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Abstract. We introduce and describe scientific workflows, i.e., executable descriptions of automatable scien-
tific processes such as computational science simulations and data analyses. Scientific workflows are often
expressed in terms of tasks and their (dataflow) dependencies. This chapter first provides an overview of
the characteristic features of scientific workflows and outlines their life cycle. A detailed case study high-
lights workflow challenges and solutions in simulation management. We then provide a brief overview
of how some concrete systems support the various phases of the workflow life cycle, i.e., design, resource
management, execution, and provenance management. We conclude with a discussion on community-
based workflow sharing.

*This is a preprint of [LAB+09]
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13.1 Introduction

Scientific discoveries in the natural sciences are increasingly data-driven and computationally intensive,
providing unprecedented data analysis and scientific simulation opportunities. To accelerate scientific dis-
covery through advanced computing and information technology, various research programs have been
launched in recent years, e.g., the SciDAC program by the Department of Energy [Sci] and the Cyberinfras-
tructure initiative by the National Science Foundation [nsf], both in the United States. In the UK, the term
e-Science [Esc] was coined to describe computationally and data-intensive science, and a large e-Science
research program was started there in 2000. With the new opportunities for scientists also come new chal-
lenges, e.g., managing the enormous amounts of data generated [And08] and the increasingly sophisticated
but also more complex computing environments provided by cluster computers and distributed Grid en-
vironments. Scientific workflows aim to address many of these challenges.

In general terms, a scientific workflow is a formal description of a process for accomplishing a scientific
objective, usually expressed in terms of tasks and their dependencies [LBM09, TDGS07, DGST09]. Scientific
workflows can be used during several different phases of a larger science process, i.e., the cycle of hypoth-
esis formation, experiment design, execution, and data analysis [GDE+07, LWMB09]. Scientific workflows
can include steps for the acquisition, integration, reduction, analysis, visualization, and publication (e.g., in
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a shared database) of scientific data. Similar to more conventional business workflows [Wes07], scientific
workflows are composed of individual tasks that are organized at workflow design time and whose execu-
tion is orchestrated at runtime according to dataflow and task dependencies as specified by the workflow
designer. Workflows are often designed visually, e.g., using block diagrams, or textually using a domain-
specific language. From a scientist’s perspective, scientific workflows constitute knowledge artifacts or
“recipes” that provide a means to automate, document, and make repeatable a scientific process.

The primary task of a scientific workflow system is to automate the execution of scientific workflows. Sci-
entific workflow systems may additionally support users in the design, composition, and verification of
scientific workflows. They also may include support for monitoring the execution of workflows in real-
time; recording the processing history of data; planning resource allocation in distributed execution envi-
ronments; discovering existing workflows and workflow components; recording the lineage of data and
evolution of workflows; and generally managing scientific data. Thus, a scientific workflow system pri-
marily serves as a workflow execution engine, but may also include features of problem-solving environments
(PSE) [RB96].

Wainer et al. describe some of the differences between business (or “office automation”) workflows and
scientific workflows, stating “whereas office work is about goals, scientific work is about data” [WWVM96]. Busi-
ness workflows are mainly concerned with the modeling of business rules, policies, and case management,
and therefore are often control- and activity-oriented. In contrast, to support the work of computational
scientists, scientific workflows are mainly concerned with capturing scientific data analysis or simulation
processes and the associated management of data and computational resources. While scientific work-
flow technology and research can inherit and adopt techniques from the field of business workflows, there
are several, sometimes subtle differences [LWMB09], ranging from the modeling paradigms used, to the
underlying computation models employed to execute workflows. For example, scientific workflows are
usually dataflow-oriented “analysis pipelines” that often exhibit pipeline parallelism over data streams in
addition to supporting the data parallelism and task parallelism common in business workflows.1 In some
cases (e.g., in seismic or geospatial data processing [RG08]), scientific workflows execute as digital signal
processing (DSP) pipelines. In contrast, traditional workflows often deal with case management (e.g., in-
surance claims, mortgage applications etc.), tend to be more control-intensive, and lend themselves to very
different models of computation.

In Section 13.2 we introduce basic concepts and describe key characteristics of scientific workflows. In
Section 13.3 we provide a detailed case study from a fusion simulation project where scientific workflows
are used to manage complex scientific simulations. Section 13.4 describes scientific workflow systems cur-
rently in use and in development. Section 13.5 introduces and discusses basic notions of data and workflow
provenance in the scientific workflow context, and describes how workflow systems monitor execution and
manage provenance. Finally, Section 13.6 describes approaches for enabling workflow reuse, sharing, and
collaboration.

13.2 Features of Scientific Workflows

13.2.1 The Scientific Workflow Life Cycle

The various phases and steps associated with developing, deploying, and executing scientific workflows
comprise the scientific workflow life cycle. The following phases are largely supported by existing work-
flow systems using a wide variety of approaches and techniques (cf. Section 13.4).

Workflow Design and Composition. Development of scientific workflows usually starts with gathering
requirements from scientists. A specification of the desired workflow functionality is then developed, and

1In the parallel computing literature, task parallelism refers to distributing tasks (processes) across different parallel computing
nodes, while data parallelism involves distributing data across multiple nodes. Pipeline parallelism is a more specific condition that
arises whenever multiple processes arranged in a linear sequence execute simultaneously.
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an actual workflow is assembled based on this specification. Workflow development differs from gen-
eral programming in many ways. Most notably, it usually amounts to the composition and configuration
of a special-purpose workflow from pre-existing, more general-purpose components, subworkflows, and
services. Workflow development thus more closely resembles script- and shell-based programming than
conventional application development. During workflow composition, the user (a scientist or workflow
developer) either creates a new workflow by modifying an existing one (cf. workflow evolution, Section 13.5),
or else composes a new workflow from scratch using components and subworkflows obtained from a
repository. In contrast to the business workflow world, where standards have been developed over the
years (e.g., most recently WS-BPEL 2.0 [JE07]), scientific workflow systems tend to use their own, internal
languages and exchange formats (e.g., SCUFL [Tav], GPEL [WHH05], and MOML [BLL+08] among oth-
ers). Reasons for this diversity include the wide range of computation models used in scientific workflows
(Section 13.2.3), and the initial focus of development efforts on scientist-oriented functionality rather than
standardization.

Workflow Resource Planning. Once the workflow description is constructed, scientific workflow systems
often provide various functions prior to execution. These functions may include workflow validation (e.g.,
type checking), resource allocation, scheduling, optimization, parameter binding, and data staging. Work-
flow mapping is sometimes used to refer to optimization and scheduling decisions made during this phase.
In particular, during workflow design and composition, the target resources to be used for execution are
typically not chosen. Workflow mapping then refers to the process of generating an executable workflow
based on a resource-independent abstract workflow description [DBG+03]. In some cases, the user performs
the mapping directly by selecting appropriate resources (e.g., in Figure 13.2). In other cases, the workflow
system automatically performs the mapping. In the latter case, users are allowed to construct workflows at
a level of abstraction above that of the target execution environment.

Workflow Execution. Once a workflow is mapped and data has been staged (selected and made available
to the workflow system), the workflow can be executed. During execution, a workflow system may record
provenance information (data and process history, see Chapter 12 and Section 13.5) as well as provide
real-time monitoring and failover functions. Depending on the system, provenance information generally
involves the recording of the steps that were invoked during workflow execution, the data consumed and
produced by each step, a set of data dependencies stating which data was used to derive other data, the
parameter settings used for each step, and so on. If a workflow can change while executing (e.g., due to
changing resource availability), the evolution of such a dynamic workflow may be recorded as well in order
to support subsequent execution analysis.

Workflow Execution Analysis. After workflow execution, scientists often need to inspect and interpret
workflow results. This involves evaluation of data products (does this result make sense?) examination of
workflow execution traces (is this how the result should have arisen?), workflow debugging (what went wrong
here?), and performance analysis (why did this take so long?).

Workflow and Result Sharing. Data and workflow products can be published and shared. As workflows
and data products are committed to a shared repository, new iterations of the workflow life cycle can begin.

