
Provenance Browser: Displaying and Querying
Scientific Workflow Provenance Graphs

Manish Kumar Anand1, Shawn Bowers2, Bertram Ludäscher1,3

1Dept. of Computer Science, University of California, Davis
2Dept. of Computer Science, Gonzaga University
3Genome Center, University of California, Davis

{maanand, ludaesch}@ucdavis.edu, bowers@gonzaga.edu

Abstract— This demonstration presents an interactive prove-
nance browser for visualizing and querying data dependency
(lineage) graphs produced by scientific workflow runs. The
browser allows users to explore different views of provenance as
well as to express complex and recursive graph queries through
a high-level query language (QLP). Answers to QLP queries
are lineage preserving in that queries return sets of lineage
dependencies (denoting provenance graphs), which can be further
queried and visually displayed (as graphs) in the browser. By
combining provenance visualization, navigation, and query, the
provenance browser can enable scientists to more easily access
and explore scientific workflow provenance information.

I. INTRODUCTION

A key advantage of scientific workflow systems over tra-
ditional scripting approaches is their ability to automati-
cally record data and process dependencies introduced during
workflow runs. Scientific workflow provenance is typically
represented using data and process dependency (i.e., causal)
graphs [1], [2], which can be used by scientists to better
understand, reproduce, and verify scientific results. Provenance
graphs may be large due to the complexity of the workflow,
the size of input data sets, and the number of intermediate
data sets produced, which can make it difficult for users to
effectively find and view relevant information; and the ability
to effectively store, query, and visualize provenance graphs
has been identified as a significant challenge [2], [3], [4].

We address these challenges in this demonstration through
a provenance browser that combines visualization, navigation,
and high-level graph queries. Typical provenance queries are
exploratory and involve finding some or all of the data
and process dependencies that led to the creation of one or
more data products [5]. Posed over dependency relations,
these queries often require transitive closures and selection
conditions on lineage paths. Current approaches for querying
provenance information are largely based on physical data
representations [2] (e.g., relational, XML, or RDF schemas) in
which users express provenance queries through corresponding
query languages (SQL, XQuery, or SPARQL). For most users,
expressing these queries against physical provenance schemas
requires considerable expertise and is cumbersome even for
simple queries [2]. The complexity of these queries also
creates challenges for efficient query evaluation [6].

Our Approach and Contributions. We present a provenance

browser that can display different provenance views for sci-
entific workflow traces and that supports provenance queries
through a novel Query Language for Provenance (QLP) [7].
QLP provides specialized operators for querying provenance
graphs that, unlike other languages which return sets of
nodes (e.g., [8], [9]), are closed under lineage relationships
(i.e., QLP lineage queries return sets of lineage dependencies
forming provenance subgraphs). The browser provides an
integrated environment where users can issue QLP queries
against workflow traces, and query results can be displayed,
navigated, and further queried. We also employ novel query
and storage optimization techniques that makes querying real-
world provenance information within the browser practical and
efficient.

II. PROVENANCE MODEL

Consider the example workflow in Fig. 1(a) showing a
straightforward implementation of the fMRI image processing
pipeline of the First Provenance Challenge [1]. We refer to
steps in the workflow as actors that are invoked over input
data supplied by previous steps. This workflow takes a set of
anatomy images representing 3D brain scans and a reference
image, and applies the following actors.

1) AlignWarp is invoked over each anatomy image to
produce a set of “warping” parameters;

2) Reslice is invoked over each set of warping parameters
to transform the associated anatomy image;

3) Softmean averages transformed images into an atlas
image;

4) Slicer produces three different 2D slices of the atlas; and
5) Convert creates a graphical image for each 2D slice.

In the implementation of the workflow each invocation of an
actor receives an XML data structure, performs an update on
a portion of that structure, and then sends the updated version
of the structure to downstream actors (see Fig. 1(b)) [7]. Here
we assume that each XML structure consists of workflow data
products in which each tree node has a unique identifier, and
tree nodes represent either collection tokens or data tokens
(wrapping complex objects or referencing external data, e.g.,
stored within a file). A collection token may be an internal
node (for non-empty collections) or a leaf node (for empty
collections), whereas data tokens are leaf nodes only.

978-1-4244-5446-4/10/$26.00 © 2010 IEEE ICDE Conference 20101201

(b). Flow graph with fine-grained node dependencies for the first invocation of each actor

1

2

6 7 8

9 10

Images

AnatomyImage

Image Header
RefImage

Image Header

...

