
communities are increasingly becoming popular, e.g., within 
disciplines such as geoinformatics [32] and metagenomics [4].  
A typical set of components for an eScience platform is 
illustrated in Figure 1.  In this paper, we focus on extending 
these platforms with collaborative provenance, i.e., views over 
underlying provenance information that highlights user 
collaboration and that is driven by publication and execution of 
scientific workflows and their use of shared data objects.  As 
shown in Figure 1, we assume an environment that provides 
system components to establish user spaces, project spaces, 
access to multiple workflow engines, shared data and 
provenance stores, and shared workflow repositories.  These 
collaborative platforms also encapsulate user actions, e.g., 
workflow sharing, workflow execution, data publishing, and 
 

workflow run provenance sharing.  As a result of the user 
actions and interactions with the system, knowledge 
concerning user collaborations accumulates.  This knowledge 
on users’ actions can be analyzed to infer implicit user 
collaborations based on system observables for data 
publishing, workflow publishing, and workflow runs.  Our 
recent paper on understanding collaborative studies through 
interoperable workflow provenance described a simple 
collaboration model [1].  [2] provided an extended definition 
for the notion of “collaborative provenance”, which establishes 
attributes for characterizing the nature of user collaborations, 
the strength of collaborations, and for determining “self” 
collaboration. 
 
 Contributions.  This paper describes a data model and its 
implementation to capture and query collaborative provenance.  
This model extends our earlier work [1] by supporting 
attributes for determining the nature (or type) and strength (or 
weight) of collaboration between multiple users and analysis 
of a researcher’s independent work (i.e., their “self” 
collaborations).  We show how our data model is effective for 
answering both standard provenance queries as well as queries 
over the collaborative provenance attributes for determining 
the nature of collaborations, their strength, and for finding 
“self” relationships.  Furthermore, through the implementation 
of a real-world bioinformatics usecase scenario and its 
associated collaborative provenance database, we demonstrate 
and evaluate how the application of the proposed model will 
lead to development of systems that will enable us to 
effectively understand and analyze users collaborations in 
scientific discoveries driven by scientific workflows. 
 The rest of this paper is organized as follows.  In Section 2, 
we describe a bioinformatics usecase for metagenomics, 
illustrate the collaborative scenario, and give example queries 
that require analysis of user collaborations.  In Section 3, we 
present a model for collaborative provenance and associated 
provenance views.  In Section 4, we describe a schema for 
storing collaborative provenance information and show how 
the views of Section 3 and queries of Section 2 can be 
expressed using this schema.  In Section 5, we explain the 
implementation of our data model schema in PostgreSQL

 

 
 

Figure 1: Components in a collaborative eScience project (not shown are the external data, service and computational 
infrastructure.) 



    IJCA, Vol. 18, No. 3, Sept. 2011 

 

162

based on an existing workflow execution provenance dataset, 
and provide an initial evaluation of the performance of 
collaborative queries.  Section 6 describes the relationships 
between the collaborative model and OPM [25].  We discuss 
other related work in Section 7 and conclude in Section 8. 

 
2 Collaborative Metagenomics in Camera 

 
 CAMERA1 (Community Cyberinfrastructure for Advance 
Marine Microbial Ecology Research and Analysis) [30] is a 
collaborative eScience platform wherein scientific workflows 
[4] enable the use of various community tools that are shared 
by a metagenomics [13] research community.  CAMERA 
enables the microbial ecology community to manage the 
challenges of metagenomics analysis, and has more than 3000 
users in over 75 countries worldwide. 
 
2.1 Using Scientific Workflows in CAMERA 
 
 CAMERA provides a component-based infrastructure that 
includes the Kepler scientific workflow system [21].  The 
Kepler scientific workflows used within CAMERA support the 
interaction of automated computational tools and human 
inspection and interaction.  Kepler is also used to record the 
provenance of data products stored within the central 
CAMERA data repository that were produced through 
CAMERA workflows.  CAMERA also enables users to create, 
share, and execute workflows specific to their own 
experiments.  Currently, the core CAMERA workflows make 
the following metagenomic analyses available to researchers:  
data quality control (specifically, QC Filter and 454 Duplicate 
Clustering), read assembly (454 Read Assembly), functional 
annotation and clustering (Metagenomic Data Annotation and 
Clustering), taxonomy binning (Taxonomy Binning), BLAST, 
and additional downstream analysis methods.  The scientific 
goals and technical details for these workflows are explained 
in [4]. 
 Figure 2 shows an example scenario with different 
observables of shared data, workflows, and workflow runs in 
CAMERA, where all or part of the output of workflow runs 
can be used as input to subsequent runs.  Figure 2a shows that 
datasets d1, d2, d5 are published by users u2, u3, and u5,  
respectively, in the shared data store.  Similarly, Figure 2b 
shows workflows {QCF, Asbly}, {Taxon, Annot}, and Comp 
being published by users u2, u4, and u5, respectively, in the 
workflow repository.  A critical aspect of the CAMERA 
workflow environment is that these workflows can be 
organized into a systematic network (or combined workflow), 
in which outputs of one workflow execution can be used as 
inputs for subsequent workflows, as show in Figure 3. 
  This allows researchers to build a complete end-to-end 
analysis stream by choosing to use different combinations of 
workflows based on their specific data and analysis needs.  For 
instance, one possible end-to end analysis stream (see Figure 
3) for researchers with raw sequencing data may entail:  (1) 

                                                      
1 CAMERA Website: http://camera.calit2.net/. 

use of the QC filter for data quality control (QCF); (2) 
assembly of the resultant reads to longer contigs (Asbly); (3) 
assignment of taxonomic information to each contig (Taxon); 
(4) annotation of genes against COG, Pfam, TIGRFAM, and 
other reference databases and clustering of genes to the desired 
level (Annot); and (5) execution of a statistical comparison, 
obtaining a comparison graph (Comp); and so on.  The first 
four steps of this workflow execution scenario are illustrated in 
Figure 2c, where a run node identifies the provenance of a 
previous workflow and the data dependencies between inputs 
and outputs of workflow execution are shown by dashed arcs 
between data nodes.  One can identify the flow of workflow 
executions leading to a data artifact that is published as a 
“scientific discovery” by chaining together the interrelated 
runs (where outputs of runs can be used as inputs to other 
runs).  The provenance information related to all these 
activities is captured in a common provenance store (see 
Figure 1). 
 In Figure 2c, user u1 performs a run r1 of workflow QCF 
with parameter settings p1 and input datasets d1 and d2.  Run r1 
produces data d3 as its output, and dependencies between the 
output and inputs of run r1 are shown using a dashed arc.  
Similarly, user u2 performs a run r2 of workflow Asbly with 
parameter setting p1, and input dataset d3.  Run r2 produces 
data d4 as its output, and dependencies between the output and 
input of run r2 are shown with a dashed arc.  User u3 performs 
a run r3 of workflow Taxon with parameter setting p1, using the 
output data d4 from run r2.  User u1 also performs run r4, using 
data from a previous run, i.e., d4 from r2, along with other 
published data d5, and produces d7 as its output.  In run r4, d7, 
depends on d4 and d5.  Although not shown in this figure, in 
general, the output of a run may depend on some but not 
necessarily all inputs of a run [5]. The statistical comparison 
step, i.e., the comp workflow contributed by user u4 in Figure 
2b, merges and compares the outputs of the Taxon and Annot 
workflow runs and has been left out of the current scenario for 
simplicity. 
 
2.2 Example Queries 
 
 Once the basic observables in Figure 2 are captured within a 
collaborative project like CAMERA, it becomes possible to 
answer collaborative queries, e.g.: 
 

1) Which data artifacts were used directly or indirectly to 
generate d7?  

 Answer: {d1, d2, d3, d4, d5} 
2) Which runs were used in the generation of d6? 
 Answer: {r1, r2, r3} 
3) If data artifact d2 is detected to be faulty, which users 

should be notified of the error?   
 Answer: {u1, u2, u3} 
4) What are all the datasets that depended on d2, in other 

words, what is the impact of d2?  
 Answer: {d3, d4, d6, d7} 
5) Which users depended on data artifact d1, directly or 

indirectly?  
Answer: {u1, u2, u3} 



IJCA, Vol. 18, No. 3, Sept. 2011 

 

163

 
Figure 2: A typical scenario for different observables of shared data, workflows and workflow executions (runs) in CAMERA:  (a) 

data {d1, d2, d5} published by users {u2, u3, u5}; (b) workflows {QCF, Asbly, Taxon, Annot, Comp} published by users 
{u2, u4, u5}; and (c} flow graph for workflow runs (customized through their parameters, p1) and related provenance data 
{d1 … d7)} in user space {u1, u2, u3}.  (Note that left to right arrows show run dependencies and right to left arrows show 
data dependencies.) 

