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ABSTRACT

Despite an increasing interest in scientific workflow technologies
in recent years, workflow design remains a challenging, slow, and
often error-prone process, thus limiting the speed of further adop-
tion of scientific workflows. Based on practical experience with
data-driven workflows, we identify and illustrate a number of re-
curring scientific workflow design challenges, i.e., parameter-rich
functions; data assembly, disassembly, and cohesion; conditional
execution; iteration; and, more generally, workflow evolution. In
conventional approaches, such challenges usually lead to the in-
troduction of different types of “shims”, i.e., intermediary work-
flow steps that act as adapters between otherwise incorrectly wired
components. However, relying heavily on the use of shims leads
to brittle (i.e., change-intolerant) workflow designs that are hard to
comprehend and maintain. To this end, we present a general work-
flow design paradigm called virtual data assembly lines (VDAL).
In this paper, we show how the VDAL approach can overcome
common scientific workflow design challenges and improve work-
flow designs by exploiting (i) a semistructured, nested data model
like XML, (ii) a flexible, statically analyzable configuration mech-
anism (e.g., an XQuery fragment), and (iii) an underlying virtual
assembly line model that is resilient to workflow and data changes.
The approach has been implemented as Kepler/COMAD, and ap-
plied to improve the design of complex, real-world workflows.

1. INTRODUCTION

Scientific workflows are increasingly used for the integration of
pre-existing tools and algorithms to form larger, more complex ap-
plications, e.g., for scientific data analysis, computational science
experiments and the associated simulation management [33, 11,
21]. In this sense, scientific workflow development resembles shell
scripting rather than general purpose programming, i.e., specialized
programs (implemented, e.g., in C++, Fortran, Java or with custom
tools such as Matlab, R, etc.) are only “wrapped” and chained to-
gether rather than fully programmed in the workflow system itself.
This is similar to the efforts towards a Common Component Ar-
chitecture (CCA) for high-performance scientific computing [2], in
which specialized programs are invoked as separate processes and
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chained together, rather than compiled together into a single exe-
cutable, thus allowing integration of components from third parties
and implemented in different languages. Compared to script-based
approaches to automation, scientific workflow systems promise to
offer a number of advantages, e.g., built-in support for record-
ing and querying data provenance [9], for deploying workflows
on cluster or Grid environments [10], for parameter sweeps [1],
and for dataflow and concurrency optimization [38, 36], to name
a few. However, arguably one of the biggest opportunities—and
challenges—Tlies in the promise to be useable by “mere mortals”
[25]: Scientists who are neither experts in scripting languages nor
in (distributed) software development, should be able to develop
and maintain understandable workflows. Ideally, scientific work-
flow design should feel less like (visual) programming or scripting,
and more like story-telling. For example, a scientist should be able
to assemble pre-existing software components into simple, mostly
linear dataflow pipelines, such that consecutive steps, when read
out loud, correspond to high-level descriptions of a computational
protocol or e-Science experiment.

All too often, however, current scientific workflow designs in-
clude overly complex wiring structures and are cluttered with var-
ious forms of software shims' (adapters) to align or mediate mis-
matching workflow steps [16]. For example, [19] state that a recent
study of 560 scientific workflows from the myExperiment reposi-
tory [29] showed that over 30% of workflow tasks are shims. Shims
arise frequently when the output produced by a workflow step is
not compatible with the inputs that a subsequent step can consume,
which in turn is common when combining independently devel-
oped services or functions into larger workflows. For example,
[16] report that bioinformatics services suffer from “shimantic web
syndrome”: many services are nearly compatible (it makes sense
to chain them together), yet they require intermediate shims before
the service chains can be executed. Similarly, complex wiring can
contribute to “messy”’ designs [20].

The proliferation of scientific workflows with many shims and
complex wiring is a limiting factor to their wider adoption and use.
For example, such designs are hard to understand (shims distract
from “the real story”, i.e., the experiment protocol) and difficult
to maintain (custom shims and wiring make the design brittle and
sensitive to changes in the data structures and workflow steps).
Among other things, overly complex or obfuscated designs limit
the use of workflows for documenting and communicating the un-
derlying ideas of the implemented scientific method, require work-
flow experts (similar to script programmers), and increase the cost
for workflow development and maintenance. Even if tools provide
a clear visual distinction between shims and scientifically relevant
steps, workflow designers still need to place these components and

'a (physical) shim is a thin strip of metal for aligning pipes



connect them. Taverna [32], e.g., allows scientists to declare cer-
tain steps as “boring”, which hides them from the canvas, thus visu-
ally simplifying the design. Nevertheless, changes to the workflow
(e.g., adding new steps) still require connecting hidden shims with
other visible or invisible steps.

Contributions. Based on practical experiences with the design of
data-driven workflows from various domains (e.g., see [21]), we
first identify a number of workflow design challenges and illus-
trate them with examples and use cases (Section 3). Specifically,
we elaborate on the challenges resulting from parameter-rich func-
tions; data assembly/disassembly and data cohesion; conditional
execution; iteration; and, more generally, workflow evolution. We
then present a general workflow design paradigm called virtual
data assembly lines (VDAL) which has been implemented as Ke-
pler/COMAD [24], but which is applicable to other data-driven sys-
tems (e.g., Taverna or Triana [34]) as well (Section 4). The crux of
VDAL is that shims and complex wiring are minimized by encap-
sulating conventional black-box functions and services inside of a
“data selection and shimming” layer that can be manually or auto-
matically configured. We describe in detail the anatomy of VDAL
components, i.e., the signatures and effects of operations inside of
such components for scoping, binding, iterating over, and placing
data. Finally, we show how our approach addresses the workflow
design challenges mentioned above (Section 5). We summarize our
results and discuss other related work in Section 6.

