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Abstract. Business workflow management and business process modeling are
mature research areas, whose roots go far back to the early days of office automa-
tion systems. Scientific workflow management, on the other hand, is a much more
recent phenomenon, triggered by (i) a shift towards data-intensive and computa-
tional methods in the natural sciences, and (ii) the resulting need for tools that
can simplify and automate recurring computational tasks. In this paper, we pro-
vide an introduction and overview of scientific workflows, highlighting features
and important concepts commonly found in scientific workflow applications. We
illustrate these using simple workflow examples from a bioinformatics domain.
We then discuss similarities and, more importantly, differences between scientific
workflows and business workflows. While some concepts and solutions devel-
oped in one domain may be readily applicable to the other, there remain suffi-
ciently many differences that warrant a new research effort at the intersection of
scientific and business workflows. We close by proposing a number of research
opportunities for cross-fertilization between the scientific workflow and business
workflow communities.

1 Introduction

Whether scientists explore the limits and origins of the observable universe with ever
more powerful telescopes, probe the invisibly small through particle accelerators, or in-
vestigate processes at any number of intermediate scales, scientific knowledge discov-
ery increasingly involves large-scale data management, data analysis, and computation.
With researchers now studying complex ecological systems, modeling global climate
change, and even reconstructing the evolutionary history of life on Earth via genome
sequencing and bioinformatics analyses, science is no longer “either physics or stamp
collecting”1. Instead, science is increasingly driven by new and co-evolving observa-
tional and experimental methods, computer simulations, and data analysis methods.
Today’s scientific experiments happen in large parts in silico, i.e., in the computer [8].
In the UK, the term e-Science [1] was coined to describe computationally and data
intensive science, and a large e-Science research program was started there in 2000.
Similarly, in the US, the National Science Foundation created a new Office for Cyberin-
frastructure (OCI) to advance computer science and informatics technologies in support

� This research was conducted while the second author was on sabbatical leave at UC Davis.
1 “All science is either physics or stamp collecting.” – Ernest Rutherford [11].
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of e-Science. As a result, the new opportunities of data-driven and compute-intensive
science have introduced the new challenges of managing the enormous amounts of data
generated and the complex computing environments provided by cluster computers and
distributed Grid environments.

Given these developments, domain scientists face a dilemma. Scientific progress in
their fields relies ever more on complex software systems, high-performance computing
environments, and large-scale data management. For example, advanced computational
science simulations involve all of the above [46]. But employing all of these resources
is a time-consuming and labor-intensive task, made all the more challenging by the
high rate at which new technologies, services, and applications appear. Understandably,
many scientists would prefer to focus on their scientific research and not on issues
related to the software and platforms required to perform it. As a result, interest in the
area of scientific workflow management has increased significantly in recent years [25,
28, 30, 38–40, 49, 51], and many projects are now employing or developing scientific
workflow technology [5, 19, 26, 27, 37, 45].

One goal of scientific workflows is to support and whenever possible automate what
would be otherwise error-prone, repetitive tasks, e.g., data access, integration, trans-
formation, analysis, and visualization steps [39]. Thus, scientific workflows are often
used to chain together specialized applications and new data analysis methods. How-
ever, as is the case in business workflow management, scientific workflows are not
only about workflow enactment and execution; modeling, design, analysis, and reuse of
workflows are also becoming increasingly important in this area. The main goals of sci-
entific workflows, then, are (i) to save “human cycles” by enabling scientists to focus
on domain-specific (science) aspects of their work, rather than dealing with complex
data management and software issues; and (ii) to save machine cycles by optimizing
workflow execution on available resources.

In this paper, we provide an introduction and overview of scientific workflows, and
compare and contrast with the well-established, mature area of business workflows.
The outline and contributions of this paper are as follows. In Section 2 we provide
an overview of the scientific workflow life cycle and common use cases. Section 3
describes some key concepts and emerging approaches for addressing the technical
challenges encountered in developing and deploying scientific workflows. A family of
bioinformatics workflows is then used in Section 4 to further illustrate some of the use
cases and technical issues. In Section 5, we compare and contrast scientific workflow
concepts and issues with those in found in the business workflow arena. Finally, in
Section 6 we propose areas of future research and opportunities for cross-fertilization
between the scientific workflow and business workflow communities.