 
 

 
 

Figure 3:  A possible end-to-end analysis stream in CAMERA with raw sequencing data 
 

6) Which users did u1 depend on, i.e., “collaborate with”, 
directly?  What is the nature and strength of each 
collaboration? 

 Answer: u2, u3 and u5 via WF(1): Data(1):Run(1), 
Data(1), and WF(1):Data(1), respectively. 

 
7) Who are the potential acknowledgments for a publication 

involving d7, i.e., which user collaborations were 
involved in the derivation of d7?  

Answer: {u1, u2, u3, u5} 



    IJCA, Vol. 18, No. 3, Sept. 2011 

 

164

 The next section further describes our collaborative 
provenance model and the views associated with the model for 
determining the various collaboration attributes we consider. 
 

3 Collaborative Provenance Views 
 
 Our collaborative provenance model is based on three user 
actions:  (1) users publishing data, (2) users publishing 
workflows, and (3) users running workflows.  In addition, we 
make the following assumptions: 
 

• All information (data, workflows and information related 
to workflow runs) is public. 

• Data and workflows within the system are globally 
identified via unique identifiers within the system and/or 
through a network of cooperating repositories. 

• The model of provenance is shared between different 
workflow systems (either directly or through mappings) 
and employs data and workflow identifiers.  Thus, data 
produced by one workflow system and consumed by 
another is uniquely identified through the provenance 
repository. 

 
3.1 Building Collaborative Provenance Views 
 
 Using observables from Figure 2, we can generate views for 
obtaining data dependencies, run dependencies, and user 
collaborations, as shown in Figure 4a, Figure 4b, and Figure 
4c, respectively.  Note that while data and run dependency  
 

edges are transitive, user dependencies are not transitive (since 
the collaboration depends on data and workflow use). 
 A data dependency view shows dependencies between 
outputs and inputs of workflow runs.  These dependencies may 
span multiple related workflow runs. Figure 4a shows the data 
dependency view for the workflow execution scenario show in 
Figure 2c.  Here, d7, which is the result of run r4, depends on 
its input dataset d4 and d5.  Dataset d4 is the result of run r2, 
which depends on the input dataset d3, directly, and d1, 
indirectly through r1.  Combining the entire set of 
dependencies gives the complete data dependency view, which 
includes data from multiple related workflow runs. 
 A run dependency view shows dependencies between runs 
depending on whether the runs used the output of previous 
runs as their inputs.  Figure 4b shows the run dependency view 
for the workflow execution scenario in Figure 2c.  Here, run r4 
used the output data of run r2 as part of its input dataset 
resulting in a run dependency view where r4 depends on r2. 
 A user collaboration view shows whether users used entities 
(data, workflows) published by other users during workflow 
executions.  Figure 4c shows the users collaboration view for 
published data, published workflow, and workflow runs based 
on the scenario in Figure 2.  A collaboration view is created 
based on a number of underlying collaborative relationships 
(shown as edge labels in Figure 4c.  Figure 5 represents an 
example showing the different types of collaborative 
relationships we consider.  A workflow collaboration (WF) is 
established between two users whenever the first user (e.g. ua 
in Figure 5) executes a workflow (wfx) that is published by a  

 
Figure 4: Collaborative provenance views in CAMERA:  (a) data dependency; (b) run dependency; and (c) user collaboration 

(based on Figure 2)  



IJCA, Vol. 18, No. 3, Sept. 2011 

 

165

 
 

Figure 5: A collaborative provenance model where a user can share collaborations with other users when he performs a workflow 
execution and uses data and workflows published by other users (collaborations are shown with directed dashed lines). 

 
 
second user (ud).  A data collaboration (Data) is established 
between two users whenever the first user (ua) performs a run 
(ri) in which the input of the run (dk) is published by the 
second user (ub).  Finally, a run collaboration (Run) is 
established between two users whenever the first user (ua) 
performs a run (ri) in which the input of the run was generated 
by a run (rj) performed by a second user (uc). 

 
3.2 Analyzing User Collaborations 
 

 Based on the collaborative provenance model, we 
introduce three attributes on top of the user collaboration 
view depicted in Figure 4c: 
 
• Nature of Collaborations (CN):  In a user collaboration 

graph, all the collaborations from one user to another user 
are reduced to a single directed edge, represented by a 
dashed arc.  This edge may represent multiple 
collaborations between the same set of users based on the 
collaboration relationship (i.e., WF, Run, and Data 
collaborations).  We  label  the collaboration edges to 
explicitly denote the nature (type) of collaboration labeled 
WF(1):  Data(1):Run(1) to indicate that (i) while 
performing a run (r1), u1 used a workflow (QCF) 
published by u2; (ii) while performing a run (r1), u1 used a 
dataset (d1) published by u2, and (ii) while performing a 
run (r4), u1 used a dataset (d4) generated by a run (r2) 
performed by u2. 

• Weight Collaboration (CW):  Each collaboration edge can 
be assigned a weight that shows the strength of 

collaboration between the two users.  Each collaboration 
is assigned a value “1” irrespective of the nature of 
collaboration.  Thus, the weight of the dependency 
between ux to uy is proportional to their respective number 
of collaborations.  When combined with CN, each type of 
collaboration is weighted separately as shown in Figure 
4c.  In Figure 4c, the dependency edge between u1 to u2 
would be reduced to 3 to indicate u1 established three 
collaborations with u2 namely, WF(1):Data(1):Run(1). 

• Self Collaboration (CS):  A “self collaboration” is a 
special case of collaboration where a user uses a self-
published dataset, a self-published workflow, or a data 
item that was generated by one of her/his previous runs.  
Self collaboration is by default disabled in a collaborative 
graph and can be activated to keep track of a users’ 
independent research or to show how often a user made 
use of their own published workflows or data.  Figure 4c 
shows a self collaboration for u2 since u2 used the 
workflow Asbly while performing run r2. 

 
 The following section describes a relational schema for 
implementing the model presented here, and demonstrates how 
the schema can be used to answer the queries of Section 2. 

 
4 Modeling Collaborative Provenance 

 
 Figure 6 shows the basic model we use for storing the 
various relationships that exist among users, datasets, 
workflows, and workflow runs.  Data artifacts are assumed to 
be globally identified via the Data class, where data artifacts 



    IJCA, Vol. 18, No. 3, Sept. 2011 

 

166

 
Figure 6:  UML-based model for representing collaborative entities and their relationships (key attributes are underlined) 

 
 

directly published by a user are represented in UserData and 
artifacts generated as a result of a workflow run are 
represented in RunData.  Thus, all artifacts represented by the 
Data class represent either UserData or RunData.  As shown, 
data artifacts can depend on other data artifacts, and similarly 
runs can depend on other runs. 

 
• a User performs one or more Runs, publishes (w-

publishes) one or more workflows, and publishes (d-
publishes) one or more data, 

• a Run executes a Workflow (where as a workflow can be 
executed by one or more runs), produces one or more 
RunData, uses one or more Data, and depends  
(r-depends) on one or more other runs, and 

• a Data depends (d-depends) on one or more other data 
(and gets used by one or more runs).  

 
4.1 Collaborative Provenance Schema 
 
 We consider the following relational schema based on 
Figure 6: 
 

• user(u, n) denotes that u is a user with name n. 
• workflow(w, u) denotes that w was a workflow 

published by user u. 
• run(r, w, u) denotes that r was a run of workflow w and 

was executed by user u, i.e., u performed r). 
• data(d, v, t) denotes that artifact identifier d had the 

value v and type t, where t is either rdata(RunData) or 
udata(UserData). 

• publishes(d, u) denotes that artifact id d was published 
by user u.  If published(d, u) then we require that d is 
user data, i.e., that there is a value v such that data (d, v, 
udata) is true. 

• uses(r, d) denotes that artifact d was input to run r.  Note 
that d can be either user or run data. 

• produces(r, d) denotes that artifact d was output by run 

r.  If produces(r, d) then we require that d is run data, 
i.e., that there is a value v such that data(d, v, rdata) is 
true. 

• ddep(dto,  dfrom) denotes a dependency between output 
data dfrom and input data dto. 

• ddep* (dto, dfrom) denotes the transitive closure of the 
ddep relation.  
 

