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SUMMARY

We describe a provenance model tailored to scientific workflows based on the collection-oriented modeling
and design paradigm. Our implementation within the Kepler scientific workflow system captures the
dependencies of data and collection creation events on preexisting data and collections, and embeds
these provenance records within the data stream. A provenance query engine operates on self-contained
workflow traces representing serializations of the output data stream for particular workflow runs. We
demonstrate this approach in our response to the first provenance challenge. Copyright © 2007 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Much of the complexity of scientific workflows arises from the need to maintain associations
between data. As illustrated by the Provenance Challenge, data input to a scientific workflow run
generally are related, and steps (i.e. actors) in scientific workflows typically produce additional
collections of related results. Scientific workflow systems provide little support for managing these
data associations explicitly. Maintaining data associations often requires a variety of special-purpose
workflow actors for record and object assembly and disassembly (often over multiple levels of
nesting), explicit control parameters for data routing, and numerous actor connections (including
loops) for managing data and control flow. These additional actors, parameters, and connections
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Figure 1. A COMAD implementation of the Provenance Challenge Workflow.

often make otherwise straightforward scientific workflows difficult to design, implement, maintain,
and understand. The goal of collection-oriented modeling and design (COMAD) is to address
these problems in scientific workflows [1,2]. This paper describes the provenance support available
through COMAD, and our implementation of the Provenance Challenge (e.g. see Figure 1).
COMAD extends the conventional dataflow-based approach of scientific workflow systems such

as Kepler [3] by introducing new modeling constructs and data management capabilities. The main
features of COMAD include:

• Nested data collections: In COMAD, data are explicitly grouped and related using nested data
collections, which are input, manipulated, and output by collection-oriented actors (co-actors).
Data and collections are both explicitly typed in COMAD.

• Collection token streams: In a manner similar to SAX-based parsing of XML documents‡,
nested data collections are streamed through co-actors as ‘flat’ token sequences in which
collections are delimited using paired (opening and closing) control tokens (each token being
analogous to a SAX parsing event). COMAD provides services to co-actors for managing
collections, e.g. for constructing collection structures from input token sequences, inserting
and deleting collection elements, and (re-)serializing collections to output token sequences.

• Actor scope parameters: Co-actors can explicitly declare the types of collections and data
they process via scope expressions. The COMAD framework iteratively invokes co-actors
over portions of the input stream matching corresponding scope expressions, thus ensuring
co-actors operate only on relevant data and collections. Data and collections that fall outside of
an actor’s scope are automatically forwarded by the framework to succeeding actors, enabling
‘assembly-line’ style data processing.

• Explicit annotations: Annotations (e.g. represented as name–value pairs) are explicit data types
in COMAD. Annotations can represent data and collection metadata that actors may access and
create duringworkflowexecution.Annotations canalso represent values that automatically over-
ride actor parameters, thus, e.g. allowing actor behavior to be changed at runtime. Like data
and collections, annotations are automatically streamed through co-actors by the COMAD
framework.

‡http://www.saxproject.org/
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COMAD workflows are often simpler and more reusable than conventional workflows (see [2]).
For example, collection-oriented workflow definitions are typically independent of the size of input
data, i.e. changes to the number of items within a collection do not require changes to the workflow
specification. COMAD workflows are also invariant to common changes to the structure of input
data, e.g. increases or decreases in the depth of collection nesting.
Figure 1 depicts a COMAD implementation of the Challenge workflow within KEPLER. The co-

actors labeled AlignWarp, ResliceWarp, SoftMean, Slicer, and Convert correspond to the five stages
of the Challenge workflow. The ReplicateCollection actor creates additional copies of the products
of SoftMean—where the number of copies is specified via an actor parameter—so that downstream
actors will execute the appropriate number of times, once for each desired slice of the average image.
The number of copies and the desired slice computed for each copy can be specified via parameter
annotations given in the workflow input. The actors labeled CollectionReader and CollectionWriter
import data into the workflow and save the output of the workflow, respectively. Both input data and
output data are serialized in XML using a simple COMAD schema (e.g. see Figure 4).
Although the workflow definition is linear, it can operate on an arbitrary number of Anatomy