Relation to Prior Work. Hull etal. [16] highlight and classify
some of the problems relating to shims, and propose to treat them
by employing ontologies as semantic types. An approach to infer
data transformation shims using semantic annotations is described
in [3]. The authors of [14] emphasize the use of semantic repre-
sentations and planning in scientific workflows. Arguably the work
closest to ours with respect to the goal of solving the shimming
problem is [19] which focuses on type mismatches between the
data types of consecutive steps and calls this a shimming problem
of “Type I”’; the authors describe as “Type II”” the problem of mis-
matching connections of a scientific task that is nested within an-
other, enclosing component that wraps the inner task. Our results
extend [19] (e.g., we consider additional design challenges, not just
Type I and II problems), and are complementary, e.g., to [16, 4, 14]
(e.g., we do not consider semantic mismatches). In [25] some gen-
eral advantages of a collection-oriented, assembly-line style design
were presented, but no concrete examples were discussed. [37] pro-
vides more details about how VDAL designs can be implemented
via an existing XML-processing language and shows how to pro-
vide additional features for the workflow designer via static analy-
sis. In [38] we presented another instance of VDAL called A-XML
that optimizes data shipping in distributed workflow settings, and
we showed how simple, linear designs can be automatically trans-
lated into optimized (but wiring-intensive) low-level designs.

2. PRELIMINARIES

In the following, we introduce our terminology and basic no-
tions. A scientific workflow is a description of a process, usually in
terms of scientific computations and their dependencies [22], and
can be visualized as a directed graph, whose nodes (also called
actors) represent workflow steps or tasks, and whose edges rep-
resent dataflow and/or control-flow [11]. A basic formalism is to
use directed, acyclic graphs (DAGs), where an edge A— B means
that actor B can start only after A finishes (a control-flow de-
pendency). With such a DAG-based workflow model (e.g., used
by Condor/DAGMan [8]) one can easily capture serial and task-
parallel execution of workflows, but other data-driven computa-

tions, e.g., data streaming, pipeline-parallelism, and loops cannot
be represented directly in this model. In contrast, dataflow-oriented
computation models, like those based on Kahn’s process networks
[17], in addition support pipeline-parallel computation over data
streams, and cyclic graphs to explicitly model loops. This model
underlies most Kepler workflows, and mutatis mutandis, applies to
other scientific workflow systems with data-driven models of com-
putation as well (e.g., Taverna [32], Triana [34], Vistrails [13], etc.)
In these data-flow oriented workflow models, each edge represents
a unidirectional channel, which connects an output port of an actor
to an input port of another actor. Channels can be thought of as un-
bounded queues (FIFO buffers) that transport and buffer fokens that
flow from the token-producing output port to the token-consuming
input port. For workflow modeling and design purposes, it makes
sense to distinguish different kinds of ports: A data port (the de-
fault) is used by an actor A to consume (read) or produce (write)
data tokens during each invocation (or firing) of A. In contrast, a
control port of A is a special input port whose (control) token value
is not used by A’s invocation, but which can trigger A’s execution
in the first place. An actor parameter can be seen as a special, more
“static” input port from which data usually is not consumed upon
each invocation, but rather remains largely fixed (except during pa-
rameter sweeps). While actor data ports are used to stream data in
and out of an actor, actor parameters are typically used to config-
ure actor behavior, set up connection or authentication information
for remote resources, etc. A composite actor encapsulates a sub-
workflow and allows the nested workflow to be used as if it were
an atomic actor with its own ports and parameters.

While the Kahn model is silent on the data types of tokens flow-
ing between actors, practical systems often employ a structured
data model. However, in practice, when actors implement web ser-
vice calls or external shell commands, data on the wire is often
of type string or file, even if the data conceptually has more
structure. Kepler natively employs a model with structured types
(inherited from Ptolemy [7]), including records and arrays. When
sending data from one actor to another, this creates many options.
For example, a list of data can be sent from one actor to another in
a single array token, or as a stream of tokens corresponding to the
elements of the list. Similarly, large record tokens can be assem-
bled and later broken into smaller fragments. These choices can in
fact complicate workflow design (see below), whereas the proper
use of a serializable, semistructured model such as XML allows a
more flexible and uniform data treatment. VDAL and its instances
Kepler/COMAD and A-XML employ such a model.

3. WORKFLOW DESIGN CHALLENGES

Here we identify and describe common scientific workflow use-
cases and design challenges we have encountered in practice when
applying a conventional dataflow modeling approach. We revisit
these challenges in Section 5 and show how VDAL addresses them.

3.1 Parameter-Rich Functions and Services

Many scientific functions have a large number of input ports and
parameters. For example, DNAML (DNA Maximum Likelihood)
from PHYLIP (the Phylogeny Inference Package [12]) takes 10 pa-
rameters in addition to the list of DNA sequences it operates on.
In the conventional modeling approach, actors that wrap such ap-
plications have many ports, each connected to a distinct channel.
This quickly leads to complex wiring when several of these com-
ponents are used. One current solution is to use actor parameters
for specifying the input values that do not change during workflow
execution. However, this approach leads to less flexible actors be-
cause once an input has been modeled as a conventional parameter,
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Figure 1: Parameter-rich service, record assembly and disas-
sembly. A Cipres RAXML service is used to infer phylogenetic trees from
aligned protein sequences, provided in CharacterMatrix. Besides the
scientifically meaningful actor CipresRAxMLService, there are 6 aux-
iliary actors: ComposeNexus, RAxMLConfigurator, and three String
actors are used to assemble the input data; ParseNexusTreesBlock is
used to disassemble and convert the result for subsequent steps.

its value cannot be changed at workflow run time.

Example: CipresRAXML. The CipresRAxML composite actor
in the Kepler/pPOD release [6] expects a CharacterMatrix con-
taining DNA sequences and optionally a WeightVector as in-
puts. Furthermore, values for the parameters rate_categories,
model, and initial rearrangement limit have to be specified. Fig-
ure 1 shows a screenshot of the inside of the CipresRAxML com-
posite actor. The composite uses three parameters to configure the
RAXML service in addition to the two data input ports. While this
approach successfully reduces the number of input ports to two,
it also reduces flexibility. Since parameter values are fixed during
workflow execution, the composite actor is not re-usable in a work-
flow that, e.g., iterates over the model parameter to find an optimal
setting. Here, the actor would need to be modified to have an ad-
ditional input port for the model input. A CipresRAxML actor that
allows all its configuration to be changed during a workflow run
would need five input ports.> Although some of the parameters are
for optimizing execution only, most of them do in fact influence
the scientific result of the workflow. The CipresRAxMLService
actor included in the Kepler/pPOD release only makes three of the
parameters visible, restricting the service’s flexibility even more.
However, even the use of five distinct ports quickly becomes a mod-
eling problem if the service should be called more than once. A full
set of inputs needs to be sent for each invocation, and this quickly
results in overly complex designs when loops or conditional execu-
tion are involved (as described below).