 Note that above we represent the publishes relationship of 
Figure 6 between a User and a Workflow using the 
workflow relation.  Similarly, we represent the performs 
relationship of Figure 6 between a User and a Run using the 
run relation.  The w-publishes relationship between User and 
Workflow, and d-publishes relationship between User and 
Data are defined as one to many, but can be extended to many 
to many without a significant impact to the model in the case 
of co-authored workflows and data.  
 The schema captures the explicit dependency between 
outputs and inputs of a run (denoted d-depends on in Figure 6) 
using the ddep relation.  Most workflow engines capture this 
as provenance information.  The r-depends on relationship is 
not defined as a base table since it can be derived from ddep.  
We show below how run dependencies can be computed from 
ddep.  Typically, this information can be inferred by 
performing a transitive closure of dependency relations 
between inputs and outputs of each invocation (i.e., process 
execution) for a given run.  We also perform pre-processing 
steps to compute the transitive closure of data dependencies 
and store the result in the ddep* relation.  This pre-computed 
transitive closure relation allows faster query execution though 
it has expensive storage overhead.  The exact storage overhead 
depends on how the workflow and the data dependencies are 
structured, and can go up to O(n2), where n is the number of 
dependencies.  Although it does not impact the model discus-
sed in this paper, as future work we intend to use the reduction 
techniques discussed in [5] for storing both ddep and ddep* 
in reduced form.  An instance of this schema is show in Figure 
7, which corresponds to the example of Figure 2. 



IJCA, Vol. 18, No. 3, Sept. 2011 

 

167

 
 

Figure 7:  Relation instances of the provenance schema corresponding to the example in Figure 2 
 
 

4.2 Answering Collaborative Provenance Views 
 
 The schema described above can be used to express a 
number of different provenance views (see Figure 4) using 
standard relational query languages. 
 
 Data Dependency View.  We can directly retrieve the data 
dependency view (DATA-DEP), e.g., shown in Figure 4a, 
using the ddep relation. 
 

DATA-DEP(dto, dfrom) :- ddep(dto, dfrom) 
 
 Run Dependency View.  We can retrieve the run depend-
ency view (RUN-DEP), e.g., as shown in Figure 4b by per- 
forming a join between the ddep and produces relations. 
 
 RUN-DEP(rto, rfrom) :- ddep(dto, dfrom), 
         produces(rfrom, dfrom), 

 produces(rto, dto). 
 

 User Collaboration View.  As described in Figure 5, user 
collaborations can be due to a published workflow (C-WF), 
published data by users (C-Data), or due to run data being 
used as inputs (C-Run).  The following query can be used to 
generate user collaboration view, C(uto, e, ufrom), where e 
denotes the nature (WF, Data, Run) of the collaboration: 
 
C-WF(uto, WF, ufrom) :-run(r, w, ufrom), 
 workflow(w, uto). 
 
C-Data(uto, Data, ufrom) :- run(r, w, ufrom),  

 uses(r, d),  
 published(d, uto). 
 

C-Run(uto, Run, ufrom) :-run(r1, w, ufrom), 
 uses(r1, d),  
 produces (r2, d), 
 run(r2, w, uto). 
  
Note that the union of all of these collaborations C(uto, e, ufrom) 
= C-WF ∪ C-Data ∪ C-Run gives the user collaborations 
with edges labeled according to these attributes, where user 
ufrom shares a collaboration of type e with another user uto.  
User collaboration C also can be used to capture the “self 

collaboration”.  We can extend C to include the nature and 
weight of each kinds of collaborations by performing the 
following operations on C:  (1) perform a group by operation 
over C with concatenation of uto, e and ufrom, such that ‘uto, e, 
ufrom’ becomes a column; and (2) over the group condition 
generated in (1), retrieve the number of occurrences (n) for 
each unique tuple.  The number of occurrences of each type 
can be displayed as e(n) for each kind of edge, and appended 
with a colon “:” to show the full collaboration label, e.g., 
WF(1):Data(2).  The “group by” and “count” operations are 
the standard operations in many relational database query 
languages, e.g., SQL.  We denote such a user collaboration 
graph as C-NWS. 
 Next, using simple Datalog rules, we show how these views 
can be used to answer the example queries in Section 2. 
 
5.3 Answering Example Queries 
 
 Below we provide the Datalog queries for answering the 
example collaborative provenance questions posed for Figure 
2.  We denote query results below via the ans relation. 
 

1) Which data artifacts were used directly or indirectly to 
generate d7? 

 ans(dto) :- ddep*(dto, d7). 
2)  Which runs were used in the generation of d6? 
 ans(r) :- ddep*(dto, d6), produces(r, dto). 
3) If data artifact d2 is detected to be faulty, which users 

should be notified of the error? 
 ans(u) :- ddep*(d2, dfrom), produces(r, dfrom), run(r, 

w, u). 
4) What are all the datasets that depended on d2, in other 

words, what is the impact of d2? 
ans(dfrom) :- ddep*(d2, dfrom). 

5) Which users depended on data artifact d1, directly or 
indirectly? 

 ans(u) :- ddep*(d1, dfrom), produces(r, dfrom), run(r, 
w, u). 

6) Which users did u1 depend on, i.e., “collaborate with”, 
directly? What is the nature and strength of each 
collaboration? 

 ansu
6 (uto) :- C(uto, e, u1).  

 ansn
6 (e) :- C(uto, e, u1). 

 answ
6 (e, n) := SELECT e, COUNT (e) AS n  



    IJCA, Vol. 18, No. 3, Sept. 2011 

 

168

FROM C 
 WHERE ufrom = u1  

GROUP BY e. 
 
Note that we use SQL above to perform the necessary 
grouping and aggregation for answ

6, which gives the 
number of different kinds of collaborations e(n) between 
users u1 and uto. 

7) Who are the potential acknowledgements for a 
publication involving d7, i.e., which users’ collaborations 
were involved in the derivation of d7? 
(7a)  ans(u) :- produces(r, d7), run(r, w, u). 
(7b) ans(u2) :- produces(r, d7), run(r, w, u1),  

workflow(w, u2). 
(7c) ans(u) :- ddep*(dto, d7), produces(r, dto), 

run(r, w, u). 
(7d) ans(u) :- ddep*(dto, d7),  publishes(dto, u). 
(7e) ans(u2) :- ddep*(dto, d7), produces(r, dto), 

run(r, w, u1), workflow(w, u2). 
ans: 7a ∪ 7b ∪ 7c ∪ 7d ∪ 7e 

 
 Note that a data artifact can either be published by a user or 
be the result of a workflow execution.  So, we formulate 
queries that create a union of these conditions.  The above 
query is explained as:  (a) return the user that created the data 
d7 through the execution of a workflow; (b) return the user 
who published the workflow whose execution created data d7; 
(c) return the users who ran workflows, such that the workflow 
results shared a transitive dependency (ddep*) relation with 
data d7; (d) return users who published data such that those 
data shared a transitive dependency relation with data d7; and 
(e) return users who published the workflows such that their 
execution by other (or same) users resulted in data that shared 
a transitive dependency relation with data d7. 
 Although we used Datalog as a query language to 
demonstrate the generation of collaborative views and the 
example queries in Section 5, we show an evaluation of the 
collaborative provenance model using a relational database 
implementation and queries in PostgreSQL.  In this 
implementation, we rely on the capabilities of the PostgreSQL 
database engine for executing the queries.  Please see 
Appendix A for the SQL equivalents of these Datalog queries 
that were used in the evaluation.  As of now we are not using 
any query optimization techniques for evaluating these queries, 
but, as a part of future work, we intend to devise a set of 
optimization techniques to make collaborative queries faster. 

 
6 Implementation and Evaluation 

 
 To validate the data model and queries presented in Section 
3 and Section 4, we have implemented a collaborative 
provenance database in PostgreSQL based on a snapshot of the 
CAMERA Provenance Database.  In this section, we explain 
the preparation of this database, the reasons for simplification 
of the CAMERA database, and an evaluation of the 
performance of the queries. 
 