2 The Scientific Workflow Life Cycle

Figure 1 depicts a high-level view of the scientific workflow life cycle. Starting from
a scientific hypothesis to be tested, or some specific experimental goals, a workflow
design phase is initiated. During this phase, scientists often want to reuse pre-existing
workflows and templates or to refine them. Conversely, they can decide to share a (pos-
sibly revised and improved) workflow design, or make workflow products (derived data,
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Fig. 1. Scientific Workflow Life Cycle

new components, subworkflows, etc.) available via a public repository or shared project
space. Scientific workflow design differs significantly from general programming, with
analysis libraries, available web services, and other pre-existing components often be-
ing “stitched together” (similar to scripting approaches [48]) to form new data analysis
pipelines.

During workflow preparation, data sources are selected and parameters set by the
user. Workflows may require the scheduling of high-performance computing (HPC) re-
sources such as local cluster computers, or remote (Grid or cloud computing) resources;
also data may have to be staged, i.e., moved to certain locations where the compute jobs
running on the HPC cluster(s) expect them.

During workflow execution, input data is consumed and new data products created.
For large-scale computational science simulations (running on hundreds or thousands of
nodes; for hours, days, or weeks at a time), runtime monitoring is critically important:
intermediate data products and special provenance information are often displayed on a
web-based monitoring “dashboard” to inform the scientist about progress and possible
problems during execution. Depending on this information, the scientist may decide to
abort a simulation or workflow run.

Scientists often need to inspect and interpret workflow results in a post-execution
analysis phase to evaluate data products (does this result make sense?), examine execu-
tion traces and data dependencies (which results were “tainted” by this input dataset?),
debug runs (why did this step fail?), or simply analyze performance (which steps took
the longest time?). Depending on the workflow outcomes and analysis results, the orig-
inal hypotheses or experimental goals may be revised or refined, giving rise to further
workflow (re-)designs, and a new iteration of the cycle can begin.

The workflow life cycle typically involves users in different roles: Domain scientists
often act as the (high-level) workflow designers and as the workflow operators, i.e., they
execute and possibly monitor the workflow after having prepared the run by selecting
datasets and parameters. Depending on the complexity of the target workflows and the
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skills required to compose these in a particular system, workflow engineers2 commonly
are also involved in implementing the workflow design.

Types of Scientific Workflows. There is no established scientific workflow classifica-
tion yet. Indeed, there seems to be no single set of characteristic features that would
uniquely define what a scientific workflow is and isn’t. To get a better grasp of the
meaning and breadth of the term ‘scientific workflow’, we have identified a number of
dimensions along which scientific workflows can be organized.

In many disciplines, scientists are designers and developers of new experimental pro-
tocols and data analysis methods. For example in bioinformatics, the advent of the next
generation of ChIP-Seq3 protocols and the resulting new raw data products are leading
to a surge in method development to gain new knowledge from the data these experi-
ments can produce. Scientific workflows in such realms are often exploratory in nature,
with new analysis methods being rapidly evolved from some some initial ideas and pre-
liminary workflow designs. In this context, it is crucial that scientific workflows be easy
to reuse and modify, e.g., to replace or rearrange analysis steps without “breaking” the
analysis pipeline. Once established, production workflows, on the other hand, undergo
far fewer changes. Instead, they are executed frequently with newly acquired datasets
or varying parameter settings, and are expected to run reliably and efficiently.

Scientific workflow designs can also differ dramatically in the types of steps being
modeled. For example, we may distinguish science-oriented workflows [42], in which
the named steps of the workflow spell out the core ideas of an experimental protocol or
data analysis method, from lower-level engineering (or “plumbing”) workflows, which
deal with data movement and job management [46]. Another category along this di-
mension are job-oriented workflows, typically expressed as individual compute jobs for
a cluster computer, whose job (i.e., task) dependencies are modeled as a DAG [22].