Images in stages 1–3, and can create an arbitrary number of Altlas Graphic images in stages 4–5,
withoutmodifying or reconfiguring the workflow definition. The workflow can also handle multiple
sub-runs associated with independent sets of input Anatomy Images in a single workflow invocation.
In this case, distinct sets of images are nested within separate collections (defined within the input
data file that represents the desired input data stream). Each of these collections may consist of
differing numbers of input images and distinct annotations and actor parameters. In processing
each such sub-run, the COMAD framework not only maintains associations between graphics
images and the anatomy images from which they were derived, but also keeps distinct those results
arising from different sub-runs. In contrast to the COMAD approach, the most straightforward
conventional implementation of the Provenance Challenge workflow would consist of four instances
of an AlignWarp actor, one per expected input Anatomy Image, as well as three instances each of
the Slicer and Convert actors. Running the workflow against an input set of five images or producing
additional (or fewer) slices, in the case of a conventional workflow implementation, would require
modifying the workflow graph significantly.
The rest of this paper reports our extensions to the COMAD framework for capturing and querying

comprehensive data-dependency information. Section 2 describes the COMAD provenance model
and how we employ the COMAD annotation mechanism to embed provenance information directly
within the data flow. Section 3 describes a prototype for querying COMAD provenance and demon-
strates the overall system using the challenge queries.

2. COLLECTION-ORIENTED PROVENANCE

The purpose of the provenance support in COMAD is to record sufficient information to answer
scientifically relevant data-dependency questions [4], e.g. allowing scientists to investigate and
reproduce results from earlier workflow runs, explain unexpected results, and determine the input
data and workflow steps that contributed to intermediate and final data products. Here, we present
our abstract provenance model and discuss how the model is instantiated at workflow runtime within
the COMAD framework.
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Provenance in COMAD is modeled as a set of element nodes, corresponding to the data, collec-
tion, and parameter items provided to or produced by a workflow run, and a set of dependency
relationships:

dependency : N → {N } × {E}

mapping each element node to the set of nodes and events directly involved in its creation. For
example, dependency(n1) = ({n2}, {e}) asserts that node n1 was derived from node n2 by event e.
Here, we only consider events corresponding to actor invocations. As an example, the AlignWarp
invocation depicted in Figure 2 implies that the WarpParamSet depends on four data nodes (the
Anatomy Image, Anatomy Header, Reference Image, and Reference Header) via a single event
corresponding to the AlignWarp invocation.
For data and parameter element nodes, a dependency represents a one-step derivation (i.e. via

one actor invocation) with respect to a workflow. When the dependency is on a collection, multiple,
independent actor invocations may be involved because different invocations may have contributed
distinct portions of the version of the collection received by the actor. These dependency relations can
be used to reconstruct the ‘evolution’ of collection versions across a workflow run. In general, we can
view a set of dependency relations for a workflow run as a (possibly unconnected) directed acyclic
graph. Figure 3 shows a portion of such a dependency graph depicting the complete derivation of
the three Atlas Graphic images computed by a run of the Challenge workflow. Note that in Figure 3,
each node is assigned a unique identifier by the workflow system.
Three special types of annotations are recorded during execution of a collection-oriented workflow

and used to represent the provenance of results:

• Insertion(n, Ndep, a): A node n was derived from the set of nodes Ndep by actor invocation a
and inserted into the token stream. Note that a node can be inserted at most once.

• Deletion(n, a): A node n was deleted from the token stream by actor invocation a.
• InvocationDependency(a1, a2): Actor invocation a1 used information modified (i.e. inserted
into or deleted from the token stream) by actor invocation a2.

The goal of our provenance system is both to record these provenance annotations and to use
them together with the output of a workflow run to reconstruct data dependencies (the dependency
graph).

Figure 2. An invocation of the AlignWarp co-actor, with input and output streams shown as trees.
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Figure 3. A portion of the dependency graph corresponding to an execution of the Challenge workflow.

Figure 4. An example portion of the XML trace file output by the Challenge workflow.