6.1 Database Implementation  
 

CAMERA Workflows and Provenance Database.  For the 
testing of the collaborative provenance database, we used the 
existing workflows in CAMERA [4] and the CAMERA 
Provenance Database [3] associated to runs of the workflows.  
Currently, CAMERA supports 27 metagenomics workflows, 
including QC Filter, 454 Duplicate Clustering, different 
versions of BLAST, Gamma and Alpha Diversity (Rohwer), 
and RAMMCAP for Metagenomic data annotation and 
clustering.  These workflows take metagenomics sequences 
(NT, protein, etc.) in one or more (~10) FASTA files, and can 
handle the reads (processing) of 1 million sequences.  As 
illustrated by Figure 3, the CAMERA workflows are designed 
to fit together, allowing a user to pick a few of them and create 
her own methodical scientific process by executing the 
workflows of interest in the preferred order.  To date, the 
workflows have been executed using from a few thousand to 
hundreds of thousands of sequences as input over Sun Grid 
Engine-enabled resources.  The provenance for each workflow 
execution is stored in an Oracle database.  Over the past year, 
around 6,000 workflow executions have been performed in the 
system, and the size of the provenance information for all 
workflow executions amount to around 3.7 GB.  
 With its large user base, diverse set of workflow executions 
and ever-growing data submissions, CAMERA is an ideal 
infrastructure for the testing of collaborative provenance 
model.  Through a mapping tool [3] that was built to map 
workflow data identifiers to global data identifiers in 
CAMERA, the users can export workflow data (outputs) to the 
CAMERA database and workflows can exchange data with 
other workflows.  However, the current CAMERA system is 
not ready for being used as it is for testing the collaborative 
usecase 
 Scenarios as discussed here.  The current Kepler Provenance 
Schema2 in CAMERA does not have complete data to answer 
the collaborative provenance queries.  As mentioned in Section 
4, the ddep and ddep* tables should be generated in order to 
answer collaborative queries in addition to collecting 
systemlevel information about users, data they published or 
workflows they ran.  Therefore, we based our database 
implementation on the actual runs and created a synthetic 
scenario based on these runs.  The usecase scenario and the 
data model discussed in this paper are being used as a basis for 
the development of a collaborative provenance analysis 
framework in CAMERA. 
 
 Preparation of Collaborative Provenance Experimental 
Dataset.  While Kepler’s Provenance Schema keeps track of 
process-level data dependencies, collaborative provenance 
model requires dependencies to be captured (or inferred) at the 
workflow execution level.  For instance, Figure 8 illustrates a 
workflow run with inputs d1, d2, and d3, and the final output d6.  
                                                      
2  The latest Kepler provenance schema is explained at:  
https://code.kepler-project.org/code/kepler/trunk/modules/provenance 
/docs/provenance.pdf. 
 



IJCA, Vol. 18, No. 3, Sept. 2011 

 

169

Through a set of Kepler API calls, the process-level 
dependencies can be determined as {(d4, d1), (d4, d2), (d4, d3), 
(d5, d4), (d6, d5)}.  However, the collaborative provenance data 
model needs a mapping of these process-level dependencies to 
run-level dependencies, i.e., dependency between initial inputs 
and final outputs of a workflow (ddep).  This relationship is 
described in the ddep table with the two attributes:  datato, and 
datafrom.  Thus, the ddep table associated to the scenario in 
Figure 8 consists of {(d6, d1), (d6, d2), (d6, d3)}. 
 Figure 9 depicts the tables in the relational schema of the 
Kepler Provenance Database.  Using the CAMERA database  
 

 
 
Figure 8: An example workflow execution; Ai illustrates 

Kepler’s processing components (Actors), and di 
illustrates data 

based on this schema, we retrieve the data for collaborative 
provenance from four tables, namely, workflow, 
workflow_exec, actor_fire, and port_event. workflow and 
workflow_exec provide the w for the workflow(w, u) table 
and r in the run(r, w, u) table in the collaborative provenance 
schema.  The remaining two tables (actor_fire and port_event) 
provide the direct data dependencies, i.e., data for ddep(dto, 
dfrom), in the collaborative provenance schema.  The 
tableactor_fire records information about actor firings for a 
particular actor (actor_id) in a particular workflow execution 
 (wf_exec_id).  When a workflow is executed, there are many 
intermediate inputs and outputs.  Multiple components (actors) 
in the workflow might produce intermediate outputs as 
intermediate inputs for other components before the final 
output(s) is produced.  The actors that process the data and 
produce the output(s) for a particular workflow have the same 
foreign key (wf_exec_id) in the actor_fire table.  However, for 
populating the collaborative provenance database, we are only 
interested in the data dependencies between the initial inputs  
and final outputs of the particular workflow run.  In order to 
retrieve these run-level input and output data dependencies, we 
need to determine which data among the data processed by

Figure 9:  A snapshot of the tables in the Kepler Provenance Database Schema 
____________________ 
3Actor inputs and outputs are wrapped as tokens in Kepler. 



    IJCA, Vol. 18, No. 3, Sept. 2011 

 

170

actors are the initial inputs and final output(s).  In this case, 
port_event table records the read or write event of a particular 
actor whenever the actor fires.  Each token3 read or write is 
stored as a row in this table.  A port event occurs at a time, on 
port port_id, and on channel from actor firing fire_id.  The 
token’s value is referenced by data_id.  If the data is a file, a 
reference to the contents of the file is in file_id.  If the 
portevent represents a read, write_event_id is the port_event.id 
of the port event that generated the token, otherwise (port 
event is a write) write_event_id is -1. 
 For the transformation of the process-level data into a 
workflow execution level dataset that conforms to the designed 
collaborative provenance data model, we implemented scripts 
to infer run level data dependencies from process level data 
dependencies.  The algorithm we followed in these scripts to 
retrieve records for ddep table is as follows: 
 

1) Retrieve all the tokens involved in a workflow execution 
2) Retrieve all the actors involved in this specific run 
3) For each token, determine whether there has been a write 

event from an actor that processed it.  If there has not 
been a write event, which processed the token, then it is 
the initial input.  In Figure 8, data tokens d1, d2, and d3 do 
not have an actor that processed a write event to these 
tokens. Therefore, they are initial inputs. 

4) Also for each token, determine whether there has been a 
read from an actor that processed it.  If there is not a read 
event, which processed the token, then it is the final 
output.  In Figure 8, data token d6 is the final output since 
there was no read event that processed it. 

 
 In addition, to make the query execution faster, we decided 
to compute and materialize the transitive closure of ddep 
relation (ddep*).  Since the Kepler Provenance Schema does 
not have information about user specific actions through the 
CAMERA portal (publishing data and workflows, executing 
workflows), we also created a mapping to capture this 
information from the CAMERA database. 
 
 Implementation.  The collaborative provenance schema 
was implemented as a PostgreSQL database.  We retrieved 
fifty workflow executions from the CAMERA provenance 
database and determined the run-level data dependencies 
(ddep) for each workflow.  After inserting the retrieved data 
in the ddep table, we used the WITH RECURSIVE function in 
PostgreSQL to compute the transitive closure on the ddep 
table and populate the result in ddep* table.  After we had all 
the necessary data for the collaborative schema, we expressed 
and ran all the queries and views in SQL (See Appendix A.) 
against the PostgreSQL database. 
 To measure the scalability of the implementation, we 
gradually increased the datasets by having the run-level 
dependencies expanding to 10, 25, and 50 workflow runs.  
Table 1 shows the number of rows in each table of the 
experimental database for each increment.  Note that DB_5 in 
Table 1 matches the example scenario provided in Figure 2 
with an extra workflow run, and the rest of the database is 
 

Table 1: The size of database (in # of tuples) for different data 
sets 

Tables DB_5 DB_10 DB_25 DB_50 
users 5 10 25 50 
workflow 5 10 25 50 
run 5 10 25 50 
data 11 16 31 56 
publishes 6 6 6 6 
uses 9 14 29 54 
produces 5 10 25 50 
ddep 12 17 32 57 
ddep* 17 52 307 1232 

 
 
populated similarly to expand the run and corresponding data 
dependencies. 
 
5.2 Evaluation 

 
 In this section, we present a short evaluation of the 
proposed collaborative provenance model and the implemented 
PostgreSQL database.  This evaluation has two primary goals: 

 
1) A validation of the possibility of implementing the 

proposed data model in correctly answering collaborative 
queries. 

2) An analysis of the changes in the cost of the collaborative 
views and example queries over an increasing number of 
run and data dependencies. 

