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ABSTRACT
Many scientific workflow systems record provenance information
in the form of data and process dependencies as part of work-
flow execution. Users often wish to explore these dependencies
to reproduce, validate, and explain workflow results, e.g., by ex-
amining the data and processes that were used to produce partic-
ular workflow outputs. A natural interface for determining rele-
vant provenance information, which is adopted by many systems,
is to display the complete provenance dependency graph. How-
ever, for many workflows, provenance graphs can be large, with
thousands or more nodes and edges. Displaying an entire prove-
nance graph for such workflows can result in “provenance over-
load,” where the large amount of provenance information available
makes it difficult for users to find relevant information and explore
data and process dependencies. In this paper, we address the chal-
lenges of “provenance overload” through a novel navigation model
that provides operations for creating different views of provenance
graphs along with approaches for easily navigating between dif-
ferent views. Further, our proposed navigation model provides an
integrated approach for exploring, summarizing, and querying por-
tions of provenance graphs. We also discuss different architectures
for efficiently navigating large provenance graphs against an under-
lying provenance database.

1. INTRODUCTION
Most scientific workflow systems provide mechanisms for record-

ing workflow provenance, i.e., the details of a workflow run includ-
ing data and process dependencies [12, 21, 26]. This provenance
information is often displayed to users visually as one or more de-
pendency graphs [17, 6], e.g., where nodes denote data items or
processes, and edges denote causal relationships between nodes.
Displaying such graphs is especially useful for small workflows, in-
volving only a few data sets and processes, since users can quickly
see every data product, process, and dependency associated with
a run. However, for many real-world scientific workflows prove-
nance graphs may be large (e.g., thousands of nodes and edges)
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due to the complexity of the workflow, the size of input data sets,
and the number of intermediate data sets produced [10, 1, 12]. For
large provenance graphs, understanding and exploring provenance
information becomes a significant challenge for users.

For example, Fig. 1 shows two different provenance graphs gen-
erated from real-world workflows: Fig. 1a shows a run of the fMRI
analysis from the first provenance challenge [21], and Fig. 1b shows
a run of a standard phylogenetic tree inference workflow [6]. While
the provenance graph of Fig. 1a can be quickly understood (since it
contains only a few nodes and dependencies), the graph of Fig. 1b
is much larger and requires considerable effort to fully understand
the associated provenance information.

The goal of the work described here is to allow users to spec-
ify and navigate between different abstractions (or views) of prove-
nance graphs such that by displaying these views, users can obtain
the same benefits of quickly understanding and exploring prove-
nance information as for complete (but small) provenance graphs.
Specifically, we present a navigation model for scientific work-
flow provenance that consists of operations for creating, refining,
and switching (or navigating) between different views of workflow
provenance. We consider three main levels of granularity. An ac-
tor dependency graph consists of the types of processes (or actors)
used in a workflow run and the flow of data between them. An in-
vocation dependency graph consists of individual processes (or in-
vocations) of the workflow run and the corresponding flow of data.
And a flow dependency graph consists of the detailed data items
input to and produced by the workflow run and their causal depen-
dencies. In addition, the model supports operations that allow all
or a portion of each provenance view to be expanded or collapsed,
grouped into composite structures, and filtered or exposed using
a high-level provenance query language. The navigation model is
also based on a generic model of provenance that subsumes con-
ventional approaches for representing workflow provenance while
supporting more advanced workflow computation models that per-
mit structured data and update semantics [1].

This paper is organized as follows. We describe the provenance
representation scheme and the associated high-level provenance
query language used by our navigation model in Section 2. Based
on the provenance model, we describe the views and operations
supported by the navigation model in Section 3. We also present
in Section 3 different architectures for efficiently navigating large
provenance graphs against an underlying provenance database. Fi-
nally, we describe the relationship betwen our work and existing
work on representing, querying, and visualizing provenance graphs
in Section 4, and summarize our contributions in Section 5.



(a) Provenance graph of a small trace (b) Provenance graph of a large trace

Figure 1: Two different provenance graphs displayed using the provenance browser of [6]: (a) shows a provenance graph for a
relatively small trace, whereas (b) shows a provenance graph for a much larger trace.

2. PROVENANCE MODEL
Consider the workflow in Fig. 2a denoting a straightforward XML-

based implementation of the fMRI image processing pipeline used
in the first provenance challenge [17]. We refer to steps in the work-
flow as actors that are invoked over input data supplied by previous
steps. This workflow takes a set of anatomy images representing
3D brain scans and a reference image, and applies the actors in
Fig. 2a as follows.

1. AlignWarp is invoked over each anatomy image to produce a
set of “warping” parameters;

2. Reslice is invoked over each set of warping parameters to
transform the associated anatomy image;

3. Softmean averages transformed images into an atlas image;

4. Slicer produces three different 2D slices of the atlas; and

5. Convert creates a graphical image for each 2D slice.

In this implementation of the workflow, each invocation of an
actor receives an XML structure, performs an update on a portion
of that structure, and then sends the updated version of the structure
to downstream actors (see Fig. 2b). Here we assume that each XML
structure denotes an unranked, labeled ordered tree representing
workflow data products, each tree node has a unique identifier, and
tree nodes represent either collection tokens or data tokens (which
wrap complex objects or reference external data, e.g., stored within
a file). A collection token may be an internal node (for non-empty
collections) or a leaf node (for empty collections), whereas data
tokens are leaf nodes only.