3 Scientific Workflow Concepts and System Features

In order to address the various challenges encountered throughout the scientific work-
flow life cycle, and in light of the vastly different types and resulting requirements of
scientific workflows, a number of concepts have been and are being developed. In the
following, we use terminology and examples from the Kepler scientific workflow sys-
tem [2, 37] (similar concepts exist for other systems, e.g., Taverna [3], Triana [4], etc.)

Integrated Workflow Environment. Many (but not all) scientific workflow systems
aim at providing an integrated ‘problem-solving environment’4 to support the workflow
life cycle illustrated in Figure 1. For workflow design, a visual programming interface
is often used for wiring up reusable workflow components (or actors). To facilitate
rapid workflow development and reuse, actor libraries (containing executable code)
and workflow repositories (e.g., myExperiment [31]) can be used. Similarly, a metadata
catalog may be used to locate relevant datasets from distributed data networks. The

2 i.e., software engineers with workflow system expertise.
3 Chromatin ImmunoPrecipitation with massively parallel DNA Sequencing.
4 A term that has been used earlier in the context of computational science simulations [47].
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Fig. 2. A Kepler scientific workflow for inferring evolutionary relationships using morphological
data. The windows labeled Drawgram and CollectionDisplay show the resulting phylogenetic
tree and reveal the nested data streaming through the actors, respectively.

screenshot in Figure 2 depicts the Kepler user interface, including the workflow canvas
and actor library.

Workflow Preparation and Execution Support. Many scientific experiments require
multiple workflow runs using different parameter settings, data bindings, or analysis
methods. In such cases, parameter sweeps [5] can be used to simplify these experi-
ments. When running workflows repeatedly with varying parameter settings, data bind-
ings, or alternative analysis methods, a “smart rerun” capability is often desirable [37]
to avoid costly recomputation. This can be achieved, e.g., by using a data cache and
analysis of dataflow dependencies (when parameters change, only downstream compu-
tations need to be re-executed [6]). For long-running workflows, some systems offer
capabilities for runtime monitoring, e.g., using web-based dashboards, which display
and visualize key variables (e.g., of large-scale fusion simulation experiments [34]).
Similarly, long-running workflows require support for fault-tolerance, e.g., in the case
of actor-, service-, or other workflow-failures, a “smart resume” capability avoids re-
execution of previously successful steps, either by a form of (application-dependent)
checkpointing [38, 46], or by employing suitable logging and provenance information
recorded by the workflow system [21]. In so-called “grid workflows”, workflow jobs
need to be scheduled and mapped onto the distributed computing resources [26].

Data-Driven Models of Computation. While scientific workflow designs visually
emphasize processing steps, the actual computation is often data-driven. Indeed, with-
out workflow system support, scientists often spend much of their time reading,
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Fig. 3. Basic workflow and provenance models: (a) workflow definition (here, a DAG) with four
actors A, . . . , D; (b) example flow graph with process invocations a, . . . , d and atomic data
s1, . . . , s5; (c) data dependencies and (d) invocation dependencies inferred from (b).

reformatting, routing, and saving datasets. Instead, dataflow-oriented and actor-
oriented models of computation [36] for scientific workflows [12] emphasize the cen-
tral role of data. What passes between workflow steps is not just control (the triggering
of a subsequent step in response to all prior steps having completed), but data streams5

that flow between and through actors (either physically or virtually [52]) and that drive
the computation.

