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Abstract. In scientific collaborations, provenance is increasingly used to under-
stand, debug, and explain the processing history of data, and to determine the va-
lidity and quality of data products. While provenance is easily recorded by scien-
tific workflow systems, it can be infeasible or undesirable to publish provenance
details for all data products of a workflow run. We have developed PROPUB, a
system that allows users to publish a customized version of their data provenance,
based on a set of publication and customization requests, while observing certain
provenance publication policies, expressed as logic integrity constraints. When
user requests conflict with provenance policies, repair actions become necessary.
In prior work, we removed additional parts of the provenance graph (i.e., not
directly requested by the user) to repair constraint violations. In this paper, we
present an alternative approach, which ensures that all relevant nodes are retained
in the provenance graph. The key idea is to introduce new anonymous nodes to
represent lineage dependencies, without revealing information that the user wants
to protect. With this new approach, a user may now explore different provenance
publication strategies, and choose the most appropriate one before publishing
sensitive provenance data.

1 Introduction

In the emerging paradigm of collaborative, data-intensive science, sharing data prod-
ucts even prior to publication may be desirable [1,2]. Yet, without a proper scientific
publication associated with shared data, its validity and accuracy is difficult to assess.
This is problematic in collaborative environments, where data shared by one scientist is
used by another scientist as input for further studies. In such settings, data provenance
(the lineage and processing history of data) can help to ensure data quality [3,4,5,6,7]. It
is thus desirable to publish data products together with their provenance. In many cases,
however, provenance data can be sensitive and may contain private information or in-
tellectual property that should not be revealed [7,8,5]. Consequently, one has to balance
between (i) the desire to publish provenance data so that collaborators can understand
and rely on the shared data products, and (ii) the need to protect sensitive information,
e.g., due to privacy concerns or intellectual property issues (Figure 1).

We view provenance as a bipartite, directed, acyclic graph, capturing which data
nodes were consumed and produced, respectively, by invocation nodes (computations).
Our model thus corresponds to the Open Provenance Model (OPM) which captures the
dependencies between data artifacts and process invocations [9].
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Fig. 1. In collaborative settings, scientists publish provenance for an improved understanding of
the result data. With increasing privacy concerns, collaborators have to choose the right balance
between providing sufficient provenance data and protecting sensitive information.

To sanitize provenance graphs, a scientist can remove sensitive data nodes or invoca-
tions nodes from the provenance graph. Alternatively, she can abstract a set of sensitive
nodes by grouping them into a single, abstract node. These updates may violate some of
the integrity constraints of the provenance graph [10]. For example, grouping multiple
nodes into one abstraction node may introduce new dependencies, which were absent
in the initial provenance graph. Hiding nodes may also make some nodes in the final
graph appear independent of each other even though they are dependent in the original
graph. Thus, one can no longer trust that the published provenance data is “correct”
(e.g., there are no false dependencies) or “complete” (e.g., there are no false indepen-
dencies). Therefore, we propose a system that allows a publisher to provide a high-level
specification what parts of the provenance graph are to be published and what parts are
to be sanitized, while guaranteeing that at the same time certain provenance publication
constraints are observed.

2 Motivating Example

Figure 2(a) shows a simplified version of the provenance graph (PG) from the First
Provenance Challenge [11]. Scientific workflow systems often automatically record
such provenance [12,13], and the provenance graphs may resemble the workflow graph,
i.e., the former can be seen as instances of the latter [2]. At the workflow specification
level, actors are used to represent the computational steps, implemented by software
components, while at the provenance (or instance) level, we have invocations of those
actors. We depict data nodes as circles and invocation nodes as boxes. Dependencies
among them are shown as directed edges. These edges capture the lineage of data nodes
and thus are typically drawn from right (newer nodes) to left (older nodes), i.e., in the
opposite direction of the dataflow edges in a workflow specification. For example, d16
was generated by an invocation s2, and was in turn used by invocation c2, denoted by,
respectively s2

gen by←− d16 and d16
used←− c2.