Packaging Inputs and Outputs. To address the problem of hav-
ing too many ports, components sometimes expect all input data
bundled together in a single large record data structure and simi-
larly output all data produced during a single invocation bundled in
a new record. A prominent example is the typical document-style
web service that expects one large SOAP message and returns an-
other SOAP message. Although these components have but a sin-
gle input and a single output port, the general problem is not solved:
complex input records must be assembled and outputs must be dis-

RAXML [30] by itself has 32 command-line parameters!

assembled, tasks usually performed via shim-actors which them-
selves necessarily have many ports. Consequently, complex wiring
still occurs between these shims. Some scientific workflow tools
support automatic creation of shims for web services, based on the
operation’s WSDL specification. While such features clearly help
the workflow designer, the shim actors still need to be connected,
and can clutter the workflow. The problem has been recognized,
e.g., by the Taverna developers; Taverna provides a feature to hide
these shims via a “boring” tag. However, the underlying problem
remains: new components added to a workflow still must be con-
nected with the hidden shims to work properly.

The subworkflow inside the RAxML composite actor in Fig. 1
uses two different types of shims for record assembly: (1)
ComposeNexus is an example of a black-box required record,
Nexus is a textual container format that can contain different data
such as a character matrix, a weight vector, and sequence data. The
RAxML service expects its input data in this specific format, and the
designer of the RaxML actor thus has to assemble such a format.
(2) The second kind of shim is not required by the given black-box
function. Instead an ad hoc record is employed by the workflow de-
signer: here, e.g., RAxMLConfigurator, is used to create a custom
configuration record to bundle all configuration information into a
single token. In the following sections, we will show more exam-
ples of such ad hoc record management. While records required
by black-boxes must be constructed at some point in the process,
our approach completely eliminates shims arising from ad hoc data
records.

3.2 Maintaining Data Cohesion

Individual data items processed by scientific workflows often are
related to each other in important ways. When DNA, RNA, or pro-
tein sequences are aligned, for example, multiple possible align-
ments often are computed, each of which can have various quality
assessment scores. In an automated version of a workflow comput-
ing and comparing multiple alignments, the system must maintain
relationships between parts of the input data sets and portions of
the workflow output. In order to maintain this data cohesion, cur-
rent designs often create ad hoc records and array tokens. This
approach has immediate drawbacks: (1) Packaging large amounts
of data into one array often reduces workflow concurrency. When
a large array token is created from an incoming stream of data,
earlier arriving data is not sent to the next actor until the whole
array is assembled. (2) Records and arrays have to be assembled
and disassembled, which leads to shims that clutter the workflow
graph and easily lead to complex routings. (3) Workflow designs
are not very adaptive to changes in the data organization. Consider
a record that contains an alignment and a score value. A subwork-
flow that requires such a record cannot easily process an array of
alignments—even if the array contains the records as elements.
Example: Record Management. The workflow in Fig. 2 uses
a specific R model for a bioinformatics sequencing task [31]. A
single array token input at the upper left corner is disassembled into
individual element tokens, which are then used to build a custom
record. The single record is routed to four record disassemblers
that provide the raw data to four R actors. Once the subnetwork
of R actors is run, a final genotype record is assembled and sent to
the output port. Clearly, such low-level data access and repacking
operations distract from the primary functions of the workflow.
Example: Data associations. Figure 3(a) shows four hypothetical
actors for genomics research, each of which takes a single data ob-
ject and creates a list of related results. BLAST is used to find similar
DNA sequences to a given DNA sequence; MOTIFSearch is used
to detect one or more motifs, i.e., repeated patterns, in a DNA se-
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Figure 3: Data cohesion. Maintaining nesting structure using array
tokens and additional loops.

quence; and from a given sequence motif TFLookup searches for
proteins (transcription factors) reported to bind to the motif; finally
via FunctionLookup, the specific biological functions associated
with a transcription factor can be obtained. As shown in Fig. 3(b),
we ideally would to be able to chain some or all of these actors
together, e.g. to predict which functions a particular input DNA se-
quence is potentially associated with. However, there are problems
with this approach: If each of the actors just outputs a token list for
each received input token, then the associations between the data
is lost. Consider a workflow input that has two DNA sequences,
for each of which BLAST will return a list of similar sequences.
However, on the output side of the BLAST actor, the two lists are
not distinguishable from each other any longer, i.e., the output se-
quences are not grouped into two lists.

One solution to maintain the groupings is to use an array as out-
put structure at each service. However, if we then want to chain
the actor MotifSearch to analyze the results of a BLAST search
for a given DNA sequence, then we need to insert a special looping
shim that unpacks the array and sends it one-element-after-another
to MotifSearch, as shown in Fig. 3(c). Then, MotifSearch’s
returned array of motifs are packaged together to form an array of

arrays of motifs. To extend the pipeline further, the actor TFLookup
would need two of these looping shims to work properly. Further-
more, consider the case in which we would like to use multiple ar-
rays of DNA sequences as overall workflow input. Here, we would
need to add additional Loop shims around all existing actors as
shown in Fig. 3(c).

A solution for this problem is provided by Oinn [27] and im-
plemented in the Taverna workflow system: The workflow system
itself is made aware of array-structures, and the system itself au-
tomatically inserts these looping constructs if there are type mis-
matches. The Loop (or map) operations are not made explicit as
actors in the system and thus workflows are kept clean, and most
importantly, easy to evolve. Our solution is similar to Taverna’s,
insofar that we also enrich the simple data model of dataflow net-
works. However, instead of (nested) lists, we will use labeled
(nested) lists with annotations, a data model that corresponds to
XML. We can therefore additionally use XML techniques to select
the desired data to be fetched from the actor’s the input.