Representing Provenance with Flow Graphs. Fig. 2b shows the
first invocation of each actor for a typical run of the workflow using
our provenance model [1]. The invocation of the AlignWarp actor
(shown as AlignWarp:1) modifies the first AnatomyImage collec-
tion (node 2), and replaces its contents with a WarpParamSet data
token (node 11). Similarly, the invocation of the Reslice actor uses
this WarpParamSet to generate a new Image and Header data to-
ken (nodes 13 and 14, respectively). Since only a portion of an
input data structure D is typically modified by an invocation, we

also represent explicit (i.e., “fine-grained” or node-level) data de-
pendencies as part of the provenance of a run. For example, the
arrow from node 2 to node 11 in Fig. 2b states that the WarpPa-
ramSet was created from the AnatomyImage collection by the first
invocation of AlignWarp. Note that implicitly, node 11 depends on
each of the descendents of node 2 (which includes nodes 6-10 in
the figure). Similarly, each descendent of a collection implicitly
inherits the dependencies of its ancestors. In our example, node 13
is a descendent of node 12 (a ReslicedImage collection), and thus
implicitly depends on node 11. Taken together, Fig. 2b denotes a
portion of the flow graph for a run of Fig. 2a; in particular, this flow
graph shows only the information associated with the first invoca-
tion of each workflow actor.

Flow graphs can be used to derive standard process (or invoca-
tion) and data dependency graphs. For instance, Fig. 3a shows an
invocation dependency graph for the flow graph shown of Fig. 2b,
where nodes represent invocations of actors and edges represent
dependency relationships between invocations. Fig. 3b shows a
corresponding data dependency graph, where nodes denote data
items and edges denote dependency relations between data items.
In general, edges within data dependency graphs are not labeled. In
Fig. 3b, we explicitly label dependency edges with the invocation
that created the item at the end of the arrow. For example, a depen-
dency x i→ y states that the data item y was produced by invocation
i from the data item x. Note that while the flow graph can be used to
infer data and invocation dependency graphs, the flow graph cannot
be reconstructed from these two graphs alone.

Querying Provenance with QLP. Our provenance model supports
a high-level query language for provenance (QLP) [2], that allows
users to easily express complex provenance queries. QLP queries
can be posed against flow graphs through a number of different
QLP constructs, some of which are described below. These con-
structs are used to query distinct dimensions of the flow graph rep-
resenting: (i) dependency paths over nodes and invocations; (ii)
flow relations among input and output structures of invocations;
and (iii) structural relations among nodes within and across data
structures.



(b).  Flow graph with fine-grained node dependencies for the first invocation of each actor
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Figure 2: (a) Example XML-based workflow implementing the fMRI image analysis of the first provenance challenge; (b) The flow
graph showing the first invocations of each actor for a typical run.
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Figure 3: (a) The implied invocation dependency graph for the
run, with the first invocations of each actor shown in red; and
(b) The implied fine-grain data dependency graph for the data
items in Fig. 2 (b).

A QLP path query acts as a filter over the paths of a dependency
graph to return a corresponding subgraph. For example, the follow-
ing QLP dependency queries

* derived 19 (1)
6 derived * (2)
#Softmean through #Convert derived * (3)

return (1) dependencies denoting the set of paths starting from any
node and ending at node 19, (2) dependencies denoting the set of
paths starting at node 6 and ending at any node, and (3) dependen-
cies denoting the set of paths starting at invocations of Softmean
and go through invocations of Convert.

A QLP flow-relation query is a type of path query that addition-
ally filters dependency graphs based on flow relations. In particular,
these queries select specific versions of nodes within a flow graph
based on whether the nodes were used as inputs or outputs of spe-
cific invocations. For example, the following QLP queries

* @in derived 19 (4)
18 @out Slicer:1 derived * (5)

return (4) dependencies denoting paths that start at a node in the
input data structure of the workflow run and end at node 19, and

(5) dependencies denoting paths that start at node 18 positioned in
the output of the first invocation of Slicer.

A QLP structural query is a type of path query that additionally
filters dependency graphs based on data types and structural rela-
tionships. In particular, these queries select nodes within a flow
graph based on whether they satisfy XPath expressions.

For example, the following query
* derived //AtlasXGraphic (6)

returns (6) lineage relations denoting paths that end at AtlasX-
Graphic nodes.

Finally, QLP queries can combine simple path, flow-relation, and
structural filters to query all dimensions of flow-graph simultane-
ously. For example, the following query returns the set of depen-
dencies denoting paths that end at a descendent node of an AtlasIm-
age collection output by a Slicer invocation.

* derived //AtlasImage//* @out Slicer (7)

Combined queries such as (7) can be (naively) evaluated by (i) ob-
taining the structures resulting from @in and @out version oper-
ators, (ii) applying XPath expressions to these structures, and (iii)
applying lineage queries to the resulting nodes. For example, when
applied to the portion of the flow graph shown in Fig. 2b, query (7)
is evaluated by: (i) obtaining the output structure of the Slicer in-
vocation; (ii) executing the XPath query ‘//AtlasImage//*’ over the
structure obtained in (i), returning nodes 16–19; and (iii) issuing a
separate lineage query for each node, i.e., ‘* derived 16’, ‘* derived
17’, ‘* derived 18’, and ‘* derived 19’, where the answer contains
the unique set of resulting lineage relations.