Assume the user wants to publish data products d18 and d19 along with their prove-
nance information, i.e., the data lineage of these nodes. This publication request is
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(a) Provenance graph (PG) and publication
user requests
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(b) User-selected PG′ ⊆ PG with various pri-
vacy issues

Fig. 2. (a) Publication requests to publish the lineage of {d18, d19}; and (b) privacy issues: (i)
data nodes {d11, d12} are sensitive, (ii) nodes {m1, d14, s1} are low level details (i.e. not very
useful) for the intended user, and (iii) nodes {c1, d15, c2} are proprietary.
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Fig. 3. Provenance graph after resolving all the privacy issues. The modified provenance graph
introduces a cyclic dependency, a type error (the graph is non-bipartite), and a false independence.

shown in Figure 2(a). A recursive query is used to retrieve all the data and invoca-
tion nodes upstream from d18 and d19, i.e., the nodes on which the latter depend. The
resulting subgraph (PG′) is shown in Figure 2(b). Note that the lineage of d20 up to s3
is not in the lineage of d18 and d19 and hence not included in PG′. Further assume that
before publishing PG′, the user also wants to sanitize the provenance data as it may
have various privacy issues as shown in Figure 2(b).

Figure 3 shows the provenance graph we get after sanitation by (i) removing the
value refenences from data nodes d11 and d12, (ii) abstracting nodes m1, d14, and s1
into a group node g1, and (iii) removing nodes c1, d18, and c2. In this modified prove-
nance graph, we see that there is a cycle between the data node d13 and invocation node
g1; a type error for the edge between invocation nodes s2 and g1 (the graph should
be bipartite); and there are no dependencies from data nodes d18 and d19 to the rest
of the graph. Thus, we need a systematic way to customize provenance while respect-
ing general properties of the graph (e.g., acyclicity, bipartiteness) and while preserving
correctness and completeness of the remaining provenance information.

In this work, we develop a strategy to (i) hide sensitive information as specified
by the user, (ii) maintain all relevant nodes, which do not have low level details or
proprietary information, in the customize provenance graph, (iii) maintain the original
direct and transitive dependencies among the relevant nodes, and (iv) produce only



graphs that comply with the structural properties of provenance graphs (acyclicity and
bipartiteness).

Outline. In Section 3, we describe the provenance model, user requests and provenance
policies, and the logical architecture of the framework. Section 4 presents our key ideas,
and techniques to solve individual policy violations by introducing new, anonymous
nodes. We discuss related work and conclude in Section 5.

3 Provenance Publisher

In our recent work, we developed the system PROPUB [10], which uses a declarative
approach to publish customized policy-aware provenance. PROPUB accepts a prove-
nance graph and three inputs: (1) user requests to publish and customize provenance,
(2) provenance policies, modeled as integrity constraints aiming to ensure the validity of
the customized provenance graph, and (3) a (total) preference order among provenance
policies. PROPUB checks whether all user requests and provenance policies can be sat-
isfied together. If not, the approach selects a subset of requests and policies according
to the user-specified ranking. The outputs of PROPUB are the customized provenance
graph, as well as a list of satisfied and ignored user requests and policies.

In this work, we present an extension to PROPUB that invents new, anonymous
nodes that are inserted in the customized graph. We show that with this technique, it
is possible to always satisfy all user requests and policies simultaneously, without the
need of a user-specified preference order. For example, by subsequently applying the
user requests in a specific way, none of the provenance policies as described in Table 3
will be violated.

Provenance Model. Our provenance model is based on the Open Provenance Model
OPM [14] and our earlier work [15]: A provenance (or lineage) graph is an acyclic
graph PG = (V,E), where the nodes V = D ∪ I represent either data items D or
actor invocations I. The graph G is bipartite, i.e., the edges E = Euse ∪Egby are either
used edges Euse ⊆ I × D or generated-by edges Egby ⊆ D × I. Here, a used edge
(i, d) ∈ E means that invocation i has read d as part of its input, while a generated-by
edge (d, i) ∈ E means that d was output data, written by invocation i. Data and invo-
cation nodes have opaque identifiers. We use the relations data and actor to map each
data and invocation node to a URL where the data value can be retrieved or the implent-
ing actor identified. The PROPUB Datalog implementation uses the schema shown in
Table 1.