3.3 Conditional Execution

Conditional executions and data filtering steps are essential in
many scientific analyses. Consider, for example a workflow that
infers phylogenetic trees from a set of input sequences, and then
computes a consensus tree only from these result trees that fulfill
certain quality criteria, e.g., that have a strong support. Here, only
trees with high support should be used as input to the consensus
step.

In current models, many control-flow constructs are encoded into
the dataflow network, which leads to workflows with many shim
actors and complex wiring [5]. For example, an If-Then-Else like
filter can be mapped into a dataflow graph as a control-flow ac-
tor and two distinct routes. Such control-flow actors together with
their necessary wiring lead to complex designs for moderately-
sized workflows [28].

DetermMerge
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»—‘ BoolOR
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Figure 4: Dataflow model for “if (Testl or Test2) then A

Example: If-Then-Else. Consider an example workflow in which
an analysis A should be applied to incoming data only if at least
one of two tests (performed via the actors Testl and Test2) is
successful. A common way to achieve this goal (see Fig. 4) is to
use the actors Test1 and Test2, route their Boolean output to an
OR that combines the truth-values, which is then routed to the con-
trol input of a BooleanSwitch. The switch will then route the
data either to 2 or to a following Merge actor, which combines the
two streams of data to one. To maintain the order of data tokens,
the switch sends a control signal to the merge. Depending on this
signal, the merge is reading data from port 1 or 2, respectively.

Note that this solution does not only deploy three additional shim
actors (or, switch, merge) with intricate wiring, but it will even fail
working properly if actor A outputs more then one token for each
token read on the input port.

Note that the workflow in Fig. 4 is a very small example, which
only implements the simple control-flow if (Test! or Test2) then A.
In practice, many more of these conditional executions might be
used, which quickly lead to even more complex designs with many
shims [5].



3.4 Iterations over Cross Products

Scientific workflows can be used to automate analyses over mul-
tiple, independent input data sets; repeat analyses on the same data
set with multiple sets of parameter values; or both. Combining
data and parameter sweeps resembles executing the analysis over a
cross-product of some subset of the available data. In conventional
dataflow approaches these cross-products have to be constructed
manually via actors that loop over sets of data and iteratively out-
put the data as input to a downstream actor.

() (b)

Repeater

la,1b,1c

1,2,3 CrossProduct A

1a,..
[a,b,c]

111222333

la,1b,1c,2a,2b,2c,3a,3b,3c

Figure 5: Conventional cross-products. Low-level models explic-
itly compute the cross-product. Tokens are given in “reading order”, i.e.,
1,2, 3 means first token 1, then 2, and 3 are sent.

Example: Cross-products. Figure 5 shows workflows that in-
voke an actor A iteratively over combinations of incoming data
items. When the A actor has only one input port, see Fig. 5(a),
the data can be provided directly on the input channel. Here, the
FIFO queue semantic of dataflow networks achieves the desired re-
sult of multiple invocations of A with the different input data a, b,
and c. Now, consider an actor A with more than one input port as
in Fig. 5(b). If we want to iteratively execute A over a list of inputs
to one port while keeping the input to another port constant, then
an additional Repeater actor is needed to explicitly construct the
cross-product of the input data (1) X (a, b, c) that is routed to A.
First, the Repeater reads the input data 1 into internal memory.
Then, upon receiving a signal on the trigger port at the bottom of
the actor, it will output a copy of the stored data. Now consider the
case of two lists of inputs (1, 2, 3) and (a, b, c) where we want to
invoke A on each element of their cross-product. Now even more
control-flow actors and routes are necessary: Figure 5(c) shows a
feasible design involving two specialized repeat actors wired to-
gether in a complex, crisscrossed pattern that takes considerable
thought to design (and even more work to explain to others). Note,
that this design works in a streaming fashion on the upper input but
not on the lower one, i.e., the array [a,b, c] is consumed com-
pletely before any data is output, whereas the data on the above
channel can be provided incrementally.

Larger workflow designs are necessary if more than two lists are
involved in the cross-product. The design of the cross-product-
generating actors could be placed into a composite actor as shown
in Fig. 5(d) to hide the details from the modeler. However, different
versions of this actor would need to be created for (i) different num-
bers of input ports, (ii) to realize other features such as streaming,
and (iii) to accommodate input in single arrays or as streams.

Loops over input data as shown in the previous examples are
very common in scientific workflows, e.g. for multiple-dimension

(a) Conventional dataflow

(b) Virtual Assembly Lines

TN YT R — 0, W et 0,7,w
XML XML XML XML

Figure 6: Conventional vs. VDAL. In VDAL, data massaging is
moved to a configuration layer (o, v, w) with declarative, local shims, mini-
mal wiring complexity, thus facilitating simpler designs and reusable actors.

parameter sweeps. Therefore, the workflow system should make
it easy for the workflow designer to construct these loops without
worrying about the low-level details of data buffering and routing.
Our approach will provide a declarative way of specifying these
loops. Furthermore, since our data is organized in nested collec-
tions, explicit distinction between array and non-array tokens is not
necessary. Thus, the user can concentrate on specifying what data
should be involved in cross-products, and the workflow system it-
self can choose how to compute them.

3.5 Workflow Evolution

In real-world workflows, the sorts of use cases and design pat-
terns described above are interwoven in intricate ways, making
workflows not only hard to understand, but also hard to modify
and evolve. Figure 6(a) schematically shows a dataflow network
comprising three scientifically meaningful actors (2, B, and ¢), and
a number of shim actors (depicted as grey boxes). To insert a new
scientific actor into such a network, it is necessary to understand
the wiring and complex interactions between existing control-flow
shims.