3. NAVIGATION MODEL
While provenance query languages such as QLP can help users

manage the complexity of large provenance graphs, they require
knowledge of the provenance graph before queries can be issued.
These languages also provide limitted support for navigating prove-
nance graphs (namely, by repeatedly issuing different queries).
Thus, additional techniques are required to help users explore large
provenance graphs who a priori do not know which portions are
relevant, who want to display the graph in an aggregated or sum-
marized form, or who wish to quickly navigate between different
provenance views. This section describes a provenance navigation
model that is designed to help address these issues.

The navigation model provides an integrated approach for ex-
ploring, summarizing, and querying all or select portions of prove-
nance graphs through a set of navigation operators (see Fig. 4).
These operators allow users to: (i) explore and navigate various



Operator Versions Effect on Current Provenance View
expand expand : T ×A→ Set(I) Replace an actor with its invocations, and an invocation with its dependencies

expand : T × I→ Set(D)
collapse collapse : T ×Set(I)→ A Replace invocations with their actor, and dependencies with their invocation

collapse : T ×Set(D)→ I
group group : T ×Set(A)→ GA Replace actors with a composite actor, and invocations with a composite invocation

group : T ×Set(I)→ GI
ungroup ungroup : T ×GA→ Set(A) Replace a composite actor with its actors, and a composite invocation with its invocations

ungroup : T ×GI → Set(I)
filter filter : T ×Q→ Set(D) Filter flow graph according to a given query Q
navigate navigate : T ×V ×Set(Op)→V Apply a set of operations to the current provenance view
standard views ADG : T ×V →V Replace current view with actor, invocation, or flow graph view, respectively

IDG : T ×V →V
FDG : T ×V →V

flow-graph views EDEP : T ×V →V Replace current view with expanded, collapsed, or data flow dependency view, respectively
CDEP : T ×V →V
DDEP : T ×V →V

Figure 4: Navigation model operators, where T , A, I, D, GA, GI , Op, Q, and V are the set of traces (flow graphs), actors, invocations,
dependencies, grouped actors, grouped invocations, navigation operations, QLP queries, and views, respectively.

provenance views at different levels of granularity; (ii) summarize
(or abstract) portions of views through grouping; and (iii) filter (or
query) provenance views using QLP. We first describe the different
views (i.e., levels of granularity) of flow graphs supported by the
navigation model, we then describe the navigation approach and
operators supported by the model, and end this section by describ-
ing architectural issues associated with implementing the model.

3.1 Provenance Views
A workflow specification is composed of actors together with

inter-actor connections. These connections specify the desired flow
of data between actors. During workflow execution, actors are ex-
ecuted such that data flow is constrained by the given actor con-
nections. Each actor may be invoked multiple times during work-
flow execution, where each invocation receives specific data items
and produces new data items that are dependent on some or all of
the given input data. Thus, we consider three separate levels of
granularity for viewing flow graphs in the navigation model, corre-
sponding (from highest to lowest granularity) to the actor level, the
invocation level, and the data-dependency level.

Specifically, an actor dependency graph (ADG) is a high-level
view of a flow graph that consists of actors and their dataflow con-
nections. An ADG consists of only those actors (and corresponding
connections) that were used during workflow execution. Fig. 5a
shows an example ADG in which nodes a and b are actors, and
edges represent the flow of data of the workflow run. An invoca-
tion dependency graph (IDG) is the next lower-level view of a flow
graph that consists of invocations and their dataflow connections.
Fig. 5b shows an example IDG in which a:1, a:2, b:1, and b:2 de-
note invocations of actors a and b, respectively. The lowest level
of granularity is a flow dependency graph (FDG), which is a view
of a flow graph that contains node-level data dependencies between
input and output structures received and produced by invocations.
Fig. 5c shows an example FDG containing different versions of the
tree structure rooted at node 1 together with the corresponding de-
pendencies (labeled with invocations). Note that an IDG is similar
to the invocation-dependency graph of Fig. 3a, whereas an FDG is
similar to the data-dependency graph of Fig. 3b.

In addition, we also consider three distinct representations of an
FDG (see Fig. 6) that can further simplify the display of dependen-
cies of a flow graph. An expanded flow dependency view (EDEP)
shows only those nodes in an FDG that participate in a dependency
relationship together with the descendents of these nodes (for de-
pendency nodes that are collections). A collapsed flow dependency
view (CDEP) is similar to an EDEP, but does not show the corre-
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sponding descendent nodes of collections. A data flow dependency
view (DDEP) shows only dependencies of data nodes. Fig. 6 shows
each of these three views for the FDG of Fig. 5c. We note that the
DDEP view can be used to construct a standard data-dependency
graph as in Fig. 3b. In general, the CDEP view (collapsed at the
collection level) will produce the smallest flow-dependency graph
and the EDEP will produce the largest flow-dependency graph of
the three sub-views (CDEP, EDEP, and DDEP). Each of these, how-
ever, will be smaller than the FDG, which displays all nodes input
to and output by each invocation and not just those that were used
to derive new data items.