D1

Reslice:1
AlignWarp:1

2

11

AnatomyImage

WarpParamSet

D2
1Images

... 12

13

ReslicedImage

D3

14

Image Header

1Images

...

Softmean:1

15

16

AtlasImage

D4

17

Image Header

1

...

Images

Slicer:1
15

18

AtlasXImage

D5

AtlasXSlice

1

...

Images

Convert:1

15

19

AtlasXImage

D6

AtlasXGraphic

1Images

AlignWarp:1 Reslice:1 Softmean:1 Slicer:1 Convert:1

(a). The first provenance challenge fMRI workflow graph

AlignWarp Reslice Softmean Slicer Convert

Fig. 1. Example fMRI image analysis workflow [1] (a) and the flow graph showing the first invocation of each actor for a typical run (b).

1918

17

16

14

13

11

10

9

7

6 AlignWarp:1
AlignWarp:1

AlignWa
rp:1

Alig
nW
arp
:1 AtlasXGraphicAtlasXSlice

Image

Header

Image

Header

WarpParamSet

Image

Header

Header

Image

Convert:1

Slicer:1

Sl
ice
r:1

Softmean:1

Softmean:1

Softmean:1

So
ftm
ea
n:1Reslice:1

Re
sli
ce
:1

Fig. 2. The implied data dependency graph for data items in Fig. 1(b).

Fig. 1(b) shows the first invocation of each actor for a typical
run of the workflow. The invocation of the AlignWarp actor
(i.e., AlignWarp:1) modifies the first AnatomyImage collection
(node 2), and replaces its contents with a WarpParamSet
data token (node 11). Similarly, the invocation of the Reslice
actor uses this WarpParamSet to generate a new Image and
Header data token (nodes 13 and 14, respectively). Since
only a part of an XML data structure D may be modified
by an invocation, we also represent explicit (“fine-grained”)
data dependencies as part of a run. For example, the dashed
arrow from node 11 to node 2 in Fig. 1(b) states that the
WarpParamSet was created from the AnatomyImage collection
by the first invocation of AlignWarp. Note that implicitly, node
11 depends on each of the descendents of node 2 (nodes 6-10
in the figure). Each descendent of a collection also implicitly
inherits the dependencies of its ancestors. In the example, node
13 is a descendent of node 12, and thus implicitly depends
on node 11. Taken together, Fig. 1(b) denotes a portion of
the flow graph (or trace) for a run of Fig. 1(a), in this case
corresponding to the first invocation of each workflow actor.

III. EXPRESSING PROVENANCE QUERIES IN QLP

QLP queries are posed against flow graphs using the con-
structs of Fig. 3. Different constructs are used to query distinct
dimensions of the flow graph representing: (i) lineage relations
among nodes and invocations; (ii) flow relations among input
and output structures of invocations; and (iii) structural rela-
tions among nodes within and across data structures.

Queries over Lineage Relations. A lineage relation is of the
form 〈n1, i,n2〉 for nodes n1 and n2 and invocations i, e.g.,
〈2,AlignWarp:1,11〉 is a lineage relation of Fig. 1(b) stating
node 2 was used by the first invocation of the AlignWarp
actor to produce node 11 (i.e., node 11 depends on node 2).
Sets of lineage relations define lineage graphs (see Fig. 2), and

QLP lineage queries act as filters over lineage relations. For
example, the following QLP lineage queries

* derived 19 (1)
6 derived * (2)
#Softmean through #Convert derived * (3)

return (1) lineage relations denoting the set of paths starting
from any node and ending at node 19, (2) lineage relations
denoting the set of paths starting at node 6 and ending at
any node, and (3) lineage relations denoting the set of paths
starting at invocations of Softmean and go through invocations
of Convert.

Queries over Flow Relations. QLP also allows lineage graphs
to be filtered based on specific versions (or occurrences) of
nodes within a flow graph using the @in and @out operators.
For example, the following queries

* @in derived 19 (4)
18 @out Slicer:1 derived * (5)

return (4) lineage edges denoting paths that start at a node in
the input of the workflow run and end at node 19, and (10)
lineage relations denoting paths that start at the occurrence of
node 18 in the output of the first invocation of Slicer.

Queries over Structural Relations. QLP queries can also
contain XPath expressions for accessing nodes based on their
type (i.e., tag name) and parent-child relationships. For exam-
ple, the following query

* derived //AtlasXGraphic (6)

returns (6) lineage relations denoting paths that end at At-
lasXGraphic nodes. Each of the above dimensions can also be
combined to form more complex query expressions [7].