In contrast, a virtual data assembly line Fig. 6(b) localizes
control-flow inside well-structured, configurable shells around
black-box actors. Data is not broken up and scattered across dif-
ferent wires, but flows as XML-like structures from one VDAL
actor to the next. Each such actor can locally determine which por-
tions of the incoming data stream are of interest and which can
be ignored and passed unprocessed to downstream actors. To in-
sert an actor into a VDAL workflow, the workflow creator needs to
know primarily the XML schema on the stream between the actors.
These schemas often correspond to folder structures or scientifi-
cally meaningful hierarchies, and can thus be very intuitive for the
modeler [24]. One can also co-design schema and workflow while
utilizing automatic schema propagation through already configured
actors [38].

4. VIRTUAL DATA ASSEMBLY LINES

We combine ideas from process networks with XML queries,
updates, and stream processing. Specifically, our approach, Virtual
Data Assembly Lines (VDALs) is characterized by the following
three ideas (see Fig. 6): (1) Linear Workflows: A data assembly line
always contains a linear workflow graph. That is, each actor has
exactly one input and one output port. (2) Structure-rich channels:
The data flowing from port to port is structured as labeled trees
possibly with additional attributes much like XML data. The data
is streamed in a SAX-like manner on the channels, although dif-
ferent execution strategies are possible [38, 36]. This is in contrast
to common approaches where data on channels is of simple types
or custom-made record and array types. (3) Configuration shell:
Scientific components are wrapped in a “white-box” data selection



and shimming layer which scientists can configure to specify what
input data is taken from the input stream and where the result of
the components application is put back into the stream. Here, we
devise a domain-specific language to minimize and localize shim-
ming tasks, e.g., those tasks performed by record-assembler and
disassembler shims in conventional approaches. Moving the data
selection and shimming into a configurable layer around each actor
not only reduces the wiring complexity, but also supports a linear
workflow layout in which actors are simply placed one after another
in an intuitive order.

4.1 Inside Virtual Data Assembly Lines

Change-Resilience in Assembly Lines. In a physical assembly
line, workers perform specialized tasks on products that pass by on
the conveyor belt of a moving assembly line. Specifically, a worker
only “picks” relevant products, objects, or parts thereof, letting all
irrelevant parts flow through. Since each worker’s scope is limited,
a worker is unaware of the tasks of other workers and of the overall
product being constructed. In particular, this has the advantage that
a worker can be “reconfigured” to work on different parts of the
object stream, and even moved up or down the assembly line, as
long as certain inherent task dependencies are not violated.

By limiting work (via a scoping/configuration mechanism) to
certain relevant parts of the object stream, and “passing the buck”
on irrelevant parts, workers in an assembly line are loosely coupled,
and the overall design is modular and resilient to changes. We em-
ploy and extend this processing paradigm to data assembly lines of
streaming XML-like data.

VDAL data model. The data model for channels in VDAL are
nested, labeled, ordered collections with metadata. This data model
corresponds to XML. Labeled collections correspond to XML tags
containing the collections’ data, called base data. Domain-specific
types, e.g., PhylogeneticTree or CharacterMatrix, can be repre-
sented as CDhata. Also the usual general-purpose types such as
Integer, Boolean and String can be used in leaf nodes of the XML
tree. Metadata corresponds to XML attributes, which can provide
more information, e.g., the score of a sequence alignment, or can be
used as simple annotations, e.g., the tag faulty could be attached
to data or whole collections. Deploying XML as the data model
naturally preserves data cohesion and allows efficient streaming of
data when the XML tree is serialized and processed by actors in a
SAX-like manner.

Moving data selection and shimming into configurations. As-
sume we want to place an actor A in a process network. If A
has many input ports, then these must be wired to other actors (or
shims) to describe the data routing (explicitly), leading to networks
as shown in Fig. 6(a). If we instead design actor A to have one in-
put port that expects data bundled in a custom record type c, then
it is hard to place A into a network without explicit shims. If A’s
predecessor produces type T objects and the successor step requires

type T objects: )
S e

A conventional approach requires that 7 < [a] and [3] < 7/,
that is, the input stream consists of a list of a-compatible types
[7] € [[e]] and the output stream [3] has to be compatible with
7' 1e, [[B]] C [7']. However, these are very rigid constraints: In
general A might not be able to accept 7 instances (but require an
adapter to filter the relevant part and/or to assemble the required o
structure); similarly, 3 might not be of the desired result type 7’
In contrast, in a virtual assembly line, each scientifically mean-
ingful actor A is embedded in a framework of adapters as shown in
Fig. 7. The data that flows into the actor is structured as an XML

Figure 7: VDAL Actor Anatomy. In virtual data assembly lines, each
black-box actor A is encapsulated between easily configurable, standard
components o, 7y, w that simplify data management and shimming. This
allows flexible, localized data unpacking (via o and ) and re-packing (via
w), while requiring only one input and one output port through which XML-
structured data is streamed.

tree that maintains data associations. But instead of feeding the
XML stream directly into the scientific actor 2, configurable com-
ponents around A select and package the data according to A’s input
requirements. The inner functions of A are not understood by the
workflow system, which simply invokes the component as a black-
box. The behavior of the components o, 7, w, and M are deter-
mined by their configurations. With an appropriate formalism for
these configurations, the workflow system itself can automatically
analyze certain parts of the data flow in a workflow design—the
components o, 7, w, and M can thus be viewed as white-box ac-
tors. However, the components o, 7y, w and M need not be realized
as explicit actors in the workflow specification. Instead their func-
tionality can be provided automatically by the workflow system it-
self. Consequently, actors in VDALSs are visually represented as
normal actors, each with one input port and one output port, along
with configurations for o, v, and w; M does not have any config-
uration. Each of the components o, v, w, and M is responsible
for particular aspects of the data manipulation as detailed in the
following subsection.

4.2 VDAL Components and Configurations

input ¢ output o
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Figure 8: Dataflow inside VDAL Actor.