Consider the simple workflow DAG in Figure 3(a). In a business workflow model
(and in some job-oriented scientific workflow models [22]), we would view A as an
AND-split, followed by two task-parallel steps B and C and an AND-join D. Dataflow
is often implicit or specified separately. In contrast, in a data-driven model of com-
putation, the tokens emitted by a workflow step drive the (often repeated) invocations
of downstream steps. Figure 4 illustrates that there are (often implicit) data queues be-
tween workflow steps to trigger multiple process invocations of an actor. Such dataflow-
oriented models of computation are also beneficial for (i) streaming workflows (e.g., for
continuous queries and window-based aggregates over sensor data streams [9]), and (ii)
pipeline-parallel execution of scientific workflows [46]; see Figure 4 and below.

Data Provenance. In recent years, research and development activities relating to data
provenance (or data lineage) and other forms of provenance information have increased
significantly, in particular within the scientific workflow community [13, 18, 23, 24, 43].
Information about the processing history of a data product, especially the dependencies
on other, intermediate products, workflow inputs, or parameter settings, can be valuable
for the scientist during virtually all phases of the workflow life cycle, including work-
flow execution (e.g., for fault-tolerant [21] or optimized execution) and post-execution
analysis (i.e., to validate, interpret, or debug results as described above).

Consider the flow graph in Figure 3(b). It captures relevant provenance information,
e.g., that in a particular workflow run, the actor A consumed an input data (structure s1)
and produced output data (s2); the linkage between inputs and outputs is given via an
invocation a of A. The data lineage graph in Figure 3(c) is a view of the graph in (b),
and shows how the final workflow output s5 depends on the input s1 via intermediate
data products s2, s3, s4. The invocation dependency graph in Figure 3(d) highlights
how actor invocations depended on each other during a run.

5 The so-called “information packets” in Flow-based Programming [44].
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Fig. 4. The process network (PN) model supports streaming and pipelined execution: (a) step A of
the workflow (top) yields two independent invocations (a:1, a:2) within the flow graph (bottom),
possibly executed concurrently over the input stream s1, s2, . . . ; (b) a variant of (a) where A is
stateful, preserving information between invocations a:i, resulting in additional dependencies.

Different Models of Computation and Provenance. The model of provenance (MoP)
to be used for a scientific workflow may depend on the chosen model of computation
(MoC) that is used to describe the workflow execution semantics [15, 41]. For example,
for a simple MoC that views a workflow specification as a DAG [22], the associated
MoP need not distinguish between multiple invocations a:1, a:2, . . . of an actor A, sim-
ply because each actor is invoked no more than once. For the same reason, it is not
meaningful to distinguish stateless from stateful actors. In contrast, in MoCs that (i)
allow loops in the workflow definition, and/or (b) support pipeline parallel execution
over data streams, multiple invocations need to be taken into account, and one can dis-
tinguish stateful from stateless actors. Consider Figure 4(a), which depicts a simple
workflow pipeline consisting of two steps A and B. In a dataflow MoC with firing se-
mantics [35], each data token si on a channel6 may trigger a separate invocation; here:
a:1, a:2, . . ., and b:1, b:2, . . . With the appropriate MoP, the provenance graph indi-
cates that two (or more) independent instances of the workflow were executing. This is
because the actors A and B are stateless, i.e., each invocation is independent of a prior
invocation (e.g., A might convert Fahrenheit data tokens to Celsius). On the other hand,
Figure 4(b) shows a provenance graph that reveals that the multiple invocations of A are
dependent on each other, i.e., A is stateful. Such a stateful actor might, e.g., compute
a running average, where a newly output token depends on more than one previously
read token.

Workflow Modeling and Design. Experiment and workflow designs often start out as
napkin drawings or as variants or refinements of existing workflows. Since workflows
have to be executable to yield actual results, various abstraction mechanisms are used to
deal with the complex design tasks. For example, Kepler inherits from Ptolemy II [17]
the capability to nest subworkflows as composite actors inside of workflows, possibly
adopting a different model of computation (implemented via a separate director) for the
nested subworkflow. Top-level workflows are often coarse-grained process pipelines,
where each step may be running as an independent process (e.g., executing a web ser-
vice or R script), while lower-level “workflows” might deal with simple, fine-grained

6 In the process network model [33] actors (processes) communicate via unbounded queues.
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steps such as the evaluation of arithmetic expressions. Thus, it can be beneficial to em-
ploy different MoCs at different levels [46], e.g., Kahn process networks at the top-level
(implemented via a so-called PN director) and synchronous dataflow7 for lower levels.