User Roles. Users of scientific workflow systems can play a number of different roles within the above
phases: A workflow designer is usually a scientist who develops a new experimental or analytical protocol
(or a new variant of an existing method). As mentioned above, a workflow design is often elicited through
some form of requirements analysis, and the design and associated requirements can be used by a workflow
engineer to implement the associated abstract or executable workflow description. A workflow operator is
a user who executes workflows on the desired inputs. An operator may launch a workflow directly via a
scientific workflow system, or indirectly through another application (e.g., within a web portal), monitor the
execution (e.g., via a workflow dashboard), and subsequently validate results based on stored provenance
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information. The above user roles are not necessarily disjoint, e.g., a single person may assume the roles
of designer, engineer, and operator. Indeed, scientific workflow systems aim at making workflow design,
execution, and result analysis all easier in comparison to traditional script-based approaches to scientific
process automation.

13.2.2 Types of Scientific Workflows

Scientific workflows can be used to model and automate scientific processes from many different science
domains (e.g., particle physics, bioinformatics, ecology, and cosmology, to name a few). Not surprisingly,
such workflows can exhibit very different characteristics. For example, workflows might be exploratory in
nature, starting from ad-hoc designs and then requiring frequent changes to the workflow design, parame-
ter settings, etc. to determine which methods and components are most suitable for the particular datasets
under investigation. Such exploratory workflow design is common when developing new analysis meth-
ods. Conversely, some applications require the development of production workflows to be executed on a
regular basis with new datasets or simulation parameters (e.g., environmental monitoring and analysis
workflows or the fusion simulation workflow in Section 13.3).

Another important distinction has to do with what the workflow components (called actors or tasks)
represent and model. In science-oriented workflows, actors model a scientific method or process. In such
workflows individual workflow steps generally are meaningful to the scientist, i.e. more or less directly
correspond to high-level steps of the scientific method being automated. Contrasting with science-oriented
workflows are resource-oriented workflows. Actors and workflow steps in the latter model require data and
resource handling tasks rather than the science. In such cases, the actual analytical or simulation operations
might be “hidden” from the workflow system, and instead the workflow directly handles the “plumbing”
tasks such as data movement, data replication, and job management (submit, pause, resume, abort, etc.)
The simulation management workflow in Section 13.3 is an example of such a resource-oriented “plumbing
workflow.”

13.2.3 Models of Computation

Consider a workflow graph W consisting of actors (tasks, workflow steps) and connections (directed edges)
between them.2 With W we can associate a set of parameters p̄, input datasets x̄, and output datasets ȳ. A
model of computation (MoC) M prescribes how to execute the parameterized workflow Wp̄ on x̄ to obtain
ȳ. Therefore, we can view a MoC as a mapping M : W × P̄ × X̄ → Ȳ which for any workflow W ∈ W ,
parameter settings p̄ ∈ P̄ , and inputs x̄ ∈ X̄ , uniquely determines the workflow outputs ȳ ∈ Ȳ . We denote
this by ȳ = M(Wp̄(x̄)). While most current scientific workflow systems employ a single MoC, the Kepler
system [Kep], due to its heritage from Ptolemy [BLL+08], supports more than one such MoC: for each each
MoC M, there is a corresponding director of the same name which implements M.

For example, consider the PN (Process Network) model of computation. Using the PN director in Ke-
pler, a workflow W executes as a dataflow process network [Kah74, LP95]. In PN each actor executes as
a separate, data-driven process (or thread) which is continuously running. Actor connections in PN corre-
spond to unidirectional channels (modeled as unbounded queues) over which ordered token streams are
sent, and actors in PN block (wait) only when there are not enough tokens available on the actor’s input
ports. Process networks naturally support pipeline parallelism as well as task and data parallelism.

In SDF (Synchronous Data-Flow), each actor has fixed token consumption and production rates. In Ke-
pler this allows the SDF director to construct an actor firing schedule prior to executing the workflow [LM08].
This also allows the SDF director readily to execute workflows in a single thread, firing actors one at a time
based on the schedule.

Workflows employing the PN and SDF directors in Kepler may include cycles in the workflow graph.
We use the term DAG to refer to a model of computation that restricts the workflow graph W to a directed,
acyclic graph of task dependencies. In DAG each actor node in W is executed only once, and each actor A

2Here we ignore a number of details, e.g., actor ports, subworkflows “hidden” within so-called composite actors, etc.
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in W is executed only after all actors A′ preceding A (denoted A′ ≺W A) in W have finished their execution.
Note that we make no assumption about whether W is executed sequentially or task-parallel; we only
require that any DAG-compatible schedule for W satisfy the partial order≺W induced by W . A DAG director
can obtain all legal schedules for W (i.e., the relation ≺W ) via a topological sort of W . Finally, note that the
DAG model can easily support task and data parallelism, but not pipeline parallelism.

Another model of computation, extending PN, is COMAD (Collection-Oriented Modeling and Design)
[MBL06, BMWL07]. In this MoC, actors operate on streams of nested data collections (similar to XML
data), and can be configured (via XPath-like scope expressions and signatures) to “pick up” and operate only
on relevant parts of the input stream, injecting results back into the output stream for further downstream
processing. This MoC can simplify workflow design and reuse when compared with DAG, SDF, and PN
workflows [MBZL09].

13.2.4 Benefits of Scientific Workflows

Scientific workflows are designed to help scientists perform effective computational experiments by pro-
viding an environment that simplifies (in silico) experimental design, implementation, and documentation.
The increasing use of scientific workflow environments and systems is due to a number of advantages these
systems can offer over alternative approaches.

• Scientific workflows automate repetitive tasks, allowing scientists to focus on the science driving
the experiment instead of data and process management. For example, automation of parameter
studies—where the same process is performed hundreds to thousands of times with different pa-
rameter sets—can often be more easily and efficiently achieved than with conventional programming
approaches.

• Scientific workflows explicitly document the scientific process being performed, which can lead to
better communication, collaboration (e.g., sharing of workflows among scientists), and reproducibility
of results.

• Scientific workflow systems can be used to monitor workflow execution and record the provenance of
workflow results. Provenance, in particular, provides a form of documentation that can be used to
validate and interpret results produced by (often complex) scientific processes.

• Scientific workflow systems often can optimize and then more efficiently execute scientific processes, e.g.,
by exposing and exploiting various forms of parallelism inherent in data-driven scientific processes,
as well as by employing other techniques for efficient resource management.

• Workflow environments encourage the reuse of knowledge artifacts (actors, workflows, etc.) devel-
oped when automating a scientific process, both within and across disciplines.

13.3 Case Study: Fusion Simulation Management

We now present a detailed case study to make the previously discussed notions more concrete. We chose
a simulation management workflow as our example because it exhibits a number of challenging issues
typically not found in other types of scientific workflows. In our terminology, the workflow is a resource-
oriented, production workflow. The main scientific computations (the fusion simulation) are performed on a
remote supercomputer cluster, while the management workflow can be executed on the scientist’s desktop.
The overall computation managed by the workflow is both data-intensive and compute-intensive; involves
pipeline parallelism over a stream of data or reference tokens;3 and is responsible for job management, file
transfers, and data archiving. Such workflows have been called “plumbing” workflows due to their focus
on explicitly dealing with underlying resources (which the end-user scientist prefers not to deal with).

3a reference token is a “logical pointer” to a data object, e.g., a file name
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From the scientist’s point of view, the primary task is to observe and analyze the simulation results as soon
as possible. To understand this challenge, we first describe briefly the physics problems studied in the
simulations.

The Center for Plasma Edge Simulation (CPES) is a DOE SciDAC project [cpe] requiring close collabora-
tion between physicists, applied mathematicians, and computer scientists. Together, these researchers have
developed a complete plasma fusion simulation, called XGC1 [KCA+06] that runs in a high-performance
computing environment. The computational scientists use this simulation to study the behavior of hot
plasma in a tokamak-type fusion reactor. The central issue under study is as follows. Within a fusion reac-
tor, if the hot edge of the plasma is allowed to contact the reactor wall in an uncontrolled way, it can sputter
the wall material into the plasma, degrade or extinguish the fusion burn, and shorten the wall lifetime to
an unacceptable level. Anomalous tokamak plasma transport is thought to be associated with small-scale
plasma turbulence. When the heating power to the core plasma is above a certain threshold, a thin plasma
layer forms, making the plasma almost free of turbulence; in addition, the central plasma temperature and
density rise under these conditions with the added benefit that the fusion probability increases dramatically.
However, this layer also triggers large magnetohydrodynamic-type instabilities, which simultaneously de-
stroy the layer (lowering the fusion power in the core) and dump the plasma energy to the material walls.
It is currently not fully understood how this layer builds up or how the following crash occurs. The success
of next-generation burning plasma experiments is heavily dependent upon solving this problem. Thus,
understanding these physical processes is an important area in fusion plasma research (see [CPP+08] for
more details).