Figure 8 shows how data is manipulated as it flows through
VDAL actors. The scope parameter o determines the parts of the
input data that are read and potentially modified by the actor. Then
for each o-selected subtree d;, the input assembler v stages all nec-
essary input data to invoke A, possibly multiple times. The data to
be staged is specified via configuration of v and may be given as
literal values or via path expressions that describe how to extract
the data from the subtree d; currently in scope. After the black-box
A has been invoked on each of the staged sets of input data provided
by +, the write expression w specifies how the scope d; should be
modified, usually by inserting the results of A’s invocations. The
component M inserts the modified subtree d; back into the output
stream o. Usually, scopes are modified as they flow through the



actor, and thus M happens implicitly. Black-box actor A.

The interface between a black-box actor 2 and the scientific
workflow system is the list of the named input and output param-
eters to A. Each input and output parameter has a name and an as-
sociate type description. A type description consists of a name of
a BaseType, i.e., Integer or CharacterMatrix, and an optional
modifier “*” to indicate either that a list is required as input, or that
a list is created as output.

Scope 0. The scope parameter o selects relevant parts of the in-
put stream 7. As in a physical assembly line, the actor does not
read, or even modify anything in 7 that has not been selected via
o. Formally, o is a function from XML data to a list of relevant
read-scope matches |4’

o T — [Ta]

The scope o is specified via an XPath expression that uses child
and descendent axes. Since we want to ensure that the selected
scopes are non-overlapping, we use a first-match semantics for the
descendent axis //. That means, a breath-first traversal that checks
for scope matches will not traverse into an already found match.
While we prohibit general side axis, checking the presence and/or
values of attributes attached to nodes along the path is allowed. Pro-
hibiting side axis allows the decision whether a subtree is a scope
match or not to be made solely based on its ancestor nodes and their
attributes. In a streaming implementation, for example, we can de-
cide whether a certain subtree is a scope-match as soon as the root
node of this tree is encountered (as all ancestor nodes and attributes
have already been seen).
Input assembler . According to its configuration, the input as-
sembler v stages input for one or multiple invocations of the black-
box actor A, using either data encountered inside each scope mach
d; or data provided as literals in the configuration.

If we represent one set of input values for A as a composite type
a, then the input assembler + is a function from 7, to a list of a:

Y Ta = [0

Each tuple in [a] is then provided to A, producing the output list
[B]. As before, the black-box A is characterized as:
A:a—p

We suggest to use a query (or binding expression) for each input
port of A. Each binding expression provides data either for a sin-
gle invocation of A or for multiple invocations. Since black-box
functions can expect a list of data per invocation, binding expres-
sions usually select lists of lists. Formally, for each input port p;
the binding expression B; represents a query that given the data in
the read-scope d; € T produces a list of lists of base data suited
for the port p;.

B; : Ta — [[T]], with T € BaseType

The black-box A is then invoked once for each element of the
Cartesian product

C = Bl(dl) X Bg(dl) X e X Bn(dz)7 (X)

that is each element of C'is of type «, which in turn is used to create
an output tuple of type 5 = A(«).
We suggest to use the standard foreach loop with two XPath ex-
pressions to specify the binding expression queris:
foreach $p in XPath; return XPatho

To be able to easily grab base-data, we imagine all BaseType-leaf
nodes to be implicitely labeled with the type-name. Selecting these
nodes via an XPath expression will select the actual value. Further-
more, in contrast to the usual XQuery semantics, we do not flatten

*We use [2] to denote lists of type .

a) X b) X c) X d) X

oA A A A
6666 CHde

foreach $p in foreach $p in

r

foreach $p in

B:

//C //B //A
return $p return $p//C return //C return //C
B(r): {C1},{C2}, {C1,Ca}, {C1,C2,C5,Ca} {C1,C2,C3,Cu},

{C1,C>,C3,Cu}

{Cs}, {Cu} {Cs}, {Cu}

Figure 9: Example grouping via binding expression in ~.

the result sets to form one long output list, instead the result nodes
from XPath, are grouped by the result of XPathy, i.e., for each new
node bound to p a new group is formed.

As example, consider the XML tree r as shown in Fig. 9. The
C data that is available in the scope can be grouped in different
ways: In Fig. 9(a), each C} is put in a single group each of which
will result in an invocation of the black-box actor. In Fig. 9(b),
the results are grouped by B, i.e., all C’s that are descendent of
the same B node will be in a single group. Here, the black-box
function would be called 3 times, once with each group as input.
Only one group for one invocation is created in Fig. 9(c), whereas
in Fig. 9(d) the same input data (all 4 C"s) is presented twice to the
black-box.

Literal values. Besides being able to select data from the read-
scope, we suggest that, like in conventional dataflow models, literal
values can also be put as parameters. We propose to extend stan-
dard conventions for integers (1, 34, -232), boolean values (true,
false), strings ("foo", "bar"), or floating point numbers (0.2, -4.2¢-
7) with simple range constructs such as 1..10 (integers from 1 to
10) to facilitate simple parameter sweeps. Groups can easily be de-
scribed using curly braces. Although it might be tempting to embed
a small programing language here, we suggest to keep binding ex-
pressions rather simple. Using a Turing-complete language would
significantly reduce workflow predictability and the effectiveness
of static analysis for VDAL workflows.
Write expression w and replacement ). The purpose of the
write expression w is to insert the results [3] of the black-box func-
tion A into the scope T, or to perform more drastic changes to the
scope in order to produce 75. Here, an XML update language can
be used. Formally:

w : [B]y,Ta — T8
In the last step M, the modified scope 73 replaces 7 in the original
stream 7 to form the output 7’ (see Fig. 8). In a streaming imple-
mentation, the replacement would be implicit as 7, would typically
be changed “in place” to form 73. Formally, M has the following
signature: ,
M : [m8], 7 — T
Example: VDAL Actor configurations. In Fig. 10, the configu-
ration for an CipresRAxML actor is shown. The black box has five
input parameters, and produces a list of phylogenetic trees. The
actor’s scope is //Nexus, such that input data is searched for only
within subtrees labeled with Nexus. The service should be called
for each method that is under a Model collection in the scope; the
CharacterMatrix is also provided somewhere in the scope and se-
lected via //CharacterMatrix. As rate categories two values, 25 and
100, should be used, and the initial rearrangement limit is set to
100. A cross-product of staged data upon which the actor is to be
invoked is built from the multiple selected models and the speci-
fied seed values. The list of resulting trees is inserted within a new
subtree labeled Trees inside the current scope match.