Within the navigation model, a user can switch to any of these
provenance views and sub-views (ADG, IDG, FDG, EDEP, CDEP,
and DDEP) from their current provenance view. That is, each view
can be used as a simple form of a navigation operator (see Fig. 4)
that replaces the current view with the corresponding view. This
allows users to bring all elements in the provenance view to the
same level of granularity.

Although not shown in Fig. 4, the navigation model also supports
a select operator that allows users to pick items within a view to
display various details of the item. Selecting an item, however, does
not modify the current provenance view. For example, by selecting
an invocation, a user can determine the parameter values passed to
the invocation, the duration of the invocation, and so on. Similarly,
by selecting a connection between two invocations, a user can see
the details of the data structure passed between them. For example,
in Fig. 5b, if a user selects the edge between invocation a:1 and b:1,
(shown as a QLP expression), a new pop-up window would open
in a browser and display the structure produced by invocation a:1.
Selecting an edge in an actor dependency graph would similarly
display the structures of the data passed between the invocations of
each of the two actors. For example, in Fig. 5a, if a user selects
the output edge of actor a (shown as a QLP expression), then all
outputs of invocations of a that were provided to invocations of
actor b are displayed (referred to as a “combined” view of the data
structure).

3.2 Navigating Provenance Views
Besides navigating to specific, pre-defined provenance views, the

navigation model also provides the collapse, expand, group, un-
group, and filter operators for constructing new views (see Fig. 4).
Given a set of these navigation operators, a new view is constructed
using the navigate operation. If vi is the current provenance view
(i.e., a provenance graph), t is the trace, and {op1,op2, . . .} is a set
of operators,

navigate(t,vi,{op1,op2, . . .}) = vi+1

returns the new provenance view vi+1 that results from applying
the navigation operators to vi over trace t.

We describe each of the navigation operators below. We assume
that w is a workflow consisting of actors A, and that t is a trace (i.e.,
a flow graph) of a run of w that contains invocations I, dependencies
D, and data structures S. Note that a dependency 〈n1, i,n2〉 ∈ D
states that node n1 was used by invocation i to produce node n2
where n1 and n2 are each part of structures s1 and s2 input to and
output by i, respectively.

3.2.1 Expand and Collapse
Instead of displaying the entire provenance graph at the same

level of granularity, the expand and collapse operators allow users
to explore separate portions of the graph at different levels of detail.
We consider two versions of the expand operator. Given an actor
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a ∈ A of trace t,

expand(t,a) = {i1, i2, . . .}

returns the set of invocations i1, i2, · · · ∈ I of a in t. Alternatively,
given an invocation i ∈ I of trace t,

expand(t, i) = {d1,d2, . . .}

returns the set of dependencies d1,d2, · · · ∈ D introduced by i in t,
where d = 〈x, i,y〉 for nodes x and y.

The collapse operator acts as the inverse of expand. Namely,
given a set of of dependencies {d1,d2, . . .} ∈ Set(D) generated by
an invocation i, where Set(D) denotes the powerset of D,

collapse(t,{d1,d2, . . .}) = i

returns invocation i. Note that a user will typically select a single
dependency to collapse, which will result in all such dependencies
of the same invocation to also collapse.

Similarly, given a set of invocations {i1, i2, . . .} ∈ Set(I) of an
actor a,

collapse(t,{i1, i2, . . .}) = a

returns actor a. Note that when a user selects only a single invoca-
tion to collapse, this operation will result in all such invocations of
the same actor to also collapse.

To illustrate, Fig. 5 shows the result of applying the expand op-
erator to the actor dependency graph in Fig. 5a, resulting in the
new graph view shown in Fig. 5b. In this example, all actors are
expanded using the operator expression expand(*). Here we use
the wildcard symbol ‘∗’ to denote the set of all actors in the view.
When expand is applied to each invocation of Fig. 5b the view in
Fig. 5c is returned. Alternatively, Fig. 7 shows the result of ap-
plying the expand operator to only a portion of the correspond-
ing dependency graph. As shown, only actor a is expanded in the
actor dependency graph of Fig. 7a, which results in the (mixed)
view of Fig. 7b. Expanding invocation a:1 in Fig. 7b results in the
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provenance view shown in Fig. 7c, which contains each level of
granularity—actors, invocations, and flow dependencies—within a
single graph.

3.2.2 Group and Ungroup
The group and ungroup navigation operators allow actors and

invocations to be combined into composite structures. Unlike other
approaches [12] that infer groups based on a user’s selection of
“relevant” actors, the navigation model explicitly allows users to
control which items should be grouped and supports both actor and
invocation granularity.