Due to the complexity of running the simulation (e.g., staging input data, monitoring execution status,
and managing result data) as well as to the rapid changes and evolution of the simulation code itself, au-
tomating the execution of the simulation via a workflow is crucial for both XGC1 developers and scientists
wanting to evaluate XGC1 results. Here, we can distinguish three layers of activity: (1) At the highest
level, physicists are interested in understanding (and ultimately taming) nuclear fusion in tokamak-type
reactors; (2) in addition to performing the actual experiments, sophisticated, large-scale simulations on su-
percomputers are used to gain insights into the process (this is a goal of the CPES project); and finally (3) a
simulation management workflow is used to deal with the challenging issues in running the simulations,
and automating the necessary steps as much as possible.

13.3.1 Overview of the Simulation Monitoring Workflow

The XGC1 simulation outputs one-dimensional diagnostic variables in three NetCDF files. It also outputs
three-dimensional data written in a custom binary format for efficient I/O performance. The latter data
subsequently is converted to standard formats, such as HDF5, for archiving and analysis. Simple plots
are generated from the 1-D diagnostic variables, while 2-D visualizations (i.e., cross-section slices of the
tokamak) are produced from the converted 3-D data. The NetCDF, HDF5, and all images produced during
the simulation are archived.

Figure 13.1 shows a graphical representation of a CPES simulation monitoring workflow implemented
using the Kepler scientific workflow system [Kep]. After initial preparation steps (e.g., checking if a simu-
lation restart is requested; logging in to all involved machines; creating directories at the processing sites,
etc.), two independent, concurrently executing pipelines are started for monitoring the XGC1 simulation.
The term “monitoring” is used to indicate that for each output step, plots and images are generated in
real-time, and that these can be visualized on a dashboard, enabling the scientist to observe whether the
simulation is progressing correctly. The simulation itself executes on a dedicated supercomputer (primary
cluster) at Oak Ridge National Laboratory (ORNL), while a secondary cluster computer at ORNL is used for
on-the-fly analysis of the simulation run on the primary cluster.

The first pipeline (shown in the center of Figure 13.1) performs the NetCDF file processing portion of
the monitoring workflow. This pipeline starts by checking the availability of NetCDF files. As each such
file grows (they are extended after every diagnostic period), the workflow performs split (taking the most
recent data entry), transfer, and merge operations on recent data to mirror XGC1’s output on the secondary
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Figure 13.1: CPES Fusion Simulation Monitoring Workflow (in Kepler)

analysis cluster efficiently. Finally, images are generated using xmgrace4 for all variables in the output for
each diagnostic time step and placed into a remote directory where the scientist can browse them via the
web-based dashboard application [CPP+08] (cf. Section 13.5). The split and merge operations are executed
on the login nodes of the primary simulation machine and on the secondary analysis cluster, respectively.
To make the plots, however, a job has to be submitted on the secondary cluster for each file in each step.
Although one such job is small—lasting only for a couple of seconds—there is almost always one running;
this would typically overload the login node of the primary cluster.

The second pipeline (bottom of Figure 13.1) performs the BP-HDF5 processing. This pipeline’s role is
similar to the NetCDF pipeline, but with the following differences. For each step, XGC1 creates new BP
files (a custom binary packed format); hence, there are no split and merge steps when transferring them to
the secondary processing site. The BP files are converted to HDF5 using an external code, and then images
are created for all 2-D slices of the 3-D data stored in those files using an AVS/Express5 dataflow network.
For this purpose, the pipeline starts AVS/Express as a remote job on the secondary cluster and then makes
image-creation requests to it as a (private) service.

This workflow uses a set of fine-grain job-control steps provided by Kepler for calling AVS/Express. The
workflow waits until the AVS/Express job is started on its execution host, performs the other tasks while
the job is running, and stops the job at the end of the processing. The individual steps in Figure 13.1 are
workflows themselves (i.e., subworkflows or composite actors in Kepler terminology), implementing special
tasks. One such subworkflow is the archival step in the HDF5 pipeline, which assembles files into large
chunks and stores them in a remote mass-storage system (see [PLK07] for details of this subworkflow).

4A tool for graphing, advanced computation and exploration of data; see http://plasma-gate.weizmann.ac.il/Grace/
5http://www.avs.com/software/soft_t/avsxps.html
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13.3.2 Issues in Simulation Management

In a compute-intensive workflow, jobs typically are executed remotely from the workflow execution engine,
and thus the output of one job often must be transferred to another host where subsequent jobs are executed.
For efficiency reasons, files are directly transmitted between remote sites, while the workflow engine only
“sees” reference tokens to the remote files. The XGC1 case study falls into this category of workflows. It
also belongs to a category of data-intensive workflows in which the data produced during a supercomputing
simulation must be processed on the fly and as quickly as possible. This scenario is typical of most scientific
simulations that use supercomputers and produce ever larger amounts of data as the size and speed of the
supercomputer clusters continues to increase.

Runtime Decision Support. The typical tasks that a computational scientist performs during and after a
simulation run are often tedious to perform manually without automation support. For instance, to main-
tain high utilization of supercomputing resources, it is essential to be able to detect and halt a divergent
simulation. Thus, in most scientific simulations, the status of the computation must be regularly checked
to ensure that it is not diverging given for the initial input parameters. However, it can be difficult to check
the status of an executing simulation because typically the user has to log in to the primary supercomputer
cluster (since applications typically write data to local disks) at regular intervals to analyze diagnostic values
that reveal errors in the input or simulation code. Moreover, simulations typically write out other (more
involved) diagnostic data such as physical variables or derivatives of these variables which must be plot-
ted and analyzed. Although such plots give deeper insight into the current state of the simulation, even
more information may be needed for monitoring and runtime decision support, e.g., the ability to visually
analyze parts of the dataset written out by the simulation. The latter operation usually cannot be done
on the supercomputer’s login node, however, which is one of the reasons for transferring data to another,
secondary computer, such as the scientist’s desktop computer or a dedicated visualization computer. Al-
though not described in detail here, the CPES project has automated these various tasks via a separate
workflow that greatly reduces the amount of manual work required of users by automatically routing di-
agnostic information and data, and by displaying the appropriate plots and visualizations on a web-based
dashboard.

Data Archiving. Another important task is the archiving of output data. At present, it is sufficient to
archive data after the simulation run. In the near future, however, it is anticipated that the largest sim-
ulations will create more data in a single run than can fit onto the disk system of the supercomputers.
Therefore, files must be transferred to a remote mass storage system on the fly and then removed from the
local disk to make space for more data coming from the simulation. There also is a requirement to create
“archival chunks” of an intermediate size; for performance reasons, neither individual files nor the com-
plete simulation output (as a single file) can be sent to the archive system. Thus, the automated solution
puts files into appropriately sized chunks while taking care of other requirements, e.g., ensuring that all
data for one time step goes into the same chunk.6 Finally, recording the data provenance of all generated
data becomes increasingly important as the size and complexity of the output grows. For example, from
an automatically generated diagnostic image, a scientist must be able to easily find the output of the simu-
lation corresponding to the visualization. Tools can greatly help with transferring the relevant data to the
scientist’s host machine (which could be at a remote site) provided that the above simulation management
workflow records the necessary data lineage of all operations.