Actor-oriented modeling and design of scientific workflows can also benefit from
the use of semantic types [10, 12], where data objects, actors, and workflows can be
annotated with terms from a controlled vocabularly or ontology to facilitate the design
process. Finally, collection-oriented modeling and design [14] can be seen as an exten-
sion of actor-oriented modeling which takes into account the nested collection structure
frequently found in scientific data organization to obtain workflow designs that are eas-
ier to understand, develop, and maintain [42].

4 Case Study: Phylogenetics Workflows in Kepler

Here we illustrate the challenges, use cases, concepts, and approaches described above
using concrete examples of automated scientific workflows implemented in the Kepler
scientific workflow system. The example computational protocols come from the field
of phylogenetics, which is the study of the tree-like, evolutionary relationships between
natural groups of organisms. While phylogenetics methods and data comprise a nar-
row sub-domain of bioinformatics, they are broadly relevant to the understanding of
biological systems in general.

The pPOD Extension to Kepler. The pPOD project8 is addressing tool and data inte-
gration challenges within phylogenetics through a workflow automation platform that
includes built-in mechanisms to record and maintain a continuous processing history for
all data and computed results across multiple analysis steps. Like many other science
domains, these steps currently are carried out using a wide variety of scripts, standalone
applications, and remote services. Our solution, based on the Kepler system, automates
common phylogenetic studies, routing data between invocations of local applications
and remote services, and tracking the dependencies between input, intermediate, and fi-
nal data objects associated with workflow runs [16]. The immediate goal of the current
version of the system is to provide researchers an easy-to-use desktop application that
enables them to create, run, and share phylogenetic workflows as well as manage and
explore the provenance of workflow results. The main features of the system include:
(i) a library of reusable workflow components (i.e., actors) for aligning biological se-
quences and inferring phylogenetic trees; (ii) a graphical workflow editor (via Kepler)
for viewing, configuring, editing, and executing scientific workflows; (iii) a data model
for representing phylogenetic artifacts (e.g., DNA and protein sequences, character ma-
trices, and phylogenetic trees) that can facilitate the conversion among different data
and file formats; (iv) an integrated provenance recording system for tracking data and
process dependencies created during workflow execution; and (v) an interactive prove-
nance browser for viewing and navigating workflow provenance traces (including data
and process dependencies).

7 Such subworkflows execute in a single thread, statically scheduled by an SDF director.
8 http://www.phylodata.org

http://www.phylodata.org
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(b). Simple Kepler workflow for refining sequence alignments via a local application

(c). A Kepler workflow that combines the steps in (a) and (b) 
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CipresMrBayes
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Fig. 5. Common data analyses used in phylogenetics implemented in the Collection-Oriented
Modeling and Design (COMAD) framework of Kepler, highlighting benefits of actor reuse and
workflow composition enabled through scientific workflow systems.

Figure 5 illustrates a number of workflows that can be constructed readily using the
actors included with the pPOD extension to Kepler. The workflow shown in Figure 5(a)
reads one or more files containing DNA or protein sequences in the FASTA file format.
Each sequence represents a different group of organisms (e.g., species). The workflow
then employs the Clustal application to align these sequences to each other (thereby
inferring which positions in each sequence are related by evolution to positions in the
other sequences). From this multiple sequence alignment, the workflow composes a
phylogenetic character matrix and saves it to the researcher’s disk in the Nexus format.
The final actor saves a record of the workflow run containing the provenance informa-
tion required to later reconstruct the derivation history of data products.