IV. THE PROVENANCE BROWSER

The provenance browser provides users with an interactive
application for accessing provenance information generated by
scientific workflow runs. We describe the main features of the
browser below.

Provenance Browser Architecture. The basic architecture
of the provenance browser is shown in Fig. 4, and the basic
user interface is shown in Fig. 5. The provenance browser has
been integrated with the Kepler Scientific Workflow System
[10], [11], and can also be run as a standalone application.
The browser works over workflow traces represented in a
generic XML format. Given a trace file, a set of pre-processing

1202

Construct Descriptive Form Result
Node and invocation expressions

n, x, * n, x, * Node expressions en as a single node n, XPath expression x, or set of trace nodes *.
#i, #a i, a Invocation expressions ei as an invocation i or actor a (denoting the set of a invocations).
en @in ei en @in ei Nodes of en input to invocations of ei. If ei not given, then nodes of en input to the workflow run.
en @out ei en @out ei Nodes of en output by invocations of ei. If ei not given, then nodes of en output by the workflow run.

Lineage-preserving path queries (examples)
* ..en * derived en Lineage graph for nodes in en.
en ..* en derived * Lineage graph for nodes derived from nodes in en.
en1 ..en2 en1 derived en2 Lineage graph with paths from nodes in en1 to nodes in en2 .
en1 ..ei ..en2 en1 through ei derived en2 Lineage graph with paths from nodes in en1 to nodes in en2 that pass through an invocation in ei.

Fig. 3. Subset of basic QLP constructs with descriptive notations.

Query Optimization & Rewriting
(QLP to SQL)

Provenance Browser Kepler Scientific Workflow System

Provenance Storage Optimization
(Reduction Techniques)

Workflow
Trace

Workflow
TraceWorkflow

Trace (XML)

PostgreSQL Database
(Provenance Store)

Provenance Queries
in QLP

Displays Query
Answers as Graphs

Records

StoresSQL QueryReturns Lineage Edges
& Data Structures

Fig. 4. Basic provenance browser architecture.

steps are applied to the trace prior to storage in a relational
database (in our current implementation, PostgreSQL). These
pre-processing steps perform storage reduction techniques
(based on factorization) over the data lineage graph of the
workflow trace as described in [4]. Using the provenance
browser, a user can connect to a provenance store to select
traces to view, issue QLP queries against the trace, and then
display, navigate, and further query these results. As shown
in Fig. 4, QLP queries are parsed, optimized, and rewritten to
corresponding SQL queries expressed against the provenance
database. Optimized and translated SQL queries return sets
of lineage edges as query results from which the browser
constructs and displays the corresponding lineage graph.

Displaying and Navigating Provenance Views. As shown
at the top of Fig. 5, the left-side of the provenance browser
displays the XML collection structure together with the details
of actor invocations. Much like a web browser, this informa-
tion can be navigated (e.g., to select among different data
items and invocations). The browser also displays various
provenance views of the execution trace: the dependency
history view (Fig. 5) combines data dependency and process
invocation graphs (where data nodes are denoted as circles
and invocations as squares); the collection history view (top
of Fig. 6) shows the data structures input and output by
invocations; and the invocation graph view (bottom of Fig. 6)
shows process dependencies. Each of these views are synchro-
nized, e.g., selection of a data item in the dependency history
view also selects the corresponding item in the collection
history view. Within a view, users can also step forward
and backward (“VCR-style”) through the execution history to

Fig. 5. The data-dependency view and navigation panels of the provenance
browser (top), and QLP query results displayed in the browser (bottom).

display corresponding portions of the XML structures and data
dependencies.

Incremental Querying. The provenance browser allows users
to issue QLP queries against lineage graphs as in Fig. 5. For
example, the top of Fig. 5 shows the result of evaluating
query Q1 “* derived *” returning the set of lineage relations
shared between all nodes. Users can further execute queries
via the QLP shell, which are executed over the current portion
of the graph (alternatively, prior queries can be modified
and rerun). For example, the bottom left of Fig. 5 shows

1203

Fig. 6. Collection history (top) and invocation graph (bottom).

the result of query Q2 “* derived //AtlasXGraphic” issued
over the result of query Q1. Similarly, the result of Q2 is
further queried in Q3 “#Softmean through #Convert derived
//AtlasXGraphic” returning the subgraph in the bottom-right
of Fig. 5. By incrementally querying provenance graphs in
this way, users can more easily inspect and explore relevant
portions of large provenance graphs—which contrasts with
more static approaches that display entire lineage graphs
containing, e.g., hundreds or thousands of nodes and edges.