Pipeline Parallel Processing. An important feature of the Kepler environment is its support for the data-
flow process network [Kah74, LP95] model of computation, implemented via the Process Network (PN)
director [BLL+08]. Using the PN director, all actors are running continuously in separate threads, wait-
ing for input to be processed immediately. Each pipeline in the above workflow is therefore processing

6An additional problem arises when data is generated faster than it can be archived. In this case, an additional workflow step can
be inserted which uses an auxiliary disk to queue the data, decoupling the slow archival from the fast data generation.
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a stream of data items in pipeline-parallel mode. For example, since XGC1 outputs diagnostic data into
three NetCDF files at each timestep, plots can be created for one file, while a second file is being used in
a merge operation, and while a third file is being transferred. In a typical production run scenario, XGC1
outputs a new timestep every 30 seconds. The time to get one file through the processing pipeline includes
the time for recognizing its presence, the transfer time, and the execution time of the plot generation job
on the processing cluster. If the workflow performed only one of these steps at a time (e.g., as prescribed
by the SDF director), the simulation would generate files faster than they could be processed. Due to the
size of the 3-D data in the HDF5 pipeline and the longer transfer time of those files, the situation is similar
in this pipeline as well. Finally, the archiving process must obviously work in parallel with the rest of the
workflow, since it is a slow process in itself. If the task and pipeline parallelism exhibited by the above
workflow is not enough to keep up with the flow of data, one can replicate individual actors on different
compute nodes to process multiple data items at the same time. Although the above workflow does not
need to do this currently, a more complex production workflow is in use for coupling other codes with the
XGC1 predecessor code (such as those described in Section 5), XGC0 [CPP+08], where a parameter study
has to be executed for each timestep of the simulation, and that study is executed in this parallel mode.

Robustness of Workflows. There are two different but related aspects of robustness that can occur in
compute-intensive workflows: what happens if the overall workflow execution fails and stops (e.g., at the
workflow engine level), and what happens if an individual task in the workflow fails? For a workflow
responsible for starting and monitoring jobs, both eventualities mean that there is a set of successfully
executed jobs (whose results should be salvaged) and a set of not yet executed jobs that cannot be started
because they either depend on a failed task, or because the workflow (engine) is no longer running and
thus cannot start them. After restarting the workflow, a previously failed task can resume.

The tasks comprising the simulation monitoring workflow represent operations carried out on individ-
ual data items (files) as the simulation produces data at each timestep. If some operation during a particular
timestep fails (e.g., transfer to another host fails, mass storage is down at archiving time, or a statistic can-
not be created–all common failures outside the control of the workflow engine), this should not prevent
the workflow from invoking the complete pipeline of operations over the data produced during the next
timestep. However, because a downstream actor may be affected by the result of an upstream actor, ac-
tors should be prepared for such failures. Two possible solutions are to (a) discard from the token stream
that token corresponding to the failed operation, or (b) introduce special “failure tokens” to mark jobs that
did not succeed. If we discard the token for the failed operation, downstream actors do not receive a bad
task request, and therefore no change to the actor is required to handle them. However, the absence of
tokens changes the balance between the consumption and production rates of the actors, and this can lead
to difficulties in complex workflow design, e.g., if we need to split and merge pipelines. If we replace the
token with a failure token, and downstream actors are programmed to simply ignore such failure tokens,
the workflow structure remains simpler.7

Resuming Workflow Execution Following a Fault. Pipelined (e.g. PN) workflows are harder to restart
than DAG workflows because the current state of the workflow is not as easy to describe and restore; all ac-
tors in the workflow graph may be concurrently executing. While the progress of executing a conventional
DAG workflow (Section 13.2.3) can be seen as a single “wavefront” progressing from the beginning of the
workflow DAG towards the end, in a pipeline-parallel workflow each task can be invoked repeatedly. If
the workflow system does not support full restoration of the workflow and actor state (a nearly impossible
task when dealing with workflow components outside the control of the engine), the workflow itself has to
include some sort of light-weight checkpoint and restart capability.

In the CPES workflow, the solution is to have the remote execution actor—used for executing all of
the actual data processing operations along the pipeline—record all successful operations [PLK07]. When

7The first design of CPES workflows was based on approach (a), while for the above reason, an improved design employed the
second approach (b). The COMAD model of computation (see Section 13.2.3 and [MBZL09]) natively supports mechanisms to tag
data, which is an elegant way to achieve variant (b); it can be used to skip over or even bypass data around actors [ZBML09], or
perform other forms of exception handling based on tags.
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restarted, e.g., after failure, this actor checks the current tasks to be performed against the set of successful
tasks and skips over any that were already executed successfully. In this way, the next actor in the pipeline
can immediately start working on it (or skip over it as well). Thus, although the workflow restarts from the
very beginning, pushing the initial input tokens back into the pipeline, the actors “fast-forward” to the most
recent state prior to the workflow failure, by skipping the tokens corresponding to previously successful
tasks. The time spent by the workflow engine in this fast-forward restoration process is negligible compared
to the time of actually executing the remote operations.

13.4 Grid Workflows and the Scientific Workflow Life Cycle

The term Grid workflow applies to workflows that employ distributed (often wide-area) computational re-
sources (often referred to as “the Grid”). Like other scientific workflows, grid workflows can be seen as
high-level specifications of sets of tasks and the dependencies between them that must be satisfied in order
to accomplish a specific goal. The specific goal of grid-enabled workflow systems is to reduce the pro-
gramming effort required of scientists orchestrating a computational science experiment in a wide-area,
distributed system. The vast majority of scientists do not use grid systems in their day-to-day practices,
largely because of usability barriers. Workflow systems are beginning to address these usability barriers
and to make grid computing far more accessible to general science users. In this section, we focus on the
first three stages of the life cycle summarized in Section 13.2.1—scientific workflow composition, mapping
of workflows onto resources, and workflow execution— and describe how several popular Grid-enabled
workflow systems support these different stages. We present a cross-sectional view of the types of Grid
workflows that are currently being deployed and compare features provided by Kepler [Kep, LAB+06],
Pegasus [Peg, DBG+04], Taverna [Tav, OAF+04, OGA+06], Triana [Tri, TSWR03], and Wings [GRD+07].8

13.4.1 Workflow Design and Composition

Most e-Science workflow systems provide a graphical tool for composing workflows. For example, Kepler
and Triana have sophisticated graphical composition tools for building workflows graphs using a graph
or block diagram metaphor, where nodes in the workflow graph represent tasks and edges dataflow de-
pendencies or task precedence. The intent of these graphical composition tools is to simplify for scientists
the task of describing workflows. Other, task-based systems such as Pegasus focus on the mapping and
execution capabilities and leave the higher-level composition tasks to other tools.

Task-level workflow systems focus on resource-level functionality and fault-tolerance, while service-
level systems generally provide interfaces to certain classes of services for management and composition.
One important factor to the adoption of workflow systems by scientists is the availability of workflow tools
and services that scientists can build on in order to create their applications. Such service availability forms
part of the composition process since it represents the available tools that can be composed within a system.

Pegasus takes a workflow description in a form of a Directed Acyclic Graph in XML format (DAX). The
DAX can be generated using a Java API, any scripting language, or using semantic technologies such as
Wings [GRD+07]. In some scientific applications, users prefer an interface that simply supports metadata
queries while hiding the details of how the underlying systems work. In astronomy, for example, users
want simply to retrieve images of an area of the sky of interest to them. In such cases Pegasus is usually in-
tegrated into a portal environment, and the user is presented with a web form for entering desired metadata
attributes. Behind the portal a workflow instance is then generated automatically based on the user’s input,
given to Pegasus for mapping, and then passed to DAGMan [Tea02] for execution. Examples of this ap-
proach can be seen in the Montage project (an astronomy application) [BGL+03, KBB+04], the Telescience
portal (a neuroscience application) [LSK+06], and the Earthworks portal (an earthquake science applica-
tion) [MPMF+06]. In all of these applications, Pegasus and DAGMan are being used to run workflows on
national infrastructure such as the TeraGrid.

8For a high-level overview and attempt at a classification of current systems see [YB05] and http://www.extreme.indiana.
edu/swf-survey/; these include references to other scientific workflow systems, such as Askalon, Karajan, and many others.
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Kepler provides a graphical user interface for composing and editing workflows using a hierarchical
representation of the workflow graph (see the example in Figure 13.1). Dataflow is indicated by chan-
nels represented as edges among the nodes of the graph, and each node represents either an atomic task
or a composite task (containing a sub-workflow). The user interface provides a semantic-search system
across hundreds of different scientific computing components available in the Kepler library. These com-
ponents cover a wide variety of scientific data processing and modeling activities, such as geospatial data
processing, signal processing, statistical algorithms, and data transformations. The semantic search feature
[BBJ+05, BL05] assists the user in locating components that are relevant to their analysis and modeling
tasks. It is also useful when searching the remote Kepler library, allowing users to find components that
have been shared by other Kepler users and to share their own components and workflows with others.
Kepler workflows can be executed directly from the workflow-composition GUI or saved in an XML rep-
resentation (MoML) and later passed to Kepler for execution in the absence of the GUI. This feature allows
Kepler to be embedded in web portals and other applications.