40 B. Ludäscher et al.

The Importance of Data Management in Tool Integration. The workflow in
Figure 5(a) defines a relatively simple computation protocol: only the CipresClustal
step performs a “scientifically meaningful” task, whereas the rest of the workflow sim-
ply automates the reading, reformatting, routing, and saving of data sets, and records
the provenance of new data. However, even in this case, scientific workflow systems
provide a number of critical benefits. In the absence of a framework such as this, re-
searchers must run the Clustal program by hand, supplying it input data and instruc-
tions in an appropriate (but highly idiosyncratic) manner. They must either install the
program on their own computers, have someone else install it for them, or else run
Clustal via one of several web-based deployments of the application. In any event, they
should (ideally) record precisely how they use the application each time they use it:
what parameters they used, what input data files served as input, and what the immedi-
ate outputs of the program were. Each of these steps is labor-intensive and error-prone.
Moreover, researchers typically carry out operations such as these many times on the
same input data sets, varying the values of parameters given to the applications, alter-
nately including or excluding subsets of input data sets, and repeatedly comparing and
evaluating the results of all these variations. Further, because a protocol such as this
occurs not in isolation, but as part of a larger set of workflows that comprise a scientific
study, these kinds of variations in the upstream computational protocols cascade to the
later protocols in a study, further multiplying the number of times a particular protocol
must be carried out on what is conceptually the same data set. Consequently, managing
data files, converting formats, and otherwise massaging scientific data in preparation
for use with particular tools takes considerable time and effort, and must generally be
done—again and again—by hand.

Immediate Advantages over Standard Scripting Approaches. Scientists typically
define programs for automating analyses using scripting languages, e.g., when manual
operation of tools such as these becomes too onerous. However, employing scripting
languages in this way has serious limitations that scientific workflow systems directly
aim to address. For example, a significant weakness of scripting languages is their lack
of built-in provenance recording facilities. Further, the use of scripting languages for au-
tomating scientific protocols often involves ad hoc approaches for wrapping and execut-
ing external applications, whereas scientific workflow systems can provide users with
uniform access to computational components (e.g., in Kepler through the actor model).
The result is that external applications are typically only incorporated, or wrapped, into
a workflow system once, making analyses easier to construct and components easier to
reuse and adopt in new protocols. The limitation that scientists run into the most, how-
ever, is the difficulty of using a single script to automate a process spanning multiple
compute nodes, heterogeneous communication protocols, and disparate job scheduling
systems. A scientist wanting to run a scripted protocol on a local cluster rather than on
her laptop must be ready to rewrite the script to take into account the associated job
scheduling software, and be prepared to manually move data to and from the cluster by
hand. To employ a web-based application to carry out one or more steps, she may also
need to develop additional, often custom programs to send data to the service, supply
it with the desired parameter values, invoke it, and wait for it to complete (which, e.g.,
often involves either polling or waiting for an e-mail message). Scripting languages
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are cumbersome platforms for this kind of distributed, heterogeneous process automa-
tion; and the situation becomes much harder when researchers wish to mix and match
different kinds of applications and service protocols in a single script.

For instance, when the CipresClustal actor in Figure 5(a) is invoked, it implicitly
calls a web service that runs the application remotely. By using systems such as Ke-
pler to invoke these services, a researcher can easily repeat a protocol on the same or
different data set, using all of the same parameter values used previously, or make vari-
ants of the workflows with different parameterizations. Furthermore, the researcher not
only may create workflows employing multiple such services in the same workflow,
but combine local applications and remote services in a single workflow. In this case,
e.g., Kepler automatically routes data to and from the underlying compute resources
as needed, waiting for services to complete, retrying failed service invocations, and
dealing transparently with the different ways applications must be invoked on a local
machine, on a Linux cluster, or at a supercomputer center.