User Requests. Table 2 summarizes the user requests supported by our system. User
requests are asserted as relational facts, which together with PROPUB rules can be used
by a Datalog rule engine to infer additional facts or to check integrity constraints. A
user request can be a publication request or a customization request.

Figure 4 shows examples of publication and customization requests. The relation
lineage defines the user’s initial publication requests. The relations abstract, hide,
and anonymize are used to abstract the nodes with low level details, to remove propri-
etary nodes, and to remove the value references from the sensitive nodes, respectively.



Relation Description
used(I, D) An edge specifying that the invocation I used the data artifact D.
gen by(D, I) An edge to indicate that the data artifact D was generated by invocation I.
actor(I, A) An invocation node I, which was executed by actor A.
data(D, R) A data artifact node D, whose value can be retrieved using the reference R.
dep(X, Y) Combined dependency relation dep = used ∪ gen by. Specifies that node X

depends on node Y, irrespective of their types.

Table 1. PROPUB Provenance Model

User Request Description
ur:lineage(D) Selects the complete lineage for the data artifact D
ur:anonymize(N) Erases the actor/process identity or the data reference from the node N

ur:hide(N) Removes the invocation or data node N
ur:abstract(N, G) Collapses all nodes N to the abstract group G

Table 2. User requests for lineage publication and customization

Provenance Policies. As mentioned above, a provenance graph is a bipartite DAG in
our model. Moreover, an invocation can read (i.e., use) many data artifacts, but a data
artifact is generated by exactly one invocation. We use three provenance policies, repre-
sented as logical integrity constraints, to verify if these structural properties are satisfied
in the customized provenance graph CG that results from applying all customization
requests to PG′. The framework supports two more provenance policies to ensure the
correctness and completeness of information, see Table 3.

We use a set of integrity constraints (ICs) to check whether the provenance poli-
cies defined in Table 3 are satisfied. Table 4 lists the witness relations that are used to
detect particular IC violations and report the “culprits”. For example, we can detect a
write conflict, where a data node D is created by different invocations X and Y, with the
Datalog rule: ic:wc(X,Y) :- gen_by(D,X), gen_by(D,Y), X #= Y.

3.1 Logical Architecture

The logical architecture of the framework is shown in Figure 5. The user submits a
set of publication and customization requests U0. The module Direct-Conflict-Detection
detects direct conflicts among the given user-requests. For example, a ur:hide and a
ur:lineage request on the same node are directly in conflict. The user then needs to
update her original requests until all direct conflicts are resolved, resulting in a consis-
tent, conflict-free user request U. The Lineage-Selection module computes the subgraph
PG′, containing all to-be-published data items together with their data lineage.

The User-Request-Application module applies all the ur:hide, ur:abstract, and
ur:anonymize requests in U on PG′. It deletes from PG′ all data and invocation
nodes selected by the ur:hide and ur:abstract requests, together with their asso-
ciated gen by and used edges. This module then applies the ur:anonymize requests
to remove value references (in case of a data node) or references to the source code
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(a) Provenance subgraph PG′ with outlined
customization requests.
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(b) Publication and customization requests as
Datalog facts.

Fig. 4. (a) User requests to abstract, anonymize, and hide parts of PG′; e.g., proprietary nodes as
in Fig. 2(b), can be hidden using the ur:hide user request. (b) User requests represented as Data-
log facts: e.g., to abstract nodes {m1, d14, s1} into an abstract node g1, we use abstract(m1, g1),
abstract(d14, g1), and abstract(s1, g1). The module prefix “ur:” is optional here.

Provenance Policy Description
No-Write Conflict (NWC) A data artifact can be written by only one invocation.

No-Cyclic Dependency (NCD) There is no cycle in the provenance graph.
No-Type Error (NTE) Bipartite graph: edges only between data and invocations.

No-False Dependence (NFD) Two nodes are dependent in CG only if they are dependent
in PG.

No-False Independence (NFI) Two nodes are independent in CG only if they are indepen-
dent in PG.

Table 3. Provenance Policies

(in case of an invocation node). As this module deletes nodes and incident edges, two
relevant nodes may now appear independent, even though they were dependent in PG′.

The Dependency-Injection module connects all relevant nodes in the customized
provenance graph CG by reproducing the same dependencies as found originally in
PG′. While connecting nodes, this module introduces anonymous nodes to avoid cycle-
dependency, type-error, write-conflict, and false-dependency constraint violations.