 
 We execute the collaborative provenance views, and the 
example queries on datasets DB_5 through DB_50 to measure 
the feasibility and effectiveness of our implementation.  Table 
2 shows the execution times for collaborative provenance 
views, DATA-DEP, RUN-DEP and USER-COLLAB, along 
with the execution times for queries Q1 through Q7.  The 
columns represent the query response time in milliseconds for 
SQL queries over PostgreSQL and the rows represent the 
datasets that were used to run these queries.  Note that the 
execution time for Q6 and Q7 show the sum of the execution 
times for each sub-query, specifically, three sub-queries for Q6 
and five sub-queries for Q7. 
 Figure 10a shows the query response time for data 
dependency (DATA-DEP), run dependency (RUN-DEP), and 
user collaboration (USER-COLLAB) views on the datasets 
DB_5 through DB_50 on a linear time scale.  Although the 
execution time for the DATA-DEP view looks like it grows 
exponentially, Figure 10b on a logarithmic scale shows that all 
three queries scale linearly.  However, the response time 
clearly shows that the large number of datasets that share 
dependency relationships, as expected, affects the execution 
time for DATA-DEP view. 
 Similarly, Figure 11 is a plot of the query times for example 
queries Q1 through Q7. Q6 and Q7 take a longer time 
compared to queries Q1 through Q5 as expected since they are 
combined (added) cost of multiple sub-queries.  Although the 
linear time scale in Figure 11a looks like the query execution 
times do not grow too fast, a plot of the data on a logarithmic 
scale in Figure 11b shows that the execution times for test 



IJCA, Vol. 18, No. 3, Sept. 2011 

 

171

Table 2: The query execution time (in ms) for collaborative provenance views and example queries (Q1 to Q7) over 
different datasets 

 DATA-
DEP 

RUN-
DEP 

USER-
COLLAB 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 

DB_5 0.121 0.439 1.117 0.12 0.215 0.426 0.091 0.426 1.777 1.215 
DB_10 0.252 0.933 1.999 0.146 0.251 0.476 0.104 0.472 1.961 1.544 
DB_25 0.981 1.128 2.785 0.254 0.444 0.671 0.189 0.671 2.539 2.090 
DB_50 3.872 1.187 2.917 0.542 0.967 0.743 0.483 0.743 3.058 3.748 

 
 

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

runs sharing dependency

tim
e 

 [m
se

c]

Collaborative Provenance Views

DATA−DEP
RUN−DEP
USER−COLLAB

 
(a) 

0 10 20 30 40 50
10

−1

10
0

10
1

runs sharing dependency

tim
e 

 [m
se

c]

Collaborative Provenance Views

DATA−DEP
RUN−DEP
USER−COLLAB

 
(b) 

 
Figure 10: Query execution time cost for data dependency view, run dependency view and collaboration view in: (a) linear time 

scale, and (b) logarithmic time scale. 5, 10, 25 and 50 indicate the number of run dependencies in the dataset. 
 
 

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

runs sharing dependency

tim
e 

 [m
se

c]

Collaborative Provenance Views

Q1
Q2
Q3
Q4
Q5
Q6
Q7

 
(a) 

0 10 20 30 40 50
10

−1

10
0

10
1

runs sharing dependency

tim
e 

 [m
se

c]

Collaborative Provenance Views

Q1
Q2
Q3
Q4
Q5
Q6
Q7

 
(b) 

 
Figure 11: Query execution time cost for evaluation queries 1 through 7 in: (a) linear time scale, and (b) logarithmic time scale. 5, 

10, 25 and 50 indicate the number of run dependencies in the dataset 
 

 
queries grow exponentially with increasing number of data and 
run dependencies except for the execution times for queries Q5 
and Q6.   
 
 Analysis.  Through this database implementation, we have 
shown that the model can be implemented over a larger 
number of runs relative to the example scenario.  The model is 
able to answer the collaborative provenance views and 
example queries in a reasonable time for our experimental 
datasets.  Although the data dependencies in the dataset were 
not very complicated, the evaluation demonstrates that as the 
number of data dependencies increase the queries that rely 
onthese dependencies take longer.  We identified the views and 
queries that are taking longer time as potential queries to 
beoptimized, which we endeavor to do as part of our future 
work.  We also plan to expand the evaluation dataset with 

more dependencies. 
 
 Further Evaluation and Collaborative Provenance 
Browser Development.  In addition, a preliminary 
implementation of an online collaborative provenance browser 
based on HTML5 and CSS3 is currently under development.  
The browser provides three different querying interfaces for 
visualizing data dependencies, run dependencies and user 
collaborations.  We have developed a set of scripts to 
randomly create an experimental collaborative provenance 
dataset in MySQL for further evaluation of the data model and 
initial testing of the browser.  The implemented database is 
queried based on the parameter selections by the users for 
visualization of collaborative scenarios.  
 The number of rows per table in the evolving MySQL 
database currently is as follows: workflow:  200, uses: 800, 



    IJCA, Vol. 18, No. 3, Sept. 2011 

 

172

users: 300, run: 800, publishes: 750, produces: 1,200, data: 
1,950, ddep: 1,200, and ddep_star: 1,817.  We have tested the 
collaborative queries in this database and observed a 
performance scaling comparable to our tests in PostgreSQL.  
 
6 Relationship Between the Collaborative Model and OPM 

 
 The Open Provenance Model (OPM) [25] has emerged from 
the e-Science community, and has evolved as a standard 
representation to facilitate the exchange of information 
between multiple provenance systems.  OPM is based on a 
model and set of inference rules for directed acyclic 
provenance graphs, which represent causal dependencies 
between data products and processes.  OPM defines three 
primary entities (nodes):  (1) Artifacts: immutable piece of 
data; (2) Processes: actions or series of actions performed on 
or caused by artifacts; and (3) Agents: entities that enable, 
facilitate, control, or affect execution of processes.  OPM also 
defines five primary types of causal dependencies (edges) that 
comprise provenance graphs:  (1) used: a process used 
artifact(s); (2) wasGeneratedBy: an artifact was generated by a 
process; (3) wasTriggeredBy: a process was triggered by 
another process(es); (4) wasDerivedFrom: an artifact was 
derived from another artifact(s); and (5) wasControlledBy:  a 
process was controlled by an agent.  In this section, we explain 
a mapping of the basic OPM entities to the collaborative 
provenance model and our extensions to the OPM model to 
represent the relationships for publishing of data and  
workflows.  
 As it stands, the OPM specification focuses on the 
provenance for past executions of workflows.  The nodes and 
dependencies related to past workflow runs in the collaborative 
provenance model can be mapped one-to-one to the basic  
OPM model as shown in Table 3.  Artifact and Process nodes 

in OPM associate to Data and Run in the collaborative  
provenance model, respectively.  The used dependency in 
OPM is mapped to the Used edge between a Run and Data in 
our model.  Similarly, Users in the collaborative model can be 
viewed as a form of Agents in OPM, where Performed edges 
are similar to wasControlledBy edges in OPM.  Produced 
relationship can be captured by the wasGeneratedBy edge in 
OPM.  Note that the directions of the edges for Performed and 
Produced relationships change when depicted as 
wasControlledBy and wasTriggeredBy.  r-depends on and  
d-depends on (see Figure 6) relationships can be captured 
using wasTriggeredBy and wasDerivedFrom.  For example, 
{d4, r1, d1} lineage relation stating that artifact d1 was used by 
the run r1 to produce artifact d4 can be captured as artifact d4 
wasDerivedFrom artifact d1 and artifact d4 wasGeneratedBy 
workflow run r1.  Adjacent lineage relations, e.g., {d7, r3, d4} 
 Table 3 also shows the extensions to the OPM to represent 
the publishing relationships.  A special Workflow node was 
added and is defined as “a specific kind of artifact that refers to 
the workflow description that is published by the user, and gets 
executed in one or many processes (workflow runs)”.  Using a 
wasPublishedBy edge between an agent and workflow or 
between an agent and data is added to the model.  We also 
capture the relationship between a workflow and a run 
(process) that executes this workflow explicitly using the 
wasExecutedIn edge.  Figure 12 illustrates the nodes and edges 
that were added to the OPM to complete the mapping to the 
collaborative model. 
 Finally, Figure 13 shows the collaborative provenance 
model in Figure 5 using the defined OPM extensions.  
hasWFCollaborationWith, hasRunCollaborationWith, and 
hasDataCollaborationWith in Figure 13 can be inferred using 
the extended nodes and edges as follows:  

 
 
 
Table 3:  Mapping of the collaborative entities and relationships to the basic open provenance model nodes and edges  

 Collaborative Provenance Model Open Provenance Model 

Data Artifact 

Run Process 

User Agent 

Nodes 

Workflow - 

Used used 

Produced wasGeneratedBy 

Performed wasControlledBy 

r-depends on wasTriggeredBy 

d-depends on wasDerivedFrom 

wasPublishedBy - 

Dependencies 

wasExecutedIn - 

hasDataCollaborationWith - 

hasRunCollaborationWith - 

Inference Rules 

hasWFCollaborationWith - 



IJCA, Vol. 18, No. 3, Sept. 2011 

 

173

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12: The entities and edges in the standard OPM model are extended by Workflow (WF) entity, and wasPublishedBy and 

wasExecutedIn edges in the collaborative provenance model 

 
 
Figure 13: An abstract model of collaborative provenance nodes and dependencies using the extended open provenance model 
 
 

• If process p1 wasControlledBy agent a1, and workflow w1 
wasPublishedBy agent a2 and wasExecutedIn p1, then we 
can infer that a1 hasWFCollaborationWith a2. 