As a further example, the workflow in Figure 5(b) can be used to refine a sequence
alignment produced by the workflow in Figure 5(a) using the (locally installed) Gblocks
application included with the pPod extension to Kepler. Both workflows can easily be
concatenated to yield a protocol that uses heterogeneous computing resources without
any effort on the part of the researcher (Figure 5c). Additional variants of workflows
can easily be created without regard to how and where the particular steps of a protocol
are carried out. For instance, the workflow in Figure 5(d) invokes the Cipres RAxML
service at the San Diego Supercomputer Center [20] to infer phylogenetic trees from a
provided character matrix, and a researcher can easily swap out this maximum likeli-
hood method for tree inference with one based on Bayesian methods simply by replac-
ing the CipresRAxML actor with the CipresMrBayes actor (as shown in Figure 5e). As
shown, no other actors need be reconfigured. Similarly, the researcher may modify the
workflow to employ a maximum parsimony method for tree inference by inserting two
actors into the workflow (Figure 5f). Again, the workflow of Figure 5(d) can easily be
concatenated with the workflow of Figure 5(c) to yield the workflow of Figure 5(g),
which invokes two remote services and runs two local applications in the course of its
execution. The ease with which new workflows can be composed, reused, repurposed,
and deployed on heterogeneous resources–and later redeployed on different resources–
is one of the major benefits of scientific workflow modeling.

5 Scientific Workflows vs. Business Workflows

In the following, we compare features of scientific workflows and business workflows.
Even within each family, there seem to be few (if any) characteristic features that would
yield a universally accepted, unambiguous classification without exceptions. Rather, it
seems that workflows are related via a series of overlapping features, i.e., they exhibit a
form of family resemblance [50]. Despite the fact that there are few sharp, categorical
bounderies, the comparison below should help in assessing commonalities and typical
differences between scientific workflows and business workflows.

Implementation vs. Modeling. The primary goal of business process modeling is to
develop a common understanding of the process that involves different persons and
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various information systems. Once a business process model is developed and agreed
upon (and in many cases improved or optimized), it can serve as a blueprint for imple-
menting the process, all or in part, in software. Business workflows are the automated
parts of these business processes. Scientific workflows, on the other hand, are devel-
oped with executability in mind, i.e., workflow designs can be viewed as executable
specifications. In recent years, the modeling aspect in scientific workflows is receiving
some more attention, e.g., to facilitate workflow evolution and reuse [42].

Experimental vs. Business-Driven Goals. A typical scientific workflow can be seen
as a computational experiment, whose outcomes may confirm or invalidate a scientific
hypothesis, or serve some similar experimental goals. In contrast, the outcome of a
business workflow is known before the workflow starts. The goal of business workflows
is to efficiently execute the workflow in a heterogeneous technical and organizational
environment and, thereby, to contribute to the business goals of the company.

Multiple Workflow Instances. It is common that business workflows handle large
numbers of cases and independent workflow instances at any given time. For example,
each instance of an order workflow makes sure that the particular customer receives the
ordered goods, and that billing is taken care of. In scientific workflows, truly indepen-
dent instances are not as common. Instead, large numbers of related and interdependent
instances may be invoked, e.g., in the context of parameter studies.

Users and Roles. Business workflows (in particular human interaction workflows) usu-
ally involve numerous people in different roles. A business workflow system is respon-
sible for distributing work to the human actors in the workflow. In contrast, scientific
workflows are largely automated, with intermediate steps rarely requiring human in-
tervention. Moreover, the nature of these interactions is usually different, i.e., no work
is assigned, but runtime decisions occasionally require user input (e.g., to provide an
authentication information for a remote resource, an unknown parameter value, or to
select from multiple execution alternatives).

Dataflow vs. Control-Flow Focus. An edge A→ B in a business workflow typically
means B can only start after A has finished, i.e., the edge represents control-flow.
Dataflow is often implicit or modeled separately in business workflows. In contrast,
A→ B in a scientific workflow typically represents dataflow, i.e., actor A produces
data that B consumes. In dataflow-oriented models of computation, execution control
flows implicitly with the data, i.e., the computation is data-driven. The advantage of
“marrying” control-flow with dataflow is that the resulting model is often simpler and
allows stream-based, pipeline-parallel execution. The disadvantage is that certain work-
flow patterns (e.g., for conditional execution or exception handling) can be awkward to
model via dataflow.