The final output, the customized provenance graph CG, satisfies all the provenance
policies mentioned in Table 3, honors all the conflict-free user requests, and maintains
all relevant nodes.

4 Approach

The basic idea of our approach is to first remove data or invocation nodes based on the
user’s hide and abstract requests, and then to connect the remaining nodes using
three key ideas: (i) maintain all relevant nodes, (ii) maintain their dependencies, and
(iii) invent new, anonymous nodes to avoid policy violations.

Maintain Relevant Nodes. In case nodes have sensitive or proprietary information, or
simply too much, low level details (cf. [16]), the user can request those nodes to be re-
moved, abstracted, or anonymized using the requests described above. All the data and



Constraint Description
ic:wc(X, Y) Write conflict: two invocations X and Y are generating the same data node.
ic:cd(X) Cyclic dependency through node X.
ic:te(X, Y) Type error: nodes X and Y are connected via used or gen by edges, but don’t

have the corresponding node types.
ic:fd(X, Y) False dependency: node Y depends on X in CG, but not in PG.
ic:fi(X, Y) False independence: node Y depends on X in PG, but not in CG.

Table 4. Integrity constraint relations used to detect policy violations
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Fig. 5. Logical Architecture: The framework accepts a set of user requests and the provenance
graph and runs through a series of four modules to produce the customized provenance graph.

invocation nodes, which are not selected using ur:abstract or ur:hide are considered
relevant nodes to the user. Our approach does not remove any of these nodes from PG′

and in turn maintains them in CG.

Maintain Dependencies. While removing nodes from PG′, as a consequence of the
user’s customization requests, we also remove the associated gen by and used edges.
This may make CG incomplete (i.e., dependencies are omitted) as shown in Fig. 3. Our
framework avoids these provenance policy violations by maintaining the dependencies
among the relevant nodes as described in Section 4.2.

Inventing New Nodes. While connecting the remaining data and invocation nodes,
the framework may invent new nodes to avoid policy violations (e.g., an invocation
node is invented to connect two data nodes to avoid NTE violations, i.e., type errors).
New nodes can be data or invocation nodes and have no relation to any of the nodes
being replaced. In particular, new nodes are anonymous, i.e., do not have references
associated, so that no sensitive information is revealed, as requested by the user.



Fig. 6. An invocation node is invented to connect two data nodes, avoiding a NTE violation.

Fig. 7. Two data nodes are invented between invocation nodes, avoiding a NWC violation.

4.1 Dealing with Structural Constraint Violations

Before describing our approach in detail (see Section 4.2), we first provide an overview
of the possible remedies that we can use to deal with certain constraint violations.

No-Type Error. This policy is violated in case there is a direct dependency between
two nodes of the same type (i.e., a direct dependency between data nodes or invocation
nodes). While connecting two data nodes, our framework invents an invocation node to
avoid this policy violation as shown in Fig. 6. Similarly, the framework invents a data
node to connect two invocation nodes.

No-Write Conflict. If a data node depends on two different invocation nodes (i.e., the
data node is generated by two different invocations), this policy is violated. This may
occur when inventing a data node and connecting it with two or more gen by edges to
maintain dependencies. While adding edges to an invented data node or connecting a
disconnected relevant data node, our framework ensures that only one gen by edge is
added. Thus, our framewrok avoids this policy violation as shown in Fig. 7.

No-False Independence. This policy is violated if two nodes are dependent in PG′,
but appear independent in CG. This may occur as a result of user requests, as shown
in Fig. 8. Our framework connects the corresponding nodes in CG, to preserve the
dependence present in PG′.

No-False Dependence. This policy is violated if two nodes are independent in PG′,
but appear dependent in CG (Fig. 9). Our framework avoids this conflict by connecting
the relevant nodes using a number of anonymous nodes to preserve the dependencies in
CG as they were in PG′ (see Section 4.2 for details).

No-Cyclic Dependency. This policy is violated, if there is a cyclic dependency in the
provenance graph, i.e., there are nodes in the graph that depend on themselves (either
directly or indirectly via other nodes).3 If the original PG′ was acyclic, then the result-
ing graph CG will also be acylic, as we do not introduce cycles between nodes from
PG′, nor do we introduce cycles involving newly inserted nodes.