• If process p1 wasControlledBy agent a1 and used artifact 
A1 that wasPublishedBy agent a2, then we can infer that a1 
hasDataCollaborationWith a2. 

 
If process p1 wasControlledBy agent a1 and used artifact A1 that 

wasGeneratedBy process p2 that wasControlledBy 
agent a2, then we can infer that a1 hasRunCollaborationWith 
a2. 

 
7 Related Work 

 
 To help with the understanding of the presented ideas, we 
review some of the related work in this section.  To the best of 



    IJCA, Vol. 18, No. 3, Sept. 2011 

 

174

our knowledge, none of these projects have collected 
provenance coming out of different workflow systems, 
integrated their provenance and used the integrated provenance 
in collaborative provenance views and scenarios similar to the 
ones described in this paper.  The broad work on scientific 
workflow development was presented in several special issues 
[22], [16], books [31], and workshops [18].  In addition, the 
scientific workflow taxonomy [33] by Yu et al. introduced a 
general overview and taxonomy of state-of-the-art in scientific 
workflow development.  
 Significant current efforts on gathering provenance 
information targeted at keeping data and the associations of the 
data products are summarized in recent surveys [28], [17] and 
a taxonomy of provenance in scientific workflows was 
presented in [14].  Capturing provenance information in 
scientific workflows has proven useful in many ways including 
determining data dependencies, following the steps in 
workflow design, and even smart reruns and error recovery 
[24], [15].  In addition, if such provenance information is 
available, analytical and data mining techniques can be used to 
learn workflow design methods and rules to assist users in 
designing similar scientific workflows [17].  The framework 
described in [10] records associations between multiple related 
workflow runs.  However, our work is based on capturing 
associations not only across workflow runs, but also across 
users, where users play an active role of publishing data, or 
publishing workflows, or executing workflow runs.  [20] 
describes a collaborative scientific workflow design approach 
where multiple users work on building the same scientific 
workflow together, and the information on how the workflows 
were built jointly is recorded.  In comparison, in our approach 
we establish the link across related workflows based on the 
their execution information (provenance), where outputs of a 
run might be used as inputs to another subsequent run.  In 
addition, our approach also analyzes the collaboration across 
participating users across various dimensions of nature, 
weight, and self-collaboration.  
 We often see infrastructure projects that make it possible to 
conduct a number of multi-disciplinary scientific studies for a 
particular domain, e.g., ViroLab [29], GEON [32], and 
CAMERA [4].  In the context of CAMERA and GEON 
projects, scientific workflows run through a GridSphere portal 
environment.  The scientific products used and produced by 
the workflow are stored in data repositories that are also 
accessible through the project portal or users local computer.  
The provenance of workflow execution is stored in a data 
archive through the workflow execution portlet.  However, 
these environments currently lack queries of collaborative 
provenance.  An interesting opportunity arises from 
myExperiment [19], where workflow references can be 
combined through packs, but also any URL referring the data 
that is associated with the experiment, including other packs.  
For the collection of Scientific Discourse data, myExperiment 
follows RDF-encoded models emerging from the Semantic 
Web community.  In the ViroLab virtual laboratory [11], 
scientific applications are executed as scripts that invoke 
distributed services wrapped as Grid Objects.  Provenance is 

recorded by collecting events emitted by GridSpace engine that 
executes the experiment scripts [23].  RDFProv [12] is also a 
Semantic Web-driven system for storing and querying 
scientific workflow provenance metadata.  RDFProv uses a set 
of mapping algorithms to map an OWL provenance ontology 
to RDBMS schema.  It also uses translation algorithms to 
generate SPARQL-to-SQL queries.  In contrast, in this paper, 
we have described a pure relational database schema for the 
collaborative provenance model, and use SQL to answer the 
provenance queries.  An interesting opportunity arises as a part 
of our future work where we plan to model our collaborative 
provenance model by an OWL ontology.  An idea is to use the 
RDFProv system for storing and querying collaborative 
provenance and comparing the performance of two systems. 

 
8 Conclusion 

 
 In this paper, we described a data model to capture and 
query collaborative provenance.  This model extends our 
earlier work [1] by supporting attributes for the nature and 
strength of collaboration between multiple users and analysis 
of a researcher’s independent work, namely nature, weight, 
and self.  We also evaluated the implementation of the 
collaborative provenance data model through a bioinformatics 
usecase scenario and showed that this data model is effective 
to answer queries over collaborative provenance attributes for 
nature, weight, and self, in addition to the standard provenance 
queries.  The developed data model and its implementation 
serves as a proof-of-concept for the evaluation of the model, 
and is expected to lead to development of systems that will 
enable us to effectively understand and analyze users collabo-
rations in scientific discoveries driven by scientific workflows. 
 Advantages of such a collaborative provenance approach are 
many since it is all about recording the eScience activity, 
specifically, capturing the relationships between human users, 
workflow executions and data.  First, it builds upon existing 
knowledge and extends it without a re-architecting of 
components in a collaborative eScience platform.  Second, it 
allows for extensions to collaborating entities, e.g., instruments 
and other system modules, as long as the provenance is kept as 
system-wide assertions that adhere to a global data model. 
Most importantly, while minimizing the interrupts to scientists 
and the way they do their work, it impacts the effectiveness of 
the collaborative research by adding value by assisting 
scientific work.  This value comes from being able to analyze 
collaborations and track the footprint of data.  Third, this 
approach brings together consumers and producers of data and 
other eScience objects together as a start for proper tracking 
and attribution mechanisms. 
 
 Future Directions.  As future work, we plan to investigate 
and apply optimization approaches to the model described here 
(e.g., adopting the optimizations in [5] and [6]), adopt current 
provenance querying and visualization techniques (e.g., [7] and 
[8]), extend the collaborative model with user actions for co-
design of workflows and workflow attribution chains, and 
apply quantitative social network analysis to collaborative 



IJCA, Vol. 18, No. 3, Sept. 2011 

 

175

provenance. 
 

Acknowledgements 
 
 This research was partly sponsored by NSF SDCI OCI-
0722079 for Kepler/CORE, DOE DE-FC02-01ER25486 for 
SciDAC/SDM, NSF CEO:P DBI-0619060 for REAP, NSF 
IIS-0630033 for pPOD, NSF AGS-0619139 for COMET, NSF 
DBI-0753144 for INTEROP, the European INFSOIST-027446 
for ViroLab, Gordon and Betty Moore Foundation award to 
Calit2 at UCSD for CAMERA, and a grant from the 'Leading 
Scientist Program' of the Government of the Russian 
Federation, under contract 11.G34.31.0019. 
 

References 
 
[1] I. Altintas, M. K. Anand, D. Crawl, S. Bowers, A. 

Belloum, P. Missier, B. Ludäscher, C. A. Goble, and P. 
M. Sloot, “Understanding Collaborative Studies through 
Interoperable Workflow Provenance,” Provenance and 
Annotation of Data and Processes (IPAW 2010), Troy, 
NY, LNCS, 6378:42-58, 2010.  

[2] I. Altintas, Collaborative Provenance for Workflow-
Driven Science and Engineering, Ph.D. Thesis, 
University of Amsterdam, 2011. 

[3] I. Altintas, J. Chen, M. Sedova, A. Gupta, S. Sun, A. W. 
Lin, M. Gujral, M. K. Anand, W. Li, J. S. Grethe and M. 
Ellisman, “Extending the Data Model for Data-Centric 
Metagenomics Analysis using Scientific Workflows in 
Camera,” Proceedings of HPC for Life Sciences 
Workshop at the Sixth IEEE International Conference on 
eScience 2010, Brisbane, Australia, pp. 49-56, 2010. 

[4] I. Altintas, A. W. Lin, J. Chen, C. Churas, M. Gujral, S. 
Sun, W. Li, R. Manansala, M. Sedova, J. S. Grethe, and 
M. Ellisman, “Camera 2.0:  A Data-Centric 
Metagenomics Community Infrastructure Driven by 
Scientific Workflows,” Proceeding of the IEEE 2010 4th 
International Workshop on Scientific Workflows at the 6th 
World Congress on Services, Miami, Florida, pp. 352-
359, 2010.  

[5] M. K. Anand, S. Bowers, T. McPhillips, and B. 
Ludäscher, “Efficient Provenance Storage over Nested 
Data Collections,” EDBT ’09: Proceedings of the 12th 
International Conference on Extending Database 
Technology, ACM, 2009, Saint Petersburg, Russia, pp. 
958-969, 2009. 