We consider two versions of the group and ungroup operators.
Given a set of actors {a1,a2, . . .},

group(t,{a1,a2, . . .}) = g{a1,a2,...}

returns a composite actor g{a1,a2,...} over the given set of actors.
Similarly, given a composite actor g{a1,a2,...},

ungroup(t,g{a1,a2,...}) = {a1,a2, . . .}

returns the set of actors corresponding to the group (i.e., ungroup is
the inverse of group). Similarly, for a set of invocations {i1, i2, . . .},

group(t,{i1, i2, . . .}) = g{i1,i2,...}

returns a composite invocation g{i1,i2,...}; and given a composite
invocation g{i1,i2,...},

ungroup(t,g{i1,i2,...}) = {i1, i2, . . .}

returns the set of invocations that comprise the group.
Fig. 8 shows three examples of using the group operator. In

Fig. 8a, invocations of the same actor are grouped, i.e., a:1 and a:2
form one group and invocations b:1 and b:2 form a different group.
Here we use the shorthand notation ∗:1 and ∗:2 to construct these
groups. In Fig. 8b, invocations with the same invocation number
are grouped, i.e., a:1 and b:1 form one group and invocations a:2

group({a:1,b:2}) 
group({a:2, b:1})

a:1 b:1

a:2 b:2

(a) (b)

G1:1
a:1 b:2

G2:1
a:2 b:1

Figure 9: An example of an invalid grouping of invocations
causing a cycle in the resulting invocation dependency graph.

and b:2 form a different group. Similar to Fig. 8a, we use the short-
hand notation a:∗ and b:∗ to form the groups in Fig. 8b. In Fig. 8c,
actors a and b are grouped, resulting in a composite actor with two
distinct invocations. Unlike in Fig. 8b, these invocations are of the
same actor group and have different invocation numbers, whereas
in Fig. 8b two distinct groups are created. In general, forming in-
vocation groups explicitly, as opposed to first forming actor groups
and then expanding actor groups, supports grouping at a finer-level
of granularity by allowing various patterns of composite invoca-
tions that are not possible to express at the actor level.

As shown in Fig. 8, composites created by the group operator
are assigned new identifiers. In addition, the inputs, outputs, and
dependencies associated with grouped items are inferred from the
underlying inputs, outputs, and dependencies of the invocations of
the groups. For dependencies in particular, this often requires com-
puting the transitive closure of dependencies associated with invo-
cations of the group, e.g., as in Fig. 8b-c.

When a group is created at the actor level, expanding the group
results in a correspondingly grouped set of invocations, e.g., as
shown in Fig. 8c. These invocations are constructed based on the
invocation dependency graph. In particular, each invocation group
of the actor group contains a set of connected invocations, and no
invocation within an invocation group is connected to any other
invocation in a different invocation group. Thus, the portion of
the invocation graph associated with the actor group is partitioned
into connected subgraphs, and each such subgraph forms a distinct
invocation group of the actor group. Similarly, when an invoca-
tion group is expanded, this composite invocation is used in the
flow dependency graph, resulting in a provenance view where de-
pendencies are established between output and input data, without
intermediate data in between. This approach allows scientists to
continue to explore dependencies for grouped invocations (since
the dependencies are maintained through groups).

We limit the use of the group operator such that the resulting
actor and invocation dependency graphs with composites remain
cycle free. Thus, grouping a set of invocations or actors should not
introduce cycles in the ADG or IDG. For example, Fig. 9 shows
invocations a:1 and b:2 grouped as G1:1 and a:2 and b:1 grouped
as G2:1. The invocation dependency graph that results has the out-
put of G1:1 connected to the input of G2:1 and vice-versa, thereby
resulting in a cycle between G1:1 and G2:1. The navigate opera-
tor checks to ensure that a given group operation will not result in
cyclic dependency graphs.

3.2.3 Filter
Besides grouping and expanding provenance views, the naviga-

tion model also allows provenance views to be queried using QLP.
Issuing a query results in the portion of the provenance view to be
displayed that corresponds to query answer. A provenance graph is
refined in this way using the filter operation of Fig. 4. Given a QLP
query q,

filter(t,q) = {d1,d2, . . .}

returns the set of dependencies that result from applying the query
to the flow graph. The navigate operation uses these dependencies
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Figure 10: Exploring and managing provenance graphs: visu-
alizing, summarizing, filtering, and navigating relevant sections
of provenance views.

to either remove or add items to the current view. Items are added
to a view if the current view is based on a more selective query.

3.2.4 Combining Operators
Here we describe a simple example that illustrates how the in-

tegrated environment provided by the navigation model enables
users to explore provenance information by visualizing, summariz-
ing, and filtering relevant sections of provenance views. Consider a
user who is interested in exploring the provenance of an execution
of the fMRI workflow of Section 2. Using the navigation model,
the user begins by displaying the provenance of the run at the high-
est level of granularity, i.e., by visualizing the actor dependency
graph (ADG) as shown in Fig. 10a.

Assume that the user first decides to view the outputs generated
by the workflow, which is performed by issuing the select opera-
tion over the outgoing edge of the actor Convert in Fig. 10a. After
examining the output structure, assume that the user notices that
one of the data products—namely, the AtlasXGraphic—is not the
expected output, i.e., the data product seems to be incorrect.