3 Recall that provenance (lineage) graphs are inherently acyclic, since they behave like causality
graphs, where an effect (the data output of a computation) cannot precede its cause (the inputs
to that computation).



(a) User request to hide nodes (b) Policy Violation

Fig. 8. Once the requests to hide nodes are executed (a), a false independence arises (b).

(a) User request to abstract nodes (b) Policy Violation

Fig. 9. Once the invocation nodes are abstracted (a), false data dependencies appear (b).

4.2 Module Implementation

We now provide more details about each of the modules mentioned in Section 3.1. In
our framework, the provenance graph PG and user requests U0 are given as logic facts
(EDB or base relations in Datalog parlance). All four modules in our framework are
specified declaratively, as a set of Datalog rules that are evaluated over PG and U0,
to derive the customized provenance graph CG. The modules Direct-Conflict-Detection
and Lineage-Selection are implemented using Datalog rules as shown in our earlier
work [10]. The lineage subgraph PG′, expressed as the dependency relation dep’, is
calculated (based on the ur:lineage publication user requests) as follows:

dep’(X,Y) :- ur:lineage(X), dep(X,Y).
dep’(X,Y) :- dep’(_,X), dep(X,Y).

Note that dep’ is not the transitive closure of dep but rather the subgraph of edges in
dep that is reachable from the nodes in lineage that the user requested to be published.

User-Request-Application. This module accepts the provenance graph PG′ and the
conflict-free user requests as inputs. It removes from PG′ the nodes selected by the
ur:abstract and ur:hide requests and their incident edges. For example, the follow-
ing rules are used to apply the ur : hide user requests:4

del_node(N) :- ur:hide(N), node’(N).
del_dep(X,Y) :- ur:hide(X), dep’(X,Y).
del_dep(X,Y) :- ur:hide(Y), dep’(X,Y).

In a similay way, ur:abstract user requests are applied. This module then applies
all the ur:anonymize user requests by removing the references to the value for the
selected data nodes and removing the references to the source code for the selected actor
nodes. At the end of this module, we get a graph with only relevant nodes, in which

4 Relations whose name starts with “del ” denote auxiliary relations that mark items to be
deleted, here, e.g., nodes and edges.
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Fig. 10. Stage I: Nodes of the in and out sets and in dep dependencies from out to in nodes.

some of them are anonymized. However, many of the dependencies among relevant
nodes in PG′ may now be missing in this graph.

Dependency-Injection. The objectives of this module are to (i) connect all the relevant
nodes (bringing back lost dependencies) using a minimum number of invented nodes,
and (ii) maintain the original direct and transitive dependencies among the remaining
nodes. This module performs a 3-stage process to achieve these goals. We describe the
stages below:

In the first stage, the framework develops in and out sets as shown in Fig. 10.
Here in is a set of relevant nodes (those in dep′), on which one or more nodes from
the del node relation are dependent, while out is a set of relevant nodes, which are
dependent on one or more nodes in the del node set. In our running example from
Fig. 4(a), we have in = {d9, d10, d11, d12, d13, d16} and out = {d13, s2, d18, d19}.

The framework also calculates an in dep relation for each node in out: in dep′(o,i)
holds for a node o ∈ out, if o depends (directly or transitively) on i ∈ in.

Given o ∈ out, the in dep set (for o) is the set of inputs i on which o depends, i.e.,
in depo = {i ∈ in | in dep(o, i) holds}. For example, data node d19 is dependent on
all the members of the in set (see Fig. 10).

We use the following Datalog rules5 to calculate in, out, and in dep:

in(Y) :- del_node(X), dep’(X,Y), ¬del_node(Y).
out(X) :- del_node(Y), dep’(X,Y), ¬del_node(X).
in_dep(X,Y) :- dep’∗(X,Y), in(Y), out(X).