[6] M. K. Anand, S. Bowers, T. McPhillips, and B. 
Ludäscher, “Exploring Scientific Workflow Provenance 
using Hybrid Queries over Nested Data and Lineage 
Graphs,” SSDBM 2009, Proceedings of the 21st 
International Conference on Scientific and Statistical 
Database Management, Springer-Verlag, New Orleans, 
LA, USA, pp. 237-254, 2009. 

[7] M. K. Anand, S. Bowers, and B. Ludäscher, “Techniques 
for Efficiently Querying Scientific Workflow Provenance 
Graphs,” EDBT ’10: Proceedings of the 13th Inter-
national Conference on Extending Database Technology, 

ACM, Lausanne, Switzerland, pp. 287-298, 2010. 
[8] M. K. Anand, S. Bowers, and B. Ludäscher, “Provenance 

Browser:  Displaying and Querying Scientific Workflow 
Provenance Graphs (Demo),” Proceedings of IEEE 
International Conference on Data Engineering (ICDE), 
Long Beach, California, pp. 1201-1204, 2010. 

[9] F. Berman, “Got data?:  A Guide to Data Preservation in 
the Information Age,” Communications of the ACM, 
51(12):50-56, December 2008. 

[10] S. Bowers, T. McPhillips, M. W. Wu, and B. Ludäscher, 
“Project Histories:  Managing Data Provenance Across 
Collection-Oriented Scientific Workflow Runs,” Data 
Integration in the Life Sciences, Springer, Philadelphia, 
PA, USA, LNCS, 4544:122-138, 2007. 

[11] M. T. Bubak, T. Gubala, M. Kasztelnik, M. Malawski, P. 
Nowakowski, and P. M. Sloot, “Collaborative Virtual 
Laboratory for e-Health,” Expanding the Knowledge 
Economy:  Issues, Applications, Case Studies, 
eChallenges e-2007 Conference Proceedings, P. 
Cunningham and M. Cunningham, Eds., IOS Press, 
Amsterdam, The Netherlands, pp. 537-544, 2007.  

[12] A. Chebotko, S. Lu, X. Fei, and F. Fotouhi, “RDFProv: 
A Relational RDF Store for Querying and Managing 
Scientific Workflow Provenance,” Data & Knowledge 
Engineering (DKE), Elsevier, 69(8):836-865, 2010. 

[13] Committee on Metagenomics:  Challenges and F. 
Applications, The New Science of Metagenomics: 
Revealing the Secrets of Our Microbial Planet, The 
National Academies Press, 2007. 

[14] S. M. Serra da Cruz, M. L. M. Campos, and M. Mattoso, 
“Towards a Taxonomy of Provenance in Scientific 
Workflow Management Systems,” IEEE Congress on 
Services-I, Los Angeles, CA, USA, pp. 259-266, 2009. 

[15] S. B. Davidson and J. Freire, “Provenance and Scientific 
Workflows:  Challenges and Opportunities,” Proceedings 
of SIGMOD 2008, ACM, Vancouver, BC, Canada, pp. 
1345-1350, 2008. 

[16] E. Deelman, D. Gannon, M. Shields, and I. Taylor, 
“Workflows and e-Science:  An Overview of Workflow 
System Features and Capabilities,” Future Generation 
Computer Systems, 25(5):528-540, 2009.  

[17] J. Freire, D. Koop, E. Santos, and C. T. Silva, 
“Provenance for Computational Tasks:  A Survey,” 
Computing in Science and Engineering, 10(3):11-21, 
2008. 

[18] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, 
D. Gannon, C. Goble, M. Livny, L. Moreau, and J. 
Myers, “Examining the Challenges of Scientific 
Workflows,” IEEE Computer, 40(12):24-31, December 
2007. 

[19] C. A. Goble, J. Bhagat, S. Aleksejevs, D. Cruickshank, 
D. Michaelides, D. Newman, M. Borkum, S. Bechhofer, 
M. Roos, P. Li, and D. De Roure, “Myexperiment:  A 
Repository and Social Network for the Sharing of 
Bioinformatics Workflows,” Nucleic Acids Research, 
vol. 38, no. doi: 10.1093/nar/gkq429, 2010. 

[20] S. Lu and J. Zhang, “Collaborative Scientific 



    IJCA, Vol. 18, No. 3, Sept. 2011 

 

176

Workflows,” IEEE International Conference on Web 
Services (ICWS), Los Angeles, CA, pp.527-534, 2009. 

[21] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. 
Jaeger-Frank, M. Jones, E. Lee, J. Tao, and Y. Zhao, 
“Scientific Workflow Management and the Kepler 
System,” Concurrency and Computation:  Practice and 
Experience, Special Issue:  Workflow in Grid Systems, 
18(10):1039-1065, 25 August 2006. 

[22] B. Ludäscher and C. Goble, Eds., “Special Section on 
Scientific Workflows,” ACM SIGMOD Record, 34:3, 
2005. 

[23] M. Malawski, T. Bartynski, and M. Bubak, “Invocation 
of Operations from Scripted-Based Grid Applications,” 
Future Generation Computer Systems, 26(1):138-146, 
2010. 

[24] L. Moreau, Ed., “Provenance and Annotation of Data:  
International Provenance and Annotation Workshop, 
IPAW 2006, Chicago, IL, USA, May 3-5, 2006, Revised 
Selected Papers,” LNCS, Springer, ISBN-10: 
354046302X, vol. 4145, 229 pages, November, 2006.  

[25] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. 
Groth, N. Kwasnikowska, S. Miles, P. Missier, J. Myers, 
B. Plale, Y. Simmhan, E. Stephan, and J. Van den 
Bussche, “The Open Provenance Model Core 
Specification (v1.1),” Future Generation Computer 
Systems, ISSN 0167-739X, DOI:  
10.1016/j.future.2010.07.005, 27(6):743-756, June 2011. 

[26] S. Pettifer, K. Wolstencroft, A. Alper, T. Attwood, A. 
Coletta, C. Goble, P. Li, P. McDermott, T. Marsh, James 
Oinn, J. Sinnott, and D. Thorne, “MyGrid and UTOPIA:  
An Integrated Approach to Enacting and Visualizing in 
Silico Experiments in the Life Sciences,” Data 
Integration in the Life Sciences, Springer, Philadelphia, 

PA, USA, LNCS, 4544:59-70, June 2007.  
[27] J. P. Scott, Social Network Analysis:  A Handbook, 2nd 

ed. Sage Publications Ltd, March 2000. 
[28] Y. L. Simmhan, B. Plale, and D. Gannon, “A Survey of 

Data Provenance in e-Science,” SIGMOD Record, 
34(3):31-36, 2005. 

[29] P. M. Sloot, P. V. Coveney, G. Ertaylan, V. Mueller, C. 
Boucher, and M. A. Marian, “HIV Decision Support:  
From Molecule to Man,” Phil. Trans. R. Soc, 
367(10.1098/rsta.2009.0043):2691-2703, 2009. 

[30] S. Sun, J. Chen, W. Li, I. Altintas, A. Lin, S. Peltier, K. 
Stocks, E. E. Allen, M. Ellisman, J. Grethe, and J. 
Wooley, “Community Cyber Infrastructure for Advanced 
Microbial Ecology Research and Analysis:  The 
CAMERA Resource,” Nucleic Acids Research (2011) 
39(suppl 1): D546-D551 first published online November 
2, 2010 doi:10.1093/nar/gkq1102. 

[31] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, 
Eds., Workflows for e-Science, Springer, 2007. 

[32] C. Youn, C. Baru, K. Bhatia, S. Chandra, K.Lin, A. 
Memom, G.Memon, and D. Seber, “GEONGrid Portal: 
Design and Implementations,” Concurrency and 
Computation:  Practice and Experience, 19(12):1597-
1607, 2007. 

[33] J. Yu and R. Buyya, “A Taxonomy of Scientific 
Workflow Systems for Grid Computing,” SIGMOD Rec., 
34(3):44-49, 2005. 