The COMAD implementation directly embeds Insertion, Deletion, and InvocationDependency
annotations within the token stream. The result of a workflow run is serialized into a single, self-
contained XML ‘trace’ file containing all output data and provenance annotations. Figure 4 shows
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a portion of the trace file generated for a run of the Challenge workflow. Each data, collection,
metadata, and parameter node is assigned an element identifier by the COMAD framework that
is unique with respect to the trace. Insertion, deletion (not shown in Figure 4), and invocation-
dependency annotations also are embedded directly in the trace file, and refer to items using the
element identifiers.
The provenance extensions to COMAD require co-actors to declare dependencies when new items

are inserted into collections during workflow execution. The COMAD framework validates these
declared dependencies (e.g. by checking that each of the items referred to are within the current
scope of an actor), and then inserts appropriate provenance annotations into the output token stream
of the actor. COMAD can automatically infer dependencies in some cases. For example, the use
of composite co-actors [2], in which new co-actors are composed from sub-workflows comprising
conventional KEPLER actors, enables data dependencies to be automatically inferred based on the
scope of the co-actor and the data actually accessed by the contained sub-workflow. The COMAD
provenance extension also validates and generates deletion annotations for ‘dropped’ items. Dropped
items are not removed from the stream. Rather, the framework ensures that items annotated by
deletion records are inaccessible to subsequent downstream actor invocations. Retaining deleted
items in this way is essential for inferring complete data dependencies when input or intermediate
items are deleted. Similar approaches are used to efficiently manage multiple versions of structured
(e.g. XML) documents [5]. Finally, invocation dependencies are automatically inferred by the
framework from insertion dependencies and deletion annotations. For example, when a new item
is added to a collection, an invocation dependency is generated between the current invocation
and each invocation used to create the item’s immediate insertion dependencies. These invocation
dependencies are then inserted into the token stream.

3. COLLECTION-ORIENTED PROVENANCE QUERIES

We have developed an initial system prototype for managing and querying COMAD provenance
information. The system is implemented in SWI-Prolog§ and operates over the XML trace files
output by the COMAD implementation within KEPLER. The system provides basic ‘built-in’ opera-
tions (in the form of Prolog predicates) for accessing trace nodes, constructing dependency relations,
and querying corresponding dependency graphs. Each operation is defined as a view over the under-
lying COMAD XML schema. Dependency graphs are constructed by applying a set of inference
rules defined within the system. These rules specify how to infer the dependencies of a data item
or collection within a trace based on embedded provenance annotations. The rules can also be used
to reconstruct parameter settings and, although not demonstrated here, reconstruct the contents of
collections prior to particular actor invocations via a process analogous to reverting from changes
to structured documents [5]. The rest of this section describes how our approach can be used to
answer the queries of the Provenance Challenge. We also include additional queries that further
demonstrate the utility of the COMAD provenance approach.

§http://www.swi-prolog.org/
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3.1. Challenge queries

To demonstrate the flexibility of the COMAD implementation with respect to varying numbers of
input images, and multiple sets of input images representing independent sub-runs, we supplied
two different sets of inputs to the workflow shown in Figure 1. The first corresponds exactly to the
Challenge workflow and contains four AnatomyImage collections within a single ImageCollection
(e.g. see Figure 2). The second contains three independent image collections comprising four,
three, and two AnatomyImage collections, respectively. In particular, the second trace was used to
demonstrate that the provenance system infers correct dependencies between independent workflow
sub-runs. In both cases, the intermediate and final results of running the workflow are added to the
collections defined within the workflow input file, nested within each independent ImageCollection.
Below, we refer to the result of running the Challenge workflow over these input configurations as
the first and second trace.
The first three provenance challenge queries (Q1–Q3) are answered using the built-in operation

dependencyEdges(Trace,Nodes,Edges),

which takes a COMAD trace (i.e. an XML tree) and a set of data or collection node identifiers, and
returns the dependency-graph edges denoting paths that start from the given nodes. For example, the
following (Prolog) query finds edges in the data-dependency graph for the first trace that represents
“everything that caused the Atlas X Graphic to be as it is” (Q1):

q1(Edges) :- traceId(‘1’,Trace), nodeForId(Trace, ‘341’,Node),

dependencyEdges(Trace, [Node],Edges).
The built-in traceId operation takes a trace identifier and returns the root node of the corresponding
trace. The built-in nodeForId operation takes a trace and node identifier, and returns the corre-
sponding trace node. A similar query can be constructed for the second trace. Because three separate
image collections are input to the workflow, the query returns a dependency graph consisting of
three Atlas X Graphics instances, each having independent derivations.
Additional filtering operations can be applied to the dependency graph to answer the second and

third provenance queries. The following two queries use the built-in operation filterBeforeActor
to “exclude everything prior to the averaging of images with softmean” (Q2), and the built-in
selectAfterActor operation to “include stages 3, 4, and 5 details of the process” (Q3). Both queries
in this case return the same set of edges:

q2(FilteredEdges) :- traceId(‘1’, Trace), nodeForId(Trace, ‘341’,Node),

dependencyEdges(Trace, [Node],Edges),
filterBeforeActor(Trace,Edges, ‘SoftMean’,FilteredEdges).