In the second stage, the framework analyzes the dependencies among the nodes of a
specific in depo set of a node o. In case there is a node i ∈ in depo which depends on
another node i′ ∈ in depo, the framework removes i′ from in depo. All these i′ nodes
in in depo are called redundant for the node o. The reason is that when o depends on
i, then o will also transitively depend on i′ (in a sense, i′ is “covered” by i, since the
lineage of i includes the lineage of i′). For example, node d18 from the out set has an
in dep set with nodes d9, d10, d11, d12 and d13. Now, since d13 is dependent on all of
d9, d10, d11, and d12 as shown in Fig. 4(a), the framework optimizes this in dep set

5 Here dep’∗ denotes the transitive closure of dep’ and is defined as usual in Datalog.
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Fig. 11. Stage II: (a) in dep sets are “optimized” (reduced) by removing redundant nodes.
(b) out is further reduced by removing nodes which are directly dependent on all in dep nodes.

by removing all nodes except the node d13. This process is performed for all elements
from the out set. The result is shown in Fig. 11(a).

Next, we check if there is any (transitive) dependency that uses only non-deleted
nodes and edges between a node from the out set and the nodes of its in dep set. In
case there is, the respective node from the in dep set is removed, since the required
dependency is already present in the graph.

For example, there is a direct dependency from s2 to d13. Thus d13 is removed
from the in dep set of the invocation node s2. Finally, if an in dep set for an out node
becomes empty, the node is removed from the out set. This is the case for the invocation
node s2 as shown in Fig. 11(b). Since there is already an edge between s2 and d13, the
framework does not add an additional edge.

in_dep1(X,Y2):- in_dep(X,Y1), in_dep(X,Y2), dep’∗(Y1,Y2).
in_dep2(X,Y) :- in_dep(X,Y), ¬in_dep1(X,Y).
dep’’(X,Y) :- dep’(X,Y), ¬del_node(X), ¬del_node(Y).
dep’’∗(X,Y) :- dep’’(X,Y). % transitive dependencies via remaining nodes
dep’’∗(X,Z) :- dep’’(X,Y), dep’’∗(Y,Z).
in_dep3(X,Y):- in_dep2(X,Y), dep’’∗(X,Y).
in_dep4(X,Y) :- in_dep2(X,Y), ¬in_dep3(X,Y).

In the third and final stage, we invent one data node for each invocation node A
in the in set and updates all the in dep sets by replacing X with the respective newly
invented data node D = f(A) while keeping the dependencies by connecting D with A.
This is done to avoid type-errors. The Datalog rules are as follows:

in_actor(A) :- in(A), actor(A,_).
ins_data(f(A)) :- in_actor(A).
ins_dep(f(A),A) :- in_actor(A).
in_dep5(X,Y) :- in_dep4(X,Y), ¬in_actor(Y).
in_dep5(X,f(Y)) :- in_dep4(X,Y), in_actor(Y).

We can now calculate distinct in dep sets using the following Datalog rules:

diff_in_dep(X1,X2):- in_dep5(X1,Y),in_dep5(X2,_),¬in_dep5(X2,Y).
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Fig. 13. Customized Provenance Graph CG after applying all user requests. CG satisfies all
provenance policies and maintains all relevant PG nodes. A, B, and C are new anonymous nodes.

diff_in_dep(X1,X2):- diff_in_dep(X2,X1).
same_in_dep(X1,X2):- in_dep5(X1,_), in_dep5(X2,_),

¬diff_in_dep(X1,X2).
not smaller(X):- same_in_dep(X,Y), X > Y.
unique(X):- out(X), ¬not smaller(X).

Here, the unique relation provides the list of out nodes with unique in dep sets.
The relation same in dep pairs out nodes having the same in dep sets.

We then invents on data node f(Y) for each unique same in dep group Y, and
inserts edges between f(Y) and all invocation nodes in this group:

ins_data(f(Y)) :- actor(X,_), same_in_dep(X,Y), unique(Y).
ins_dep(X,f(Y)) :- actor(X,_), same_in_dep(X,Y), unique(Y).

Finally, we invent one invocation node for each same in dep group, and insert de-
pendency edges to connect the nodes in in and out based on the in dep; see Fig. 12:

ins_actor(g(S)) :- unique(S).
ins_dep(D,g(S)) :- same_in_dep(D,S), unique(S), data(D,_).
ins_dep(f(S),g(S)) :- same_in_dep(X,S), unique(S), actor(X,_).
ins_dep(g(S),D) :- unique(S), in_dep5(S,D).