To check whether the product was generated correctly, the user
decides to display the lineage of the AtlasXGraphic in more detail
by navigating from the current actor dependency view to the invo-
cation dependency view for this data item. The user creates this
view by configuring a filter operator using the QLP query

* derived //AtlasXGraphic,

which selects only those items that share dependency relationships
with the data item AtlasXGraphic. The user also applies the opera-
tor expand(*) to display the invocation dependency graph (relative
to the filter). After specifying these operators, the user applies the
navigate function to generate and display the new provenance view,
which is shown in Fig. 10b.

While analyzing this new provenance view, the user suspects that
the first invocation of each displayed actor (*:1) might have led to
the incorrect AtlasXGraphic output (e.g., based on inspecting the
parameters or intermediate products produced by one or more of
the invocations). To explore whether the problem is due to these

invocations, the user further refines the provenance view by dis-
playing only the first invocation of actors that share a dependency
relationship with the AtlasXGraphic data product by issuing the fil-
ter operator using the QLP query

AlignWarp:1 through //AtlasXGraphic,

which selects the lineage items that start from AlignWarp:1 and
end in AtlasXGraphic. After applying the navigate function, the
resulting provenance view is shown in Fig. 10c.

Before looking at the detailed data items and dependency rela-
tionships, the user decides to further simplify the invocation depen-
dency graph by grouping the Reslice, Softmean, and Slicer invoca-
tions into a single composite invocation. In particular, this group
restricts the data items in the view to the output of AlignWarp and
the input to Convert. The summarization operation is performed
by specifying a group over the three invocations, resulting in the
provenance view of Fig. 10d.

The user is now ready to analyze the fine-grained data dependen-
cies among the relevant portions of the provenance graph. The user
first expands the resulting invocations (producing a flow depen-
dency graph), and then applies the DDEP view operator, as shown
in Fig. 10e. The user can now analyze the dependency relationships
to verify that the relevant intermediate data products are correct and
that they were correctly derived based on the dependencies (e.g., to
check wether the correct warping parameters were used and that
the slice was correctly generated). Note that the dashed edge be-
tween node 11 and 18 denotes that the dependency is the result of a
composite invocation. If the user wishes to further explore the de-
pendencies represented by the composite invocation, the edge can
be ungrouped by operator ungroup(G1:1) to expose the detailed de-
pendency information, which in this case would result in the data
dependency graph of Fig. 3b.

This example demonstrates how the operations of the navigation
model can provide a flexibile approach for summarizing, refining,
and navigating different provenance views, which is essential for
users needing to explore and manage large provenance graphs.

3.3 System Architecture
The navigation model allows users to navigate from the current

provenance view vi to another provenance view vi+1 by applying a
set of navigation operators Opi+1. Once a user issues a set of navi-
gation operators Opi+1, the navigation system must compute a new
provenance view vi+1, which then replaces the display of the cur-
rent view vi. While exploring large provenance graphs, we expect
users to repeatedly issue navigation operations, which would result
in frequent changes to the current provenance view. Especially for
large provenance graphs, it is important to ensure fast response time
so that new views can be computed and displayed quickly. Here
we compare different architectures and approaches for implement-
ing the navigation model over large provenance graphs, as shown
in Fig. 11.

Each of the alternative architectures of Fig. 11 have the following
common components: a server-side Provenance Store that acts as
a database repository for provenance traces; a current provenance
view vi that is displayed by the Current View component; and a
Navigation Engine that stores the current view, receives a new set
of navigation operations Opi+1 from the user, computes the new
provenance view vi+1 from user operations, and updates the current
view vi with the new computed view vi+1 via the Current View
component.

In the architecture of Fig. 11a, the Navigation Engine is located
at the client. To compute the initial provenance view v1 for a work-
flow run, all related provenance information stored in the Prove-
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Figure 11: Different architectures for implementing the navigation model: (a) new views computed at the client (browser); (b) new
views computed at the server (database); and (c) the difference (∆) between current and new views computed at the server (database).

nance Store is initially loaded into a client-side Trace Information
component. The Navigation Engine uses the trace stored at the
Trace Information component to compute the initial view v1 (i.e.,
the actor dependency graph), and this view is displayed by the Cur-
rent View component. When a user issues a new set of navigation
operations Opi+1 against the current view vi, the Navigation En-
gine computes a new view vi+1 by applying the set of operators
Opi+1 to the recently stored view vi, and then updates the current
view vi with new computed view vi+1. This approach is largely an
in-memory-based approach, i.e., the related provenance informa-
tion is first loaded from the server (via the Provenance Store) to the
client (via the Trace Information component). This in-memeory ap-
proach can speed up view computation, as the required provenance
information is temporarily stored at the client. However, depend-
ing on the size of the trace, this approach may require significant
CPU and memory resources [1] for answering queries and for stor-
ing the initial trace, data products, query results, and views. This
cost also includes the time required to transfer the trace information
from the Provenance Store to the client-side application, which for
larger traces can take a considerable amount of time.

Fig. 11b suggests a different architecture in which the Naviga-
tion Engine is split between the client and server. In particular,
when the client-side Navigation Engine receives a new set of nav-
igation operators Opi+1 from the user, these operations are sent to
the server-side Navigation Engine (which includes the Provenance
Store). The server-side Navigation Engine computes and stores
the new view vi+1 on the server and then sends the new view to
the client. Thus, the architecture of Fig. 11b differs from Fig. 11a
by storing the trace and computing and storing new views on the
server, thus avoiding the storage and computation costs needed for
the client in Fig. 11a.