q3(FilteredEdges) :- traceId(‘1’, Trace), nodeForId(Trace, ‘341’,Node),

dependencyEdges(Trace, [Node],Edges),
selectAfterActor(Trace,Edges, ‘ResliceWarp’,FilteredEdges).
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The provenance system provides a number of additional operations for accessing trace informa-
tion. For example, actor invocation parameters are recovered using the following operation:

traceInvocParam(Trace,ParameterName,ParameterValue,Actor, Invoc),

which returns actor invocations within traces having a given parameter name–value pair. The
following query returns “all invocations of AlignWarp using a 12th order nonlinear 1365 parameter
model” (Q4):

q4(TraceId, Invoc) :- traceId(TraceId,Trace),

traceInvocParam(Trace, ‘warpParams’, ‘-m 12’, ‘AlignWarp’, Invoc).

The input and output nodes of a workflow run can be obtained from a trace using the built-in
operations traceInputNode and traceOutputNode. For example, the following query finds “all Atlas
Graphic images output from workflows where at least one of the input Anatomy Headers had an
entry global maximum= 4095” (Q5):

q5(TraceId,Graphic) :- traceId(TraceId,Trace), traceInputNode(Trace, X),

nodeType(X, ‘AnatomyHeader’), headerQuery(X), traceOutputNode(Trace,Graphic),

nodeType(Graphic, ‘AtlasGraphic’).

The built-in nodeType operation relates a node to its corresponding data or collection type. We
assume here that headerQuery is a user-supplied predicate that applies the global maximum check
on the header data object. The particular phrasing of Q5 suggests that all graphics output in a
particular workflow run depend on all images and headers input to that run. As a result, if only one
input image collection from the second trace were to contain an Anatomy Header with the given
entry, this query would return incorrect dependencies. It is possible, however, to rewrite this query
in our system to return only valid derivations.
The built-in actorInvocation operation computes the input and output of an actor invocation

from a dependency graph. For example, the following query finds ‘all output averaged images of
softmean procedures, where SoftMean was preceded in the workflow, directly or indirectly, by an
AlignWarp procedure with argument -m 12’ (Q6):

q6(TraceId, Image) :- traceId(TraceId,Trace), actorInvocation(Trace, ‘SoftMean’, X, Image),

nodeType(Image, ‘Image’), dependencyEdges(Trace, [Image],Edges),
member((N1, N2, ‘AlignWarp’, I ),Edges),

traceInvocParam(Trace, ‘warpParams’, ‘-m 12’, ‘AlignWarp’, I ).

The built-in nodeMetadata operation gives the metadata key–value pairs for trace nodes. For
example, the following query finds “outputs of AlignWarp where the inputs are annotated with

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:519–529
DOI: 10.1002/cpe



PROVENANCE IN COLLECTION-ORIENTED SCIENTIFIC WORKFLOWS 527

center=UChicago” (Q8):

q8(TraceId,OutNode) :- traceId(TraceId,Trace),

actorInvocation(Trace, ‘AlignWarp’, Invoc, InNode,OutNode), nodeType(InNode, ‘Image’),

nodeMetadata(Trace, ‘center’, ‘UChicago’, InNode).

The following query finds “all graphical atlas sets that have metadata annotation studyModality
with values speech, visual, or audio” (Q9)¶ :

q9(TraceId,GraphicSet) :- traceId(TraceId, Trace), traceInvocation(Trace, ‘SoftMean’, Invoc),

graphAtlasSet(Trace, Invoc,GraphicSet).

graphicAtlasSet(Trace,Invoc,GraphicSet):-setOf(G,graphicAtlas(Trace,Invoc,G),GraphicSet),

member(Graphic,GraphicSet), nodeMetadata(Trace, ‘studyModality’,Modality,Graphic),

member(Modality, [‘speech’, ‘visual’, ‘audio’]).
graphicAtlas(Trace, Invoc,AtlastGraphic) :- traceOutputNode(Trace,AtlasGraphic),

nodeType(AtlasGraphic, ‘AtlasGraphic’), dependencyEdges(Trace, [AtlasGraphic],Edges),
member((N1, N2, ‘SoftMean’, Invoc),Edges).