Taverna provides a GUI-based desktop application that uses semantic annotations associated with ser-
vices, and employs the use of semantics-enabled helper functions, and uses reasoning techniques to infer
service annotations [BEP+08]. Over 800 services are described using ontologies [GWG+07] expertly anno-
tated by a full time curator used by clients such as Find-O-Matic, its discovery tool, Feta [LAWG05] which
is only available as a plug-in from the Taverna Workflow Workbench. The BioCatalogue9 project [GSH+08]
incorporates the experiences of the Taverna Registry and myExperiment (Section 13.6) to build and manage
a richly described catalogue of web services in the Life Sciences. The catalogue’s services have descriptive
content capturing functional capabilities curated by experts and by the community through social collabo-
ration; operational content such as quality of service and popularity is automatically curated by monitoring
and use analysis. The BioCatalogue is a free standing component with its own RESTful APIs that can be
embedded within and accessed from third party applications. Developers can incorporate new services
through simple actions and can load a pre-existing workflow as a service definition within the service
palette, which can then be used as a service instance within the current workflow. Taverna also supports
the configuration of the appearance of the graphical representation of workflows, so that a workflow can
be suppressed to give higher level views, e.g., to remove details such as data translation (or other “shim”)
services.10

One of the most powerful aspects of Triana is its graphical user interface. It has evolved in its Java
form for over 10 years and contains a number of powerful editing capabilities, wizards for on-the-fly cre-
ation of tools and GUI builders for creating user interfaces. Triana editing capabilities include: multi-level
grouping for simplifying workflows, cut/copy/paste/undo, ability to edit input/output nodes (to make
copies of data and add parameter dependencies, remote controls or plug-ins), zoom functions, various
cabling types, optional inputs, type checking and so on. Since Triana came from the gravitational-wave
field, the system contains a wide ranging palette of tools (around 400) for the analysis and manipulation of
one-dimensional data, which are mostly written in Java (with some in C). Recently, other extensive toolkits
have been added for audio analysis, image processing, text editing, for creating retinopathy workflows (i.e.,
for diabetic retinopathy studies) and even data mining based on configurable web services to aid in the
composition process. See [Tay06] for a further discussion and description of such applications.

Wings [GRD+07] uses rich semantic descriptions of components and workflow templates expressed in
terms of domain ontologies and constraints. Wings has a workflow template editor to compose components
and their dataflow. The editor assists the user by enforcing the constraints specified for the workflow
components. It also assists the user with data selection, to ensure the data sets selected conform to the
requirements of the workflow template. With this information, Wings generates a workflow instance that
specifies the computations (but not where they will take place) and the new data products. For all the new
data products, it generates metadata attributes by propagating metadata from the input data through the
descriptions and constraints specified for each of the components.

9http://biocatalogue.org
10Shims align or mediate data that is syntactically or semantically closely related, but not directly compatible [HSL+04].
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Figure 13.2: Kepler supports execution of workflows on remote peer nodes and remote clusters. Users in-
dicate which portions of a workflow should be remotely executed by grouping them in a distributed com-
posite component (shown in blue in the workflow). The user selects from a list of available remote nodes
for execution (see dialog), and Kepler calculates a schedule and stages each data token before execution on
one of the set of selected remote nodes.

13.4.2 Mapping Workflows to Resources

It is often the case that at the time the workflow is being designed the target resources are yet to be cho-
sen. Workflow mapping refers to the process of generating an executable workflow based on a resource-
independent workflow description sometimes called an abstract workflow. In some cases the user performs
the mapping directly by selecting the appropriate resources. In other cases, the workflow system performs
the mapping.

Depending on the underlying execution model of standalone applications, or individual services, differ-
ent approaches are taken to the mapping process. In the case of service-based workflows, mapping consists
of finding and binding to services appropriate for the execution of a high-level functionality. Service-based
workflows also can consider quality of service requirements when performing the mapping. In the case
of workflows composed of stand-alone applications, the mapping not only involves finding the necessary
resources to execute the computations and performing various optimizations, but may also include modi-
fying the original workflow.

Some systems such as Taverna rely on the user to make the choice of resources or services. In the case of
Taverna, the user can provide a set of services which match a particular workflow component, so if errors
occur, an alternate service can be automatically invoked. The newer versions of Taverna will include late
service binding capabilities.

Kepler, on the other hand, allows the user to specify resource bindings through its distributed compu-
tation configuration system. The user designs the workflow in a manner that indicates which components
are compute-intensive and should be distributed across remote computational resources. The user then is
presented with a dialog listing available compute resources, which can include both other Kepler peers and
remote Kepler slaves running on computing clusters (see example in Figure 13.2). The user selects which
set should be used for the execution, and the Kepler execution engine then determines a schedule for data
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transfer and execution of jobs based on the execution model used in the abstract workflow model. In addi-
tion, Kepler can be used to configure and submit jobs to a variety of other grid-based computing systems,
including Griddles [KA05], Nimrod [ASGH95], and other systems.

Triana is able to interface to a variety of execution environments using the GAT (Grid Application
Toolkit) [TSWR03] for task-based workflows and the GAP (Grid Application Prototype) for service-based
workflows. In the case of a service-based workflow, a user can provide the information about the services
to invoke (or locate them via a repository). Alternatively, a user can create a workflow and then map part of
the workflow to distributed services through the use of one of the internal scripts, e.g., parallel or pipeline.
In this mode, Triana distributes workflows by using (or deploying on-the-fly) distributed Triana services
that can accept a Triana taskgraph as input. In the case of a task-based workflow, the user can designate
portions of the workflow as compute-intensive and Triana will send the tasks to the available resources
for execution. It can, for example, use the GAT interface to the Gridlab GRMS broker [GRM05] to perform
the resource selection at runtime. Workflows can also be specified using a number of built-in scripts that
can be used to map from a simple workflow specification (e.g., specifying a loop) to multiple distributed
resources in order to simplify the orchestration process for distributed rendering. Such scripts can map
sub-workflows onto available resources by using any of the service-oriented bindings available, e.g., WSRF
(Web Services Resource Framework), Web and P2P (peer-to-peer) services using built-in deployment ser-
vices for each binding.

Workflows specified in DAGMan can be a mixture of concrete and abstract tasks. When DAGMan is
interfaced to a Condor task execution system [Tea02], the abstract tasks can be matched dynamically to
Condor resources. The matching is done by the Condor matchmaker, which matches the requirements of
an abstract task specified in a Condor classAd11 with the resource preferences published in their classAds.
We also note that Pegasus uses DAGMan as an execution engine (Figure 13.3). Currently, Pegasus and
DAGMan are being integrated into a system, Pegasus-WMS, which provides the user with an end-to-end
workflow solution.

Pegasus performs a mapping of the entire workflow, portions of the workflow, or individual tasks onto
the available resources. In the simplest case Pegasus chooses the sources of input data (assuming that it
is replicated in the environment) and the locations where the tasks are to be executed. Pegasus provides
an interface to a user-defined scheduler and includes a number of scheduling algorithms. As with many
scheduling algorithms, the quality of the schedule depends on the quality of the information both of the
execution time of the tasks and data access as well as the information about the resources. In addition to the
basic mapping algorithm, Pegasus can perform the following optimizations: tasks clustering, data reuse,
data cleanup, and partitioning. Before the workflow mapping, the original workflow can be partitioned
into any number of sub-workflows. Each sub-workflow is then mapped by Pegasus. The order of the
mapping is dictated by the dependencies between the sub-workflows. In some cases the sub-workflows
can be mapped and executed in parallel. The granularity of the partitioning is dictated by how fast the
target execution resources are changing. In a dynamic environment, partitions with small numbers of tasks
are preferable, so that only a small number of tasks are bound to resources at any one time. On the other
hand, in a dedicated execution environment, the entire workflow can be mapped at once. Pegasus can also
reuse intermediate data products if they are available and thus possibly reduce the amount of computation
that needs to be performed. Pegasus also adds data cleanup nodes to the workflow, which remove the
data at the execution sites when they are no longer needed. This often results in a reduce workflow data
footprint. Finally, Pegasus can also perform task clustering, treating a set of tasks as one for the purpose of
scheduling to a remote location. The execution of the cluster at the remote site can be sequential or parallel
(if applicable). Task clustering can be beneficial for fine computational granularity workflows. Pegasus
has also been used in conjunction with resource provisioning techniques to improve the overall workflow
performance [SSV+08].