The result of this module is a graph with relevant and newly created nodes. For
our example, it is shown in Fig. 13. PROPUB has removed all the nodes selected using
the ur:abstract and ur:hide user requests and invented three anonymous node A,
B, and C to maintain the dependencies among the relevant nodes. The framework also
anonymized the data nodes d11 and d12 selected using ur:anonymize user requests.



5 Summary and Conclusions

Data provenance can be used in many ways, e.g., to interpret results, diagnose errors,
fix bugs, improve reproducibility, and generally to build trust on the final data products
and the underlying processes [3,4,5,6,7]. In addition, provenance information can be
used to enhance exploratory processes [17,18,19], and techniques have been developed
to efficiently store and query provenance from scientific workflow runs [20,21].

With the increasing use of provenance information, privacy issues become more
important as well [7,8]. For example, provenance recorded by a scientific workflow
system may carry sensitive information, such as data about human subjects in the case
of biomedical studies, or proprietary information that a provenance provider might not
want to reveal. By studying and analysing workflow provenance, one can, e.g., infer
parts of the workflow specification or guess actor functionality from observing the
relationships between inputs and outputs. The security view approach [5] limits the
available provenance to a user by providing a partial view of the workflow through a
role-based access control mechanism, and by defining a set of access permissions on
actors, channels, and input/output ports as specified by the workflow owner at design
time. The ZOOM∗UserViews approach [16] allows to define a partial, zoomed-out view
of a workflow, based on a user-defined distinction between relevant and irrelevant ac-
tors. Provenance information is restricted by the definition of that partial view of the
workflow.

In our recent work [10], we developed PROPUB, which uses a declarative approach
to publish customized policy-aware provenance. Conflicts between user requests to hide
or anonymize provenance information and provenance policies are resolved in [10] by
removing additional nodes, beyond those requested by the user. In contrast, in this pa-
per, we developed a new way to reconcile conflicts by inventing anonymous nodes that
preserve the original lineage dependencies, without revealing information that the user
wants to protect. Using this approach, we can now (i) honor all conflict-free user re-
quests, (ii) comply with all provenance policies, (iii) maintain all relevant nodes in the
final provenance graph, and (iv) maintain the original direct and transitive dependencies
among the remaining nodes. Our current PROPUB system is based on the open prove-
nance model (OPM). We plan to extend our prototype to include provenance model
extensions, e.g., to support structured data items, e.g., nested data collections [21].
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2. Missier, P., Ludäscher, B., Bowers, S., Dey, S., Sarkar, A., Shrestha, B., Altintas, I., Anand,

M., Goble, C.: Linking multiple workflow provenance traces for interoperable collaborative
science. In: Workflows in Support of Large-Scale Science (WORKS), 2010 5th Workshop
on, IEEE 1–8

3. Bose, R., Frew, J.: Lineage retrieval for scientific data processing: a survey. ACM Computing
Surveys (CSUR) 37(1) (2005) 1–28

4. Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-science. ACM
SIGMOD Record 34(3) (2005) 31–36



5. Chebotko, A., Chang, S., Lu, S., Fotouhi, F., Yang, P.: Scientific workflow provenance query-
ing with security views. In: Web-Age Information Management, 2008. WAIM’08. The Ninth
International Conference on, IEEE (2008) 349–356

6. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for Computational Tasks: A Survey.
Computing in Science and Engineering 10(3) (2008) 11–21

7. Davidson, S., Khanna, S., Roy, S., Boulakia, S.: Privacy issues in scientific workflow prove-
nance. In: Proceedings of the 1st International Workshop on Workflow Approaches to New
Data-centric Science, ACM (2010) 1–6

8. Davidson, S.B., Khanna, S., Tannen, V., Roy, S., Chen, Y., Milo, T., Stoyanovich, J.: Enabling
Privacy in Provenance-Aware Workflow Systems. In: CIDR. (2011) 215–218

9. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska, N., Miles,
S., Missier, P., Myers, J., et al.: The open provenance model core specification (v1. 1). Future
Generation Computer Systems (2010)
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