[34] Z. Zhao, S. Booms, A. Belloum, C. de Laat, and B. 
Hertzberger, “Vle-wfbus:  A Scientific Workflow Bus for 
Multi e-Science Domains,” International Conference on 
e-Science and Grid Computing, Amsterdam, The 
Netherlands, 2006. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



IJCA, Vol. 18, No. 3, Sept. 2011 

 

177

 
Appendix A 

 
 

Table A: Collaborative provenance views for data dependency, run dependency and user collaboration expressed in 
PostgreSQL 

 
DATA-DEP 

 
SELECT * 
FROM ddep star ; 

 
RUN-DEP 

SELECT t.run, f.run 
FROM ddep AS d 
INNER JOIN produces AS f 
ON d.data from = f.data 
 JOIN produces AS t 
  ON d.data to = t.data; 

 
USER-COLLAB 

CREATE VIEW userCollab AS 
SELECT r.executed user AS uto, 
  w.id AS e, 
  w.published user AS ufrom 
FROM workflow AS w INNER JOIN run AS r  
ON w.id = r.workflow id 
 
UNION 
 
SELECT r.executed user AS uto, 
  u.data AS e, 
  p.users AS ufrom 
FROM run as r 
INNER JOIN uses AS u 
ON r.id = u.run 
 JOIN publishes AS p 
  ON u.data = p.data 
 
UNION 
 
SELECT r1.executed user AS uto, 
  u.run AS e, 
  r2.executed user AS ufrom 
FROM run as r1 
INNER JOIN uses as u 
ON r1.id = u.run 
 JOIN produces as p 
  ON u.data = p.data 
JOIN run as r2 
  ON p.run = r2.id; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    IJCA, Vol. 18, No. 3, Sept. 2011 

 

178

Table B:  Example CAMERA queries Q1 through Q7 expressed in PostgreSQL 
 

Q1 
 

Which data artifacts were used directly or 
indirectly to generate data with id 194119? 

 

SELECT data from 
FROM ddep star 
WHERE data to = 194119; 

 
Q2 

 

Which runs were used in the generation of 
data with id 183215? 

 

SELECT run 
FROM ddep star 
 INNER JOIN produces ON data=data from 
WHERE data to = 183215; 

 
Q3 

 

If data artifact with id 49774 is detected to 
be faulty, which users should be notified of 
the error? 

 

SELECT distinct (executed user ) 
FROM ddep star AS d 
 INNER JOIN produces AS p ON d.data to= p.data 
 JOIN run AS r ON p. run = r.id 
WHERE d.data from = 49774; 

 
Q4 

 

What are all the datasets that depended on 
data artifact with id 49774, i.e. the 
“impact” of 49774? 

 

SELECT data to 
FROM ddep star 
WHERE data from = 49774; 

 
Q5 

 

Which users depended on data artifact 
49775, directly or indirectly? 

 

SELECT distinct(executed user) 
FROM ddep star 
 INNER JOIN produces ON data to=data 
 JOIN run ON run = id 
WHERE data from= 49775; 

 
Q6 

 

Which users did user with id 11111 depend 
on, i.e., “collaborate with”, directly? What 
is the nature and strength of each 
collaboration? 

 

SELECT uto 
FROM userCollab 
WHERE ufrom=11111; 
 
SELECT e 
FROM userCollab 
WHERE ufrom= 11111; 
 
SELECT uto, e, COUNT(e) 
FROM userCollab 
WHERE ufrom= 11111 
GROUP BY (e,uto); 
 

 
Q7 

 

Who are the potential acknowledgements 
for a publication involving data with id 
194119, i.e., which user collaborations 
were involved in the derivation of data 
with id 194119? 

 

SELECT distinct (executed user ) 
FROM produces 
INNER JOIN run ON run=id 
WHERE data = 194119; 
 
SELECT distinct (w.published user) 
FROM produces AS p 
INNER JOIN run AS r ON p. run = r.id 
JOIN workflow AS w ON r.workflow id =w. id 
WHERE data = 194119; 
 
SELECT distinct(executed user) 
FROM ddep star 
 INNER JOIN produces ON data from = data 
 JOIN run ON run = id 
WHERE data to = 194119; 
 
SELECT distinct(users) 
FROM ddep star 
INNER JOIN publishes ON data from = data 
WHERE data to = 194119; 
 
SELECT distinct (w.published user) 
FROM ddep star AS d 
 JOIN produces AS p ON d.data from = p.data 
 JOIN run AS r ON p.run = r.id 
 JOIN workflow AS w ON r.workflow id = w.id 
WHERE data from = 194119; 

 

 



IJCA, Vol. 18, No. 3, Sept. 2011 

 

179

Ilkay Altintas is the Director for the 
Scientific Workflow Automation 
Technologies Lab at the San Diego 
Supercomputer Center, UCSD where she 
also is the Deputy Coordinator for 
Research.  She currently works on 
different aspects of scientific workflows 
in collaboration with various cross-
disciplinary NSF, DOE and Moore 

Foundation projects.  She is a co-initiator of and an active 
contributor to the open-source Kepler Scientific Workflow 
System, and the co-author of publications related to eScience 
at the intersection of scientific workflows, provenance, 
distributed computing, bioinformatics, observatory systems, 
conceptual data querying, and software modeling.  Ilkay 
Altintas holds the BS and MS degrees in Computer 
Engineering, both from Middle East Technical University in 
Turkey, and a PhD degree from FNWI, University of 
Amsterdam in The Netherlands. 
 

Manish Kumar Anand is a research 
developer at the San Diego 
Supercomputer Center, University of 
California, San Diego, USA, working 
closely with domain scientists in 
ecology, and bioinformatics.  His 
research interests include scientific 
workflows, data and workflow 

provenance, storage and query optimizations, and e-commerce.  
His research expertise is in efficiently managing large 
provenance graphs (labeled DAGs), specifically, efficient 
storage, query, visualization, navigation, and summarization of 
large provenance graphs.  He has also developed application 
tools to manage large provenance information that are 
successfully integrated into Kepler Scientific Workflow 
system.  Manish holds a Ph.D. and M.Sc. in Computer Science 
from University of California, Davis, USA, and a B.Tech in 
Computer Science and Engineering from International Institute 
of Information Technology (IIIT), Hyderabad, India. 

Trung N. Vuong is the chief of Client 
Training and Support Branch (CTSB) in 
the Office of the Dean at the United 
States Military Academy (USMA), 
West Point, New York, USA.  He and 
his staff provide information technology 
support to students and faculty and staff.  
He also assists in testing and 
implementing the new technologies to 
enhance the USMA information 
technology infrastructure.  In addition, 

he teaches in the Electrical Engineering & Computer Science 
department at USMA.  His research interests include scientific 
workflows, data and workflow provenance, and network 
security.  Trung holds a Master of Science in Computer 
Science from the University of California, San Diego, USA, 
and a Bachelor of Science in Computer Science from Towson 
University in Maryland, USA.  

Shawn Bowers is an Assistant 
Professor in the Department of 
Computer Science at Gonzaga 
University, Spokane, WA.  His research 
interests are in the areas of conceptual 
data modeling, data integration, and 
scientific workflows.  He is a member 
of the Kepler Scientific Workflow 
project, where he has contributed to the 
design and development of Kepler 

extensions for managing complex scientific data, capturing and 
exploring data provenance, and ontology-based approaches for 
organizing and discovering workflow components.  Shawn 
holds a Ph.D. and a M.Sc. in Computer Science from the OGI 
School of Science and Engineering at OHSU and a B.Sc. in 
Computer and Information Science from the University of 
Oregon.  Prior to joining Gonzaga University, he was an 
Associate Project Scientist at the UC Davis Genome Center 
and was a Postdoctoral Researcher at the San Diego 
Supercomputer Center. 
 
 
 

Bertram Ludaescher leads the Data 
and Knowledge Systems (DAKS) group 
at the Department of Computer Science 
and the Genome Center at the 
University of California, Davis.  His 
current research interests include 
scientific workflows, data management, 
provenance, and declarative, parallel 
database languages.  He studied 
computer science at the University of 
Karlsruhe (now a.k.a. KIT) and 

received his PhD from the University of Freiburg, Germany.  
From 1998 to 2004, Dr. Ludaescher was a research scientist at 
the San Diego Supercomputer Center, UCSD, focusing on 
scientific data integration and workflow technologies. During 
this time, he co-founded the open source Kepler project, an 
initiative emerging from two large, collaborative research 
projects (NSF-ITR/SEEK and DOE-SciDAC/SDM).  Since 
2004, he is a Professor of Computer Science at the Department 
of Computer Science and a faculty member of the Genome 
Center at UC Davis. 
 
 
 
 

Peter M.A. Sloot studied chemistry and 
physics, finished his Computational 
BioPhysics PhD work at the Dutch Cancer 
institute (NKI) in 1988 and did various 
postdocs abroad.  In 1996 he received the 
prestigious chair in Computational Physics 
from the Dutch Physics Society and since 

2001 is a full professor in Computational Sciences at the 
Faculty of Science of the University of Amsterdam, the 
Netherlands.  More: http://staff.science.uva.nl/~sloot/ 