11Classified Advertisement
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13.4.3 Workflow Execution

In this section, we contrast approaches to workflow execution in Pegasus, Triana, and Kepler. Pegasus
can map workflows onto a variety of target resources such as those managed by PBS (Portable Batch Sys-
tem) [DBG+04], LSF (Load Sharing Facility), Condor [WNB07], and individual machines. Authentication
to remote resources is done via GSI (Grid Security Infrastructure) [SPG05]. During workflow execution,
Pegasus captures provenance information about the executed tasks. Provenance includes a variety of infor-
mation including the hosts where tasks executed, task run times, environment variables, etc. Pegasus uses
the DAGMan workflow engine for execution (Figure 13.3). DAGMan interfaces in turn to a local Condor
queue managed by a scheduler daemon. DAGMan uses the scheduler’s API and logs to submit, query, and
manipulate jobs, and does not directly interact with jobs. DAGMan can also uses Condor’s grid abilities
(Condor-G) to submit jobs to many other batch and grid systems. DAGMan reads the logs of the underlying
batch system to follow the status of submitted jobs rather than invoking interactive tools or service APIs.
By relying on file-based I/O, DAGMan’s implementation can be simpler, more scalable and reliable across
many platforms, and therefore more robust. For example, if DAGMan has crashed while the underlying
batch system continues to run jobs, DAGMan can recover its state upon restart (by reading logs provided by
the batch system) without losing information about the executing workflow. DAGMan workflow manage-
ment includes not only job submission and monitoring but also job preparation, cleanup, throttling, retry,
and other actions necessary to ensure successful workflow execution. DAGMan attempts to overcome or
work around as many execution errors as possible, and in the face of errors it cannot overcome, it provides
a Rescue DAG12, and allows the user to resolve the problem manually and then resume the workflow from
the point where it last left off. This can be thought of as a “checkpointing” of the workflow, just as some
batch systems provide checkpointing of jobs.

Triana supports job level execution through GAT integration, which can make use of job execution
components such as GRMS [GRM05], GRAM [GRA08] or Condor [Tea02] for the actual job submission. It
also supports service-level execution through the GAP bindings to Web, WSRF and P2P services. During
execution, Triana will identify failures for components and provide feedback to the user if a component
fails. Triana does not contain fail-safe mechanisms within the system for, e.g. retrying a service, however.

As discussed in Section 13.2.3, execution of a Kepler workflow is managed through an independent
component called a director which is in charge of workflow scheduling and execution13. A director in Kepler
encapsulates a model of computation (MoC) and a scheduling algorithm, which allows the same workflow
to be executed in different ways depending on which workflow director/MoC is used. Kepler ships with
some common MoCs, such as SDF, PN, and DDF (see Section 13.2.3 for more details).

When comparing different workflow execution strategies and approaches, it seems that a “one size
fits all” solution is hard, if not impossible, to achieve.14 In Pegasus, for example, workflow execution is
primarily via Condor/DAGMan, a very mature and reliable platform (with some built-in fault tolerance)
for job-oriented scientific workflows that can be expressed as acyclic task dependency graphs. However,
there are applications such as scientific workflows over remote data streams (see, e.g., [RG08]) which require
other models of computation, e.g., to express loops and streaming pipeline parallelism. Kepler inherits
from Ptolemy [BLL+08] a number of such advanced models of computation that can even be combined in
different ways [GBA+07]. Kepler also adds new models, e.g., a data-oriented model of computation called
COMAD that results in workflows which are easier to build and understand [BMWL07, MBZL09]. Triana,
on the other hand, is a service-oriented system, supporting a wide variety of different Grid and service-
oriented execution environments. In the end, user requirements and application constraints have to be
taken into account when deciding which execution model or system to choose.

12http://www.cs.wisc.edu/condor/manual/v7.0/2_10DAGMan_Applications.html
13or orchestration and choreography in web service parlance
14The different approaches do not necessarily exclude each other however: e.g., [MDM+07] reports on experiences in combining a

Kepler frontend with a Pegasus backend, combining features of both systems (but also limiting each system’s more general capabili-
ties). While end users typically avoid “system mashups”, some interesting insights into the different approaches and capabilities can
still be gained by such interoperability experiments.
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Figure 13.3: An overview of the Pegasus/DAGMan workflow management system. The Pegasus Map-
per takes a resource-independent workflow description and maps it onto the available cyberinfrastructure
resources. The resulting executable workflow is managed by DAGMan which uses Condor/Condor-G to
send individual workflow tasks from the submit host (a user or community resource) to the cyberinfras-
tructure: a local machine, a campus cluster, or a Grid.

13.5 Workflow Provenance and Execution Monitoring

The absence of detailed provenance information presents difficulties for scientists wishing to share and
reproduce results, validate the results of others, and re-use the knowledge involved in analyzing and gen-
erating scientific data. In addition, the lack of provenance information may also limit the longevity of data.
For example, without sufficient information describing how data products were generated, the value and
use of this data may be greatly diminished. Thus, many current scientific workflow systems provide mech-
anisms for recording the provenance of workflows and their associated data products. This provenance
information can be used to answer a number of basic questions posed by scientists related to data such as:
Who created this data product and when? What were the processes used in creating this data product?
Which data products were derived from this data product? And were these two data products derived
from the same raw (input) data?

The software infrastructure required to accurately and efficiently answer these questions is far from
trivial [DF08, FKSS08], especially in light of the need to make provenance-related software tools usable
by domain scientists, who do not necessarily have programming expertise. For instance, while it may
be possible to use session logs generated by software tools to capture provenance information [LPA+08],
these logs may not be represented in a format that can be easily queried, and further, they may require
sophisticated programming techniques to uncover the information needed to answer the above questions
related to data lineage.

Similar to a workflow specification, the provenance of a workflow run is often represented using graph
structures in which nodes represent processes and data products, and edges capture the flow of data be-
tween processes [DF08, BML+06]. Some approaches support additional graph representations, e.g., by
recording explicit process and data dependencies [MBZG08, BMR+08]. A complete description of prove-
nance models and capture mechanisms is beyond the scope of this chapter (see, e.g., [SPG05, DF08]). In-
stead, we concentrate on describing one particular scheme of storing provenance information that combines
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Figure 13.4: In VisTrails, workflow evolution provenance is displayed as a history tree, each node repre-
senting a workflow that generates a visualization. This tree allows a user to return to previous workflow
versions and to be reminded of the actions that led to a particular result. Additional meta-data stored with
each version includes free-text notes and user who created it.

features from Kepler [Kep], VisTrails [Vis], and Pegasus [SSV+08]. We first describe the different types of
provenance information considered by these approaches, and then discuss the current implementation of
the provenance framework used by the SDM Center [SAC+07].

Types of Provenance Information. Provenance information related to scientific workflow systems is some-
times divided into three distinct types, or layers [SKS+08a]: workflow description, workflow evolution, and
workflow execution. The workflow description layer consists of the specifications of individual workflows.
The workflow evolution layer captures the relationships among a series of workflow specifications that
are created in the course of defining an exploratory analysis. Finally, the execution layer stores runtime
information about the execution of a workflow. This information may include, e.g., the day and time the
workflow was run, the execution time of each workflow step, the data provided to and generated by each
step, a description of the workflow deployment environment, and so on. There are many ways to store
information in each layer. For example, in VisTrails, a “change-based” model is used to represent both
the evolution and workflow layers [FSC+06], run-time information is captured by the workflow execution
engine and stored in a relational database. The three layers are related by the overall provenance storage
infrastructure.

The separation of provenance information into distinct layers can lead to a more normalized represen-
tation that avoids storing portions of each layer redundantly. For instance, this is in contrast to prove-
nance approaches that store information about the workflow specification within the execution log, where
a module name, the module parameters, and the parameter values are saved for each invocation of a given
module.