1 BlackBox: CipresRAXML

2 Input: model of String

3 cha_matrix of CharacterMatrix
4 weight_vec of WeightVector*

5 rate_cats of Integer

6 init_rearr_limit of Integer

7 Output: trees of PhyloTree*

8 o: //Nexus

9 : model « foreach $p in //Model return $p/String
10 cha_matrix « //CharacterMatrix

11 weight_vec «— //WeightVector

12 rate_cats « foreach $rin {25}, {100} return $r
13 init_rearr_limit < 100

14 w: INSERT AS LAST INTO . VALUE Trees[ $result/trees ]

Figure 10: Blackbox and VDAL actor configuration. Lines 1-7
describe the black-box embedded in the VDAL actor. In lines 8-14, Scope,
Bindings, Iteration, and WriteExpression are used to specify how the black-
box is fed with data from the incoming XML stream (o, ) and how the
output of the black-box is placed back into the stream (w).

5. DESIGN CHALLENGES REVISITED

Below we show how the VDAL modeling paradigm addresses
the challenges presented in Sect. 3.

5.1 Parameter-rich Black Boxes

In Virtual Data Assembly Lines, parameters and inputs to black-

box functions are not provided by individual ports nor is there a
custom input structure necessary. Instead, VDAL extends the ap-
proach of regular parameters: Input can be specified either as literal
values (just like with regular parameters) or as special path expres-
sions that grab the data from the actor’s input stream. VDAL actors
thus exhibit only one input and one output port, through which the
XML-stream of data flows, reducing necessary wiring to a mini-
mum.
Reduction of workflow graph complexity. Of course, the input
for a black-box still needs to be specified somehow; our approach
moves moves the scientifically essential portion of the complex-
ity from the graphical wiring into the configurations. Moreover, it
completely removes from the model non-essential complexity, i.e.
all explicit references from one actor to another. In a conventional
workflow, a wire directly connecting one actor to another expressly
indicates that the output of the first actor is to be consumed and pro-
cessed by the second actor. In a VDAL workflow, in contrast, a wire
directly connecting two actors by no means implies that the down-
stream actor uses any information transmitted by the actor over that
wire. The order of actors in a VDAL workflow merely indicates the
order in which actors will have access to the data stream. The wires
between actors serve only as the channel over which the entire data
stream passes between actors and do not indicate direct interactions
between connected actors.

A further way in which configurations are superior to explicit
routing in selecting necessary input data is that configurations are
declarative descriptions. They specify what data to use from where
in the stream in contrast to the operational descriptions of wires and
record-management shims. To select all character matrixes inside
the current read scope, for example, an XPath expression ““//Char-
acterMatrix” can be used. Not only is this more concise than one or
more shim-actors for selecting data from a record-structures, it also
makes the actor oblivious to certain changes in the input stream,
and consequently makes the behavior and configuration of the ac-
tor more resilient to future changes in the effective schema of the
incoming data. For example, additional data items or deeper nest-
ing can be accommodated without changing the configuration of
the actor.

Example. With the flexible adapters ¢ and ~y available inside the
actor, the CipresRAxMLService can just be inserted into the data
assembly line (shown in Fig. 11). Via a configuration as shown
in Fig. 10, the input data for the black box is selected from the
incoming XML stream.

ComposeMatrix  CipresRAxML

Figure 11: Linear workflows. In Data Assembly Lines, even
parameter-rich services are connected with only one input and one output
channel. Individual input data are specified as literal values or as an XPath
expression, which extracts data from the incoming stream. A sample con-
figuration for the CipresRAxXML actor is shown in Fig. 10.

PhylipDrawgram

5.2 Maintaining Data Cohesion

Character

PhyloTree ‘ PhyloTree

‘ PhyloTree

‘ PhyloTree

Figure 12: Hierarchical data used in phylogenetic workflow.
Data-nodes (domain-specific and general purpose data) are shown as rect-
angular boxes, collection labels as ovals.

Matrix

The XML data model of VDAL can directly be used to main-

tain relationships between data items. During workflow execution,
access to specific parts of the data is provided by the query capa-
bilities of o and . Data associations that are maintained in custom
records, or domain-specific file formats, such as FASTA or Nexus
files, can be modeled via the XML tree structure. Figure 12 shows
how the data processed by a phylogenetic workflow could be or-
ganized. Starting from the left side of the figure, the String data
contains a URL that points to a Nexus file expected to contain a
character matrix. The workflow fetches the file, converts it into a
CharacterMatrix domain-type, and stores this data item in a Nexus
collection. Via the CipresRAxML actor several PhyloTrees are in-
ferred and placed in the same Nexus collection; in a last step, a
consensus tree is computed and stored under a Consensus collec-
tion. The PhylipDrawgram actor, which displays phylogenetic
trees, could then easily be configured to either draw all the trees
in the workflow (o = //PhyloTree), to draw only the trees inferred
via CipresRAxML (o = //Nexus/PhyloTree), or to draw only the
consensus tree (o = //Consensus/PhyloTree).
Data cohesion for nested lists. Let us reconsider the exam-
ple presented in Sect. 3.2: The services BLAST, MotifSearch,
TFLookup, and FunctionLookup each produce a list of output
items whenever one input item is received. To maintain the associ-
ations between items produced by actors and the inputs from which
they were derived, individual data tokens were wrapped into array
tokens. This leads to type-mismatches on the input ports of the ac-
tors if they are simply chained together. We thus had to introduce
Loop actors that essentially perform a map over these lists. In data
assembly lines, associations can be maintained using nested XML
structures, from which the data is selected via configuration param-
eters. Since these parameters can be specified using the descendent
axis, the actor is decoupled from the actual nesting depth of the
organizational structure.