We assume that a Graphic Atlas ‘set’ consists of all Atlas Graphics derived from an invocation of
SoftMean (i.e. the Atlas X, Y, and Z Graphics generated from SoftMean correspond to a single
set). The first trace results in one graphics set, while the second trace results in three graphics sets.
The complexity of this query is due to the generation of these sets, which is performed using a
group-by operation followed by filtering groups according to their metadata annotations.

3.2. Additional queries

The focus of the COMAD approach on maintaining relationships between input, output, and inter-
mediate data (via collections) facilitates recording the true data dependencies at each stage of
workflow execution even when multiple, independent data sets are provided to a single workflow
run. The queries below further demonstrate the utility of recording such explicit data dependencies.
Find all intermediate (not input or output) images used to derive an Atlas X graphic. The

following query (1) obtains an Atlas X Graphic from the second trace, (2) obtains the dependency
edges starting from the Graphic, (3) selects an image used to derive the Graphic, and (4) checks

¶Note that Q9 asks for the annotations for the returned graphics, which can be performed as an additional step using the
built-in nodeMetadata operation.
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that the image was not an input to the workflow:

q10(Image) :- traceId(‘2’,Trace), nodeForId(Trace, ‘1093’,Graphic),

dependencyEdges(Trace, [Graphic],Edges), edgeNode(Edges, Image),

nodeType(Image, ‘Image’),¬traceInputNode(Trace, Image),

¬traceOutputNode(Trace, Image).

Here, the built-in edgeNode operation gives the nodes used in the given set of edges. A variant of
this query is to find the ‘closest’ Image on the derivation path from the given output.
Find all input images used to derive the Atlas X graphic. This query is of particular importance

for the second trace, where not all input images were used to derive each output graphic. Query (1)
obtains an Atlas X graphic from the second trace, (2) obtains the dependency edges starting from
the Graphic, (3) selects an Image used to derive the Graphic, and (4) checks that the Image was an
input to the workflow.

q11(Image) :- traceId(‘2’,Trace), nodeForId(Trace, ‘1093’,Graphic),

dependencyEdges(Trace, [Graphic],Edges), edgeNode(Edges, Image),

nodeType(Image, ‘Image’), traceInputNode(Trace, Image).

4. COMPARISON TO OTHER APPROACHES

The COMAD framework is an extension of the KEPLER scientific workflow system [3] (see compar-
ison matrix in [6]), which in turn is based on Ptolemy II [7]. The RWS [8] and SDG [9] Challenge
approaches also extend KEPLER. Provenance support for COMAD currently is divided between: (i)
the extension to KEPLER which performs provenance recording and generates output XML trace
files (e.g. [10,11] also use XML for provenance serialization); and (ii) a stand-alone query and
inference system implemented in Prolog (we plan to develop and integrate COMAD provenance
query tools within KEPLER). COMAD provenance queries are based on primitive operations that
work over dependency graphs. Although KEPLER and COMAD allow external components to be
wrapped as actors [2], the co-actors used in the Challenge Workflow (see Figure 1) do not currently
invoke underlying image-processing tools.
Our approach is distinguished by the benefits of employing the COMAD paradigm: (1) The

approach exploits the flexibility inherent in COMAD to model the workflow succinctly (i.e. linearly)
while capturing provenance information accurately from runs involving collections of data of
varying sizes and nesting. (2) It minimizes the provenance information that must be recorded for a
workflow run by allowing provenance annotations on collections to cascade to child elements. (3) It
simplifies association of workflow runs with data provenance by storing workflow inputs, outputs,
intermediate data products, and derivation dependencies in a single, self-contained trace file. (4)
It decouples provenance representation from a particular workflow technology by representing the
trace file using a system-independent XML schema. Similarly, the query system does not require
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information about the workflow description (similar to, e.g. [8]). (5) Finally, our provenance system
can reconstruct collection ‘histories’ (i.e. the contents of collections at specific workflow stages)
from underlying dependency relations, providing additional support for managing data collections
in COMAD.
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