V. STORAGE AND QUERY OPTIMIZATION

The left side of Fig. 7 shows the sizes of actual provenance
traces generated from metagenomic (STP, STM, and CYC),
phylogenetic (WAT), and astronomy (PC3) workflows. As
shown, the provenance graphs are relatively large, containing
between ∼5–20K lineage edges, as shown by the number of
tuples when only immediate edges (I) are stored. Even for sim-
ple QLP lineage queries, e.g., involving single-step derivation
path expressions “s1.. s2’, standard evaluation techniques result
in query execution times that are impractical. For instance, by
storing both immediate and transitive dependencies (IC), these
simple queries can take upwards of 1000 s (these times are
worse if only immediate edges are stored, since recursion is
required). Thus, to make the provenance browser feasible, we
have developed novel storage [4] and query optimization tech-
niques [12], which are exploited by the provenance browser.

Efficient evaluation of QLP path queries is closely tied to
how lineage relations are stored. In the ICP approach, immedi-
ate edges and their transitive closure are stored using “pointer-
based” reduction techniques [4]. As shown in Fig. 7, the space
required for storing lineage relations in ICP is considerably
less than for IC, and in many cases even less than I (due to
the reduction techniques). By reducing storage size, evaluating
lineage queries in two steps (computing nodes and then edges),
and through pruning and temporary materialization of views

Fig. 7. Example sizes (left) and query time (right) for real provenance traces.

and subquery results [12], query execution time can also be
significantly reduced. As shown in Fig. 7, employing these
techniques reduces query execution time to less than 100
ms, making common (but relatively complex) graph queries
practical within the provenance browser.

VI. DEMONSTRATION

Our demonstration highlights the following novel, end-to-
end features of the provenance browser: (i) we show the use
of the browser over a variety of real world traces produced
by Kepler (i.e., those of Fig. 7); (ii) we demonstrate the
ability of the browser to support incremental querying of these
traces using QLP (demonstrating support of common types
of provenance queries); (iii) we demonstrate the ability of
the browser to navigate and display query results (e.g., for
exploring data products, invocation parameters, and workflow
execution history); and (iv) we show that our query opti-
mization techniques improve query performance by comparing
optimized versus non-optimized query evaluation (as in Fig. 7).
To the best of our knowledge, the provenance browser is the
only application of its kind that combines multiple views of
provenance information, support for navigation, and a high-
level, closed graph query language.

ACKNOWLEDGMENT

This work supported in part through NSF grants IIS-0630033,
OCI-0722079, IIS-0612326, DBI-0533368, ATM-0619139, and DOE
grant DE-FC02-07ER25811.

REFERENCES

[1] L. Moreau, et al, “The open provenance model,” ECS, Univ. of
Southampton, Tech. Rep. 14979, 2007.

[2] S. B. Davidson and J. Freire, “Provenance and scientific workflows:
challenges and opportunities,” SIGMOD, 2008.

[3] T. Heinis and G. Alonso, “Efficient lineage tracking for scientific
workflows,” SIGMOD, 2008.

[4] M. K. Anand, S. Bowers, T. McPhilips, and B. Ludäscher, “Efficient
provenance storage over nested data collections,” EDBT, 2009.

[5] L. Moreau, et al., “The first provenance challenge,” CCPE 20(5):409-
418, 2008.

[6] H. He and A. K. Singh, “Graphs-at-a-time: query language and access
methods for graph databases,” SIGMOD, 2008.

[7] M. K. Anand, S. Bowers, T. McPhilips, and B. Ludäscher, “Exploring
scientific workflow provenance using hybrid queries over nested data
and lineage graphs,” SSDBM, 2009.

[8] C. Scheidegger, et al., “Tackling the provenance challenge one layer at
a time,” CCPE 20(5):473-483, 2008.

[9] D. Holland, et al., “A data model and query language suitable for
provenance,” IPAW, 2008.

[10] B. Ludäscher, et al., “Scientific workflow management and the Kepler
system,” CCPE 18(10):1039-1065, 2006.

[11] S. Bowers, et al., “Kepler/pPOD: Scientific workflow and provenance
support for assembling the tree of life,” IPAW, 2008.

[12] M. K. Anand, S. Bowers, and B. Ludäscher, “Techniques for efficiently
querying scientific workflow provenance graphs,” Submitted, 2009.

1204