Separating provenance information into distinct layers can also help provenance frameworks become
more extensible, e.g., by allowing layers to be replaced with new representation approaches or by allowing
entirely new layers to be added [SKS+08b].
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Figure 13.5: Overview of the SDM provenance framework

The VisTrails workflow evolution approach captures changes to workflow specifications and displays
these changes using a history tree called a visualization trail, or vistrail for short [FSC+06]. As a workflow
developer makes modifications to a workflow, the VisTrails system records each change. Instead of storing
a set of related workflows, the change-based model stores the operations, or actions, that are applied to
the workflows (e.g., the addition or deletion of a module, the addition or deletion of a connection between
modules, and the modification of a parameter value). This representation (similar, e.g., to source-code
control systems such as Subversion) uses substantially less space than the alternative of explicitly storing
each version of a workflow. In addition, VisTrails provides an intuitive interface that can help users to both
understand and interact with the version history of a workflow design [FSC+06]. This tree-based view (see
Figure 13.4) allows a user to return to a previous version, undo changes, compare different workflows, and
determine the actions that led to a particular result.

In addition, query languages and user interfaces that can allow users to explore the provenance of work-
flow runs are also important [BMR+08, BMWL07, BEKM06, FSC+06, SVK+07]. For example, the ability to
query both the specification and provenance of computational tasks enables users to better understand the
tasks and their results. In this way, users can identify workflows that are suitable for and can be re-used
for a given task; identify workflow instances that have been found to contain anomalies; and compare and
understand the differences between workflows [FSC+06, SVK+07, BMWL07]. Many existing workflow sys-
tems support query and visualization of provenance information associated with the workflow definition
and execution layers (e.g., see [Mor08]).

13.5.1 Example Implementation of a Provenance Framework

Figure 13.5 shows the high-level architecture for the provenance framework employed within the SDM
Center. The architecture has been implemented with the goal of supporting scientists as they run large-
scale simulations [BCK+07, ACC+07]. At the heart of this framework is the provenance store, which includes
one or more databases providing physical storage, as well as various application programming interfaces
(APIs) to access and manage provenance information.

The provenance store within the SDM framework captures the following types of information:

• Process monitoring information, which includes data transfer rates, file sizes moved, time taken for
actor execution and check-pointing, memory usage, process states (initiated, executing, waiting, ter-
minated, aborted), etc. This information is useful, e.g., to benchmark workflow execution and detect
bottlenecks.

• Data provenance and lineage information, which links an actor’s data output to (i) the specific actor
invocation that created the data, (ii) the relevant data inputs, and (iii) the parameters at the time of
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invocation. Data provenance allows a scientist to interpret and “debug” analysis results, e.g., by step-
ping through time in the processing history, thus tracing back (intermediate) results to the inputs that
created them. Other uses are increased workflow robustness (cf. Section 13.3.2) and improved effi-
ciency upon re-running only the affected parts after modifying some workflow parameters or inputs.

• Workflow evolution, which captures changes over time to the workflow description (including parame-
ter changes). It is particularly important to track workflow evolution as part of exploratory workflow
design, when there are many cycles of workflow modifications and workflow runs.

• System environment information, which captures data about the system that executes the workflow,
and its environment, e.g., the machines, operating systems, compiler versions, job queues, etc. that
were used. It is important to capture such information since, in practice, results will depend on the
system environment that a workflow executes in.

Kepler has been extended to record and store various forms of provenance information [ABJF06, BMR+08,
CA08]. Depending on the settings of the Kepler provenance recorder, data may be recorded for all actors in
the workflow, or some subset, e.g., only top-level composites. The recording API also supports recording of
information from components external to Kepler (e.g., from Python or shell scripts that are invoked by an
actor).

A provenance query API provides a (read-only) mechanism to retrieve provenance information from
the provenance store, e.g., a call-back mechanism to notify applications (such as a web-based workflow
monitoring dashboard) during workflow execution. In addition to providing current workflow status, au-
thorized users and applications can query the provenance store about past executions via an SQL interface,
thus supporting provenance analytics.

While provenance information is typically used “post-mortem”, i.e., after a workflow is run to interpret,
validate, or debug results, it can also support runtime execution monitoring [KBB+05, BCK+07]. The SDM
dashboard application supports run-time execution monitoring using the architecture of Figure 13.5. The
dashboard is illustrated in Figure 13.6, which shows the on-the-fly visualizations generated by the moni-
toring workflow described in Section 13.3. Dashboards generally display condensed information about the
status of workflow processes, data, the execution environment, etc. In addition to providing a high-level
overview, such dashboards may also offer a way to navigate into details of runtime progress and prove-
nance trace information, and to show trends in the output data or execution performance.

Other scientific workflow systems have similar capabilities to those described above. For example,
Pegasus has been integrated with the PASOA provenance system [KDG+08]. Within Triana, provenance
information can include the components executed, their parameters, and the data sets that pass through
during execution. A data provenance system for Taverna is described in [MBZG08].

13.6 Workflow Sharing and myExperiment

Understanding the whole lifecycle of workflow design, prototyping, production, management, publication
and discovery is fundamental to developing systems that support the scientist’s work and not just the work-
flow’s execution. Supporting that lifecycle can be the factor that means a workflow approach is adopted or
not. Workflow descriptions are not simply digital data objects like many other assets of e-Science, but rather
they capture pieces of the scientific process: they are valuable knowledge assets in their own right, captur-
ing valuable know-how that is otherwise often tacit. We can conceive of packages of workflows for certain
topics, and of workflow “pattern books”, i.e., new structures above the level of the individual workflow.
Workflows themselves can be the subject of peer review, and can support reproducibility in the scholarly
knowledge cycle. We can view them as commodities, as valuable first-class assets in their own right, to
be pooled and shared, traded and reused, within communities and across communities. This perspective
of the interacting data, services, workflows and their metadata within a scientific environment is a work-
flow ecosystem. Understanding and enabling this ecosystem is the key to unlocking the broader scientific
potential of workflow systems.
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Figure 13.6: SDM dashboard with on-the-fly visualization

13.6.1 Workflow Reuse

Workflow reuse is effective at multiple levels: the scientist reuses a workflow with different parameters
and data, and may modify the workflow, as part of the routine of their daily scientific work; workflows
can be shared with other scientists conducting similar work, so they provide a means of codifying, sharing
and thus spreading the workflow designer’s practice; and workflows, workflow fragments and workflow
patterns can be reused to support science outside their initial application.

The latter point illustrates the tremendous potential for new scientific advance. An example of this
is a workflow used to help identify genes involved in tolerance to Trypanosomiasis in east African cattle
[FHW+07]. The workflow was initially successful because it enabled data to be processed systematically
without a need for manual triage. This same workflow was then reused over a new dataset to identify the
biological pathways implicated in the ability for mice to expel the Trichuris muris parasite (a parasite model
of the human parasite Trichuris trichuria). This reuse was made easier by the explicit, high-level nature of
the workflow that describes the analytical protocol.

Workflows bring challenges too. Realistic workflows require skill to produce and therefore they can be
difficult and expensive to develop. Consequently, workflow developers need development assistance, and
prefer not to start from scratch. This is another incentive for reusing workflows. Unfortunately it is easy
for the reuse of a workflow to be confined to the project in which it was conceived. In the Trypanosomiasis
example, the barrier to reuse was how the knowledge about the workflow could be spread to the scientists
with the potential need. In this case it was word of mouth within one institution; this barrier needs to be
overcome.

Workflow management systems already provide basic sharing mechanisms, through repository stores
for workflows developed as part of projects or communities. For example, the Kepler actor repository is an
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LDAP-based directory for the remote storage, query and retrieval of actors (processes) and other workflow
components. Similarly, the Southern California Earthquake Center (SCEC) uses component and workflow
libraries annotated with ontologies [MCD+05]. These follow the tradition of cataloguing scripting libraries
and codes. InforSense’s online Customer Hub and workflow library15 allow users to share best practices
and leverage community knowledge potentially across projects.

13.6.2 Social Sharing

The myExperiment project16 is taking a more social approach, recognizing the use of workflows by a com-
munity of scientists [RGS09]. This acknowledges that the lifecycle of the workflows is coupled with the
process of science—that the human system of workflow use is coupled to the digital system of workflows.
More workflows imply more users and more enactments, which in turn provide scientists with more sam-
ples to assist in selecting workflows, to identify best practices, and to learn and build a reputation by sharing
workflows within the community.