Figure 13 shows the workflow from Sect. 3.2 modeled as a data
assembly line. As input data, we place each sequence s; inside an
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Figure 13: Maintaining nesting structure and automatic map

v: in < // Sequence

w: foreach $m in
$result/Motif do
insert M[$m)] as last into .

v: in «— //Motif

S-collection. The BLAST actor’s scope o selects each of the col-
lections in turn. Input assembler ~ selects the one sequence inside
the scope and invokes the black-box function to create the list of
sequences as output. Via the write expression w, we then insert a
B-collection for each output sequence into the S-collection. The
resulting XML structure is shown over the channel leading from
BLAST to MotifSearch. The second actor then analogously cre-
ates M-subcollections for each motif that was associated with the
“BLAST-ed” sequences. Succeeding actors follow the same de-
sign idea. Note that this approach not only removes explicit loop-
actors, but also enables each actor to select the correct input data
independently of how deeply nested within the input data stream
it is located. It is thus easy to add additional nestings to the in-
put schema. A top-level “Projects” collection could, for example,
be introduced to hold multiple “Seqs” collections, each contain-
ing, say, sequences from different groups organisms. During the
workflow execution, this organizational structure would be kept in-
tact. Furthermore, we could add additional information into the
XML tree without disturbing the actors that do not need to access
it. Since 7y selects the data that is relevant from the input, additional
data is ignored without the need of further routing actors.

5.3 Conditional Execution

In data assembly lines, conditional execution and the necessary
data routing is localized to the adapters o, v and w. Consider the
use-case from 3.3, in which an actor A should be executed on some
data d only if at least one of two tests (perfomed by actors Test1
and Test2) were successful. Instead of using different routes for
the data, we use the actors Test1 and Test2 to fag the data items
with the result of the test. Then, we exploit the querying capabil-
ities of o and ~ to only select these data items for which one of
the test results are positive. The other data is simply ignored and
passed down the data assembly line. In a sense, the routing around
the actor A is kept local (inside the configuration shell of &) while
the information originating from the test actors Test1 and Test2
is attached to the data.

Testl Test2 A

v ~
’, \ ~

& // Project & // Project o // Project

~:in < each //a :in < each //a ~:in < each // a@QOK

w: if ($out) then  w: if ($out) then w: insert $out after .
tag inQOK tag inQOK

Figure 14: Localizing if-then-else routing via XML attributes

5.4 Iterations over Cross Products

Via parameters for the scope and input assembler, the workflow
developer declares which data is used as input for the black boxes.

Using the foreach construct, cross-products can easily be declared
without the need of explicit routing and token repetition. Input
data for these multiple black box invocations can be specified as
parameter via literal values in the binding expressions, or inside
the input data stream of the actor.

"GTRCAT"

Character- | | Weight-
Matrix Vector
CipresRAXML

Figure 15: Cross-products in VDAL. Performing cross-products is a
built-in feature of the VDAL configuration layer. Thus, no shims or com-
plex routing is necessary. Here, the black-box component is invoked four
times according to the configuration given in Fig. 10: two different models
and two values for the rate_cats parameter. Four output trees are placed
under the newly created Trees-collection.

Figure 15 shows how the CipresRAxML actor with a configura-
tion as in Fig. 10 transforms an incoming data stream: The bind-
ing expressions will select the CharacterMatrix and WeightVector
inside the Nexus collection. For the model parameter, all Strings
under //Model (here "GTRCAT" and "GTRMIX") are selected inside
the foreach construct. For the rate_cats input, multiple parameters
are provided as literal values. The CipresRAXxML service is in-
voked four times, as there are two values for the model ("GTRCAT"
and "GTRMIX") and two values for the rate_cats parameter (25 and
100). The resulting trees, are placed inside a new collection labeled
with Trees, according to the write expression w. Since input cre-
ation and iterative invocation of the black-box is part of the work-
flow infrastructure, no explicit loops, or repeater shims have to be
placed around the actor.

6. DISCUSSION AND RELATED WORK

In the scientific workflow community, workflow design issues
have received comparatively little attention in the past, but their im-
portance is now more fully emerging [4, 10, 15, 13, 18, 19, 1, 35].
In this paper, we have presented VDAL, a scientific workflow mod-
eling and design paradigm for data assembly lines that aims at min-
imizing the “shimantic web syndrome” [16], i.e., the proliferation
of unnecessarily complex workflow designs that involve large num-
bers of shim actors and “messy wiring”, thus obfuscating the sci-
entific protocol that the workflow should capture in the first place.
VDAL borrows ideas from, among others, flow-based program-
ming [26], XML querying and stream processing [38] (e.g., scope
o), functional programming (e.g., map ), and, most importantly,
Kepler/COMAD [23, 24]. At the heart lies the idea of a virtual data
assembly line, where nested data collections are streamed through
a largely linear chain of VDAL actors, each of which has a built-in,
easily configurable data access and management layer for selecting
a substream of relevant input elements (o), from which concrete
data inputs can be further subselected and reorganized (), before
being fed to the innermost scientific black-box function (A), plac-
ing A’s results at suitable positions in the output stream (w). This
architecture (i) eliminates many “data massaging shims” as their
functionality is instead part of the actor configuration, given by the
standard operations (o, v, w), and (ii) minimizes non-local wiring4:
e.g., in Figure 4 the actors BooleanSwitch and DetermMerge are
directly connected via one channel and non-locally wired through

*A connected pair of actors A— B has non-local wiring, if there is
an alternate, indirect path A— - - - — B between them.



a subworkflow a. In contrast, VDAL workflow designer can un-
derstand a workflow locally, by inspecting its actor configuration;
global effects, on the other hand, can be inferred using static anal-
ysis if necessary [38].

A limitation of a strict assembly-line is that data products are
flowing strictly downstream. To iteratively execute a certain num-
ber of actors (in a while-loop-like fashion), the paradigm needs to
be extended by looping constructs that route data back to earlier
steps in the workflow. Although our Kepler/COMAD implemen-
tation already provides (some) looping support, a clear theoretical
investigation should be performed in future work.
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