Dataflow Computations vs. Service Invocations. In scientific workflows data is often
streamed through independent processes. These processes run continuously, getting in-
put and producing output while they run. The input-output relationships of the activities
are the dataflow. As a result, a sequence of actors A → B → C can provide pipelined
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concurrency, since they work on different data items at the same time. In business work-
flows, there are usually no data streams. An activity gets its input, performs some action,
and produces output. An order arrives, it is checked, and given to the next activity in
the process. In typical enterprise scenarios, each activity invokes a service that in turn
uses functionality provided by some underlying enterprise information system.

Different Models of Computation. Different scientific workflow systems support dif-
ferent models of computation. For example, Pegasus/DAGMan [22, 26] workflows
are job-oriented “grid workflows” and employ a DAG-based execution model with-
out loops, in which each workflow step is executed only once. Branching and merg-
ing in these workflow DAGs corresponds to AND-splits and AND-joins in business
workflows, respectively. Other workflow systems such as Taverna [3] and Triana [4]
have different computation models that are dataflow-oriented and support loops; Kepler
[2] supports multiple models of computation, including PN (Kahn’s dataflow process
network), SDF (Synchronous Dataflow, for fine-grained, single-threaded computations)
and COMAD (for collection-oriented modeling and design). Given the vast range of sci-
entific workflow types (job-oriented grid workflows, streaming workflows, collection-
oriented workflows, etc.) there is no single best or universal model of computation that
fits all needs equally. Even so, dataflow-based models are widespread among scientific
workflows. In business workflows, on the other hand, Petri nets are used as the under-
lying foundation; BPMN is the de facto standard of an expressive process modeling
language; WS-BPEL is used to specify workflows whose steps are realized by web
services.

6 The Road Ahead

In this paper we have given an introduction and overview to scientific workflows, pre-
sented a bioinformatics case study, and compared features in scientific workflows with
those in business workflows. Compared to the well-established area of business work-
flows, scientific workflow management is a fairly recent and active area of research and
development.

For example, workflow modeling and design has not yet received the attention it de-
serves in scientific workflows. Workflow designs should be easy to reuse and evolve.
They should be resilient to change, i.e., not break if some components are removed,
added, or modified [42]. Techniques and research results from the business workflow
community but also from the databases, programming languages, and software engi-
neering communities will likely provide opportunities for future research in this area.

The business workflow community has embraced Petri nets as the unifying founda-
tion for describing and analyzing workflows. The situation in scientific workflows is less
uniform. In addition to Petri nets (e.g., combined with a complex object model [32]),
there are other underlying models, e.g., well-established formalisms such as dataflow
process networks [33, 35, 36], and new, specialized dataflow extensions, e.g., for nested
data [42]. For optimizing streaming workflows, techniques from the database commu-
nity for efficiently querying data streams look promising as well.
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A very active area of research in scientific workflows is provenance, in particular
techniques for capturing, storing, and querying not only data provenance [7] but also
workflow evolution provenance (a form of versioning for configured workflows) [29].
In this context, statically analyzable dependencies between steps in a workflow can be
used, for instance, to optimize data routing [52], or to check whether each step will
eventually receive the required data. This is interesting, since the business workflow
community has developed a set of soundness criteria for a given process model based
on control-flow, disregarding data dependencies to a large extent. The integration of
workflow analysis methods based on dataflow and on control-flow is a promising new
area of research and cross-fertilization between the communities that can yield new
results and insights for both scientific workflows and business workflows.
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14. Bowers, S., McPhillips, T., Wu, M., Ludäscher, B.: Project histories: Managing data
provenance across collection-oriented scientific workflow runs. In: Cohen-Boulakia, S.,
Tannen, V. (eds.) DILS 2007. LNCS (LNBI), vol. 4544, pp. 122–138. Springer, Heidelberg
(2007)
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39. Ludäscher, B., Bowers, S., McPhillips, T.: Scientific Workflows. In: Özsu, M.T., Liu, L.
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