From the scientist’s perspective there are many factors guiding reuse of a workflow, including: de-
scriptions of its function and purpose; documentation about the services with which it has been used, with
example input and output data, and design explanations; provenance, including its version history and ori-
gins; reputation and use within the community; ownership and permissions constraints; quality, whether
it is reviewed and still works; and dependencies on other workflows, components and data types. Work-
flows also enable us to record the provenance of the data resulting from their enactment, and logs of service
invocations from workflow runs can inform later decisions about service use. By binding workflows with
this kind of information, a basis is provided for workflows to be trusted, interpreted unambiguously, and
reused accurately.

The community perspective brings ‘network effects’. By mining the sharing behavior between users
within a community we can provide recommendations for use. By using the structure and interactions be-
tween users and workflow tools we can identify what is considered to be of greater value to users. Prove-
nance information helps track down workflows through their use in content syndication and aggregation.
By sharing or publishing a workflow, with the appropriate attribution, a scientist can allow their work to
be reused with the concomitant spread of their scientific reputation but even if scientists do not contribute
workflows directly, their usage of workflows within the community still adds value to the body of knowl-
edge about those workflows.

13.6.3 Realizing myExperiment

The rise of harnessing the collective intelligence of the Web has dramatically reminded us that it is people
who generate and share knowledge and resources, and people who create network effects in communities.
Blogs and wikis, shared tagging services, instant messaging, social networks and semantic descriptions
of data relationships are flourishing. Within the scientific community we have many examples, such as
OpenWetWare, Connotea, PLoS on Facebook, etc.17

myExperiment is a virtual research environment to support scientists using workflows by adopting
a “Web 2.0 approach”. The myExperiment software provides services and a user interface (a social web
site) to address the requirements of the social sharing of workflows. It aims to be: a gossip shop to share
and discuss workflows and their related scientific objects, regardless of the workflow system; a bazaar for
sharing, reusing and repurposing workflows; a gateway to other established environments, for example:
depositing into data repositories and journals; and a platform to launch workflows, whatever their system.

In comparison with existing workflow repositories, myExperiment goes the next step: it aims to cross
project, community and product boundaries; it emphasizes social networking around the workflows; it
gateways to other environments; and it forms the foundation of a personal or laboratory workbench. It also
transcends individual workflow systems, envisaging a multiworkflow environment in which scientists will

15http://www.inforsense.com/pdfs/InforSense_WorkflowLibrary_DataSheet.pdf
16http://www.myexperiment.org/
17see corresponding .org web sites and facebook.com
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use whatever workflow is appropriate for their applications—finding workflows and experiments that they
can run across multiple systems.

The design of the myExperiment software is completely user-centric. In order to bootstrap the system,
both in terms of content and community, the initial user community comprised users of one particular scien-
tific workflow management system—the Taverna workbench. Developed by the myGrid project [SRG03],
Taverna is used extensively across a range of Life Science problems: gene and protein annotation; pro-
teomics, phylogeny and phenotypical studies; microarray data analysis and medical image analysis; high
throughput screening of chemical compounds and clinical statistical analysis. Importantly, Taverna has
been designed to operate in the open wild world of bioinformatics. Rather than large scale, closed col-
laborations which own resources, Taverna is used to enable individual scientists to access the many open
resources available on the Web. Consequently it has a distributed and decoupled community of users who
obtain immediate benefit from sharing workflows through myExperiment.

Released in November 2007, myExperiment was supporting 500 users within 10 weeks and now pro-
vides a unique public collection of several hundred workflows from multiple workflow systems.

myExperiment has been designed and built following the mores of Web 2.0 and a set of principles
for designing software for adoption by scientists which were established through the Taverna develop-
ment [RG09].

It is a web based application built on the Ruby on Rails platform, and is not just a single site, like Face-
book, YouTube etc, but rather a software package that can be installed independently and separately in a
laboratory, supporting the exchange of content between other Web applications and different installations
of myExperiment. It reuses other services as far as possible, and it provides simple APIs so that others can
make use of it—to make it easy to bring myExperiment functionality into the scientists’ existing environ-
ment rather than obliging them to come to myExperiment.

Although initially focused on sharing workflows, myExperiment deals not in workflows or scripts per
se but in scientific objects—this allows sharing of documents, presentations, service descriptions, notes,
ontologies, plans and so forth. More generally, myExperiment can be used to glue together heterogeneous
collections like distributed experimental data or, for example, packages of workflows—these collections are
described as packs or Research Objects. Hence, rather than a workflow repository, myExperiment can be
seen as an aggregator and registry of scientific objects—as its name suggests, it deals in experiments.

13.7 Conclusions and Future Work

Scientific workflows are increasingly being adopted across many natural science and engineering disci-
plines, spanning all conceivable dimensions and scales, from particle physics and computational chem-
istry simulations, to bioinformatics analyses, medicine, environmental sciences, engineering, geology, phy-
logeny, all the way to astronomy and cosmology, to name a few. Not surprisingly, with these rather different
domains come different requirements for scientific workflow systems. While some scientific workflows can
be conveniently executed on a scientist’s laptop or desktop computer, others require significant computa-
tional resources, such as compute clusters, possibly distributed over a local or wide area network. In this
chapter, we have given an overview of common features of scientific workflows, described the phases of
the scientific workflow life-cycle, and provided some background on the different computational models
(and other differences) of scientific workflow systems. A detailed case study from plasma fusion simulation
was used to take a closer look at the challenges when managing simulation workflows. We also provided
an overview of some of the different approaches taken for scientific workflow systems, focusing on work-
flow composition, resource mapping, and execution. Furthermore, we described approaches for runtime
monitoring and provenance management in scientific workflows, and finally discussed workflow sharing
and reuse using a “Web 2.0 approach”.

The area of scientific workflows is dynamic and growing, as evidenced by many workshops, confer-
ences, and special issues of journals, devoted to the topic (e.g., see [LG05, FG06, TDGS07, GDE+07]).
Numerous challenges of scientific workflows remain and require future research and development. For
example, findings from an NSF-sponsored workshop on scientific workflow challenges are reported in
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[GDE+07], where they are grouped into application requirements (e.g., supporting collaborations, repro-
ducibility of scientific analyses, and flexible system environments), sharing workflow descriptions (e.g., how
to represent and share different levels of workflow abstractions), dynamic workflows (how to support the
exploratory and dynamic nature of scientific analyses), and system-level workflow management (e.g., how to
scale workflows and how to deal with infrastructure constraints). In [DC08], data management challenges
of data-intensive workflows are presented, and organized according to the data life-cycle in a workflow.
For example, during workflow creation, effective means are needed to discover data and software tools,
and to capture workflow evolution [FSC+06]. Similarly, during workflow planning and execution, there
are numerous challenges, e.g., how to efficiently and reliably transfer large amounts of data, or how to deal
with distributed, heterogeneous system environments.

Traditionally, in computer science, a core theme is optimization of program runtime and memory usage
by developing time- and space-efficient algorithms for the problems at hand. In many application areas, in-
cluding scientific workflows, “human cycles” are a sometimes neglected resource, which can and should be
optimized as well. For example, the use of data and workflow provenance information can be used for tra-
ditional purposes (such as optimizing system performance or improving fault-tolerance [CA08]), but also to
enhance the scientist’s insights when trying to understand or debug scientific workflow results [DBE+07].
Similarly, approaches are needed to facilitate modeling and design of scientific workflows that are easy
to use. For example, [MBZL09] lists the following user-oriented requirements and provides initial steps to-
wards addressing them: well-formedness (facilitate the design of well-formed and valid workflows), clarity
(facilitate the creation of self-explanatory workflows), predictability (make it easy to see what a workflow
will do without running it), recordability (make it easy to see what a workflow actually did do when it ran)
and reportability (make it easy to see if a workflow result makes sense scientifically). Clearly, the last two
requirements are related to capturing and managing provenance information, a recurring theme in current
scientific workflow research. Other research issues mentioned in [MBZL09] are reusability (make it easy to
design new workflows from existing ones), and data modeling (provide first-class support for modeling sci-
entific data), in addition to the already mentioned optimization issues (the system should take responsibility
for optimizing performance).
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