We can extend the approach of Fig. 11b in Fig. 11c by addition-
ally minimizing the amount of information sent to construct a new
view, thus (for many cases) reducing the communication costs be-
tween the client and server. In particular, in addition to computing
the new view vi+1 on the server, we also compute a set of changes
(or “diffs”) ∆ : V → V between the current view vi and the new
view vi+1 such that ∆(vi) = vi+1. In the normal way, each ∆ con-
sists of a set of nodes and edges that should be added to and re-
moved from vi to generate vi+1. Instead of returning vi+1 (which
will typically overlap with vi), we only return the set of changes ∆,
which are used by the Current View component to display the new

view. Both of the approaches in Fig. 11b and Fig. 11c can help to
reduce the storage and processing costs of the client application in
terms of computing new views for large-sized provenance graphs,
since these approaches push view processing and provenance stor-
age to the server. Also, computing and sending only the changes
between views (for the cases when changes to views are small) as
in Fig. 11c can further speed up navigation response time compared
to sending the entire view as in Fig. 11b. This can be seen in even
the small exampe of Fig. 10, where each navigation step generally
only makes small changes to the previous view. We can also further
extend Fig. 11c by sending the smaller of (i) the changes ∆ between
views and (ii) the new view. In particular, if the new view is smaller
than the corresponding ∆, then the server-side Navigation Engine
would return the new view, whereas if the size of the changes ∆ is
smaller, then the set of changes are sent.

In our prior work [6] we describe an interactive tool for brows-
ing provenance that can display different provenance views for sci-
entific workflow traces. The provenance browser has been inte-
grated with the Kepler Scientific Workflow System [18], and can
also be run as a standalone application. Using the provenance
browser, a user can connect to a provenance store to display various
provenance views of the execution trace: the dependency history
view (Fig. 1) combines data dependency and process invocation
graphs (where data nodes are denoted as cirlces and invocations as
squares); the collection history view shows the data structures in-
put and output by invocations; and the invocation graph view shows
process dependencies. Each of these views are synchronized, e.g.,
selection of a data item in the dependency history view also selects
the corresponding item in the collection history view. In a view,
users can also step forward and backward (“VCR-style”) through
the execution history to display corresponding portions of the XML
structures and data dependencies. As future work, we intend to
leverage the provenance browser to support the proposed archi-
tecture of Fig. 11c. Our goal is to extend the provenance browser
to support the navigation model described here, thereby providing
users with an integrated environment to flexibly visualize, summa-
rize, query, and navigate large provenance graphs.

4. RELATED WORK
Automatically recording provenance information during work-

flow execution is one of the important added values of scientific
workflow systems over more conventional script-based approaches



[19, 25]. However, providing techniques for effectively represent-
ing, managing, and accessing the large amounts of provenance in-
formation generated by workflow systems presents a number of
technical challenges [12, 25]. The navigation model presented
here helps to address a number of these challenges by providing
users with an approach for exploring and viewing relevant portions
of provenance information using intuitive and natural graph-based
provenance representations. Our navigation model is based on a
generic provenance representation scheme [1] that extends con-
ventional approaches to support a wide range of workflow sys-
tems. Our model also combines approaches for querying (i.e., us-
ing QLP [2]) and summarizing workflow graphs (based on com-
posites), while offering additional abstract views of provenance in-
formation (actor, invocation, and flow dependency graphs) and the
ability to navigate between views (e.g., using expand and collapse).
The remainder of this section describes related work and compares
our work to existing approaches.

Scientific workflow systems are being used in many scientific
domains, and many approaches have been proposed recently for
representing workflow provenance (e.g., [26, 21, 12, 25, 7, 17]).
Most existing approaches for representing provenance do not con-
sider workflow computation models that work over structured data,
including XML. Standard provenance representation schemes (e.g.,
[17, 15, 3, 5] among others) largely assume that workflow mod-
els are based on transformation semantics in which each work-
flow step consumes all input data and produces entirely new output
data. Alternatively, workflow models that work over structured data
(e.g., [6, 27, 20, 28]) often employ update semantics, where only
a portion of an incoming XML stream is modified by each work-
flow step. Our navigation model is based on a generic model of
provenance that subsumes conventional approaches for represent-
ing workflow provenance while supporting more advanced work-
flow computation models permitting multiple invocations of pro-
cesses (e.g., for pipelining and loops), structured data, and update
semantics [1].

Current approaches for exploring workflow provenance are
based on visualizing entire provenance graphs or specific views of
these graphs, such as data and invocation dependency graphs [6, 25,
16, 17, 21]. In these approaches, provenance graphs are typically
displayed at the lowest level of granularity. Some systems further
divide provenance information into distinct layers. For example,
myGrid [29] divides provenance into data, process, organisational,
and knowledge levels; VisTrails [8, 25, 4] divides provenance in-
formation into workflow evolution, workflow, and execution layers;
Redux [3] divides provenance into runtime execution, data instan-
tiation, abstract service, and service instantiation layers; and the
Provenance Aware Storage System (PASS) [22] divides provenance
into data and process layers. In all of these aproaches, however,
these levels are largely either orthogonal or hierarchical, whereas
the provenance views supported by our navigation model (i) com-
bine both hierarchical abstractions (i.e., ADGs, IDGs, and FDGs)
with (ii) the ability to seamlessly navigate between these differ-
ent levels of granularity, while (iii) allowing users to summarize,
group, and filter portions of these views to create new views for
further exploration of relevant provenance information.

Unlike standard provenance approaches, the Zoom*UserViews
system [11, 5] provides a mechanism for defining composite actors
to abstract away non-relevant provenance information. The basic
approach is to allow users to select one or more “relevant” actors
from a workflow specification graph, and based on these selections,
the system creates associated composite actors that contain at most
one relevant actor. The composite actors are constructed in such
a way as to maintain certain dataflow connections, thereby gen-

erating a workflow over the composites that is similar (in terms
of dataflow) to the original. However, unlike in our approach,
users of the Zoom*UserViews system cannot explicitly define their
own composites, and composition is defined only at the actor level
(where each actor is assumed to have at most one invocation).
Our approach also maintains grouping across views (including the
ability to ungroup composites within these views), maintains the
original data dependencies (i.e., dependencies within composites
are maintained, unlike in general within the Zoom*UserViews ap-
proach), and we support a more general provenance model that ex-
plicitly handles structured data.

Our navigation approach is inspired by and has similarities to
those proposed previously for exploring object-oriented and XML
databases, where graphical environments were developed that al-
low users to “drill-down” from schema to instances and navigate
relationships among data. For example, PESTO [9] provides an in-
tegrated browsing and querying environment that allows users to
employ a “query-in-place” paradigm for exploring the contents of
object databases. In particular, PESTO allows users to mix navi-
gation and query in which queries can be issued relative to a po-
sition in the database reached through navigating object relation-
ships. Similarly, in Blended Browsing and Querying (BBQ) [23], a
graphical user interface is provided that supports both browsing and
querying of XML data. Like PESTO, querying in BBQ is schema
driven, requiring users to know the details of the (Object-Oriented
or XML) schema prior to issuing queries. Also, a standard XML-
based web-based navigation and visualization approach tailored to
clinical provenance information is proposed in [13]. In contrast,
provenance information is largely schema-free, i.e., the informa-
tion contained within an ADG, IDG, and FDG is not constrained
by an explicit schema, and queries in our model are posed directly
against the items contained within these views (or generally the
flow graph). In addition, our provenance model is considerably
more specialized than the more generic data models supported by
PESTO and BBQ, resulting in navigation operators (such as expand
and group) that are tailored specifically to provenance information.

Finally, our navigation model is the first approach that we are
aware of that combines navigation, abstraction (through composi-
tion), and query capabilities. A number of systems allow users to
query provenance information, however, these approaches largely
rely on physical representations of provenance information [12]
(e.g., relational, XML, or RDF schemas), where users express
provenance queries against these schemas using corresponding
query languages (i.e., SQL, XQuery, or SPARQL). Provenance
queries, however, often require computing transitive closures over
dependency relations, and expressing such queries using standard
approaches is typically done using recursion or stored procedures
[14, 10, 1]. Expressing such queries is both cumbersome and error-
prone, and requires considerable user expertise. Instead, high-level
languages such as QLP provide a separation between the logi-
cal provenance model and its underlying physical representation,
which allows for the use of different representation schemes and
additional optimization techniques. Our approach, in particular, au-
tomatically translates QLP queries to equivalent relational queries
expressed against the provenance storage schemes described in [1].
Standard approaches for querying provenance information (e.g.,
[24, 15, 30, 5]) return sets of nodes (either sets of data items or
process invocations) as the query result. This approach requires ad-
ditional steps (queries) to reconstruct causal relations among nodes
within a query answer. Instead, QLP is closed under lineage re-
lations, where answers to lineage queries are sets of lineage de-
pendencies (edges) forming provenance subgraphs, and thus query
results are “provenance preserving”. This approach has a number



of advantages, e.g., for supporting provenance views, incremental
querying, and for supporting visualization [12, 6].

5. CONCLUSION
We propose an approach to address a number of open issues in

effectively exploring large provenance information generated from
complex scientific workflows. Specifically, we define a novel nav-
igation model for scientific workflow provenance that consists of
operations for creating, refining, and switching between different
provenance views. The navigation model provides an integrated
approach to: (i) create abstract views of provenance information
(actor, invocation, and flow dependency graphs); (ii) seamlessly
navigate between these views; (iii) summarize portions of views
through grouping actors or invocations; and (iv) filter (or query)
provenance views using QLP, a high-level provenance query lan-
guage. We also present different architectures for efficiently nav-
igating large provenance graphs against an underlying provenance
database. Our navigation model is the first approach that we are
aware of that provides capabilities of visualizing, navigating, sum-
marizing, and querying provenance views in an integrated environ-
ment. The approaches described here extend our prior work on
browsing and query provenance information by providing explicit
navigation operations and views for abstracting and summarizing
provenance graphs. Combined with the provenance browser, these
approaches can provide a powerful environment for scientists to
explore and validate the results of scientific workflows, especially
those that involve large and complex data sets and large numbers
of interconnected processes.
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