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University of California
Davis CA 95616

{dzinn,qjhart,tmcphillips,ludaesch}@ucdavis.edu

Yogesh Simmhan, Michail Giakkoupis,
Viktor K. Prasanna

University of Southern California
Los Angeles CA 90089

{simmhan,giakkoup,prasanna}@usc.edu

Abstract—Scientific workflows are commonplace in eScience
applications. Yet, the lack of integrated support for data
models, including streaming data, structured collections and
files, is limiting the ability of workflows to support emerging
applications in energy informatics that are stream oriented.
This is compounded by the absence of Cloud data services
that support reliable and performant streams. In this paper,
we propose and present a scientific workflow framework that
supports streams as first-class data, and is optimized for
performant and reliable execution across desktop and Cloud
platforms. The workflow framework features and its empirical
evaluation on a private Eucalyptus Cloud are presented.

I. INTRODUCTION

Scientific workflows have gained a firm foothold in mod-
eling and orchestrating data intensive scientific applications
by scientists and domain researchers [1]. Despite advances
in workflow systems, the diversity of data models supported
by workflows remains inadequate. Directed acyclic graphs
(DAGs), and control and data flows operating on simple
value types and files form the most common programming
model available. Workflow systems that support collections
or structured objects [2], [3] are more the exception than the
rule.

While existing workflow data models are sufficient for
a number of legacy applications that were originally or-
chestrated as scripts operating on files, an emerging class
of scientific and engineering applications needs to actively
operate on data as it arrives from sensors or instruments, and
react to natural or physical phenomena that are detected.

In addition, these novel data and compute intensive appli-
cations are well suited to be targeted for Cloud platforms,
whether public or private [4], [5]. The elastic resources
available on the Cloud fit with the non-uniform resource
needs of these applications, and the on-demand nature of
the Cloud can help with their lower latency requirements.
However, the native data services offered by many public
Clouds – files, queues and tables – do not yet include high-
performance, streaming-friendly services.

For example, consider the energy informatics domain and
smart power grids1 in particular. Data continuously arriving

1www.smartgrid.gov/projects/demonstration program

from 1.4 million smart meters in Los Angeles households
will soon need to be continuously analyzed in order to
detect impending peak power usage in the smart power
grid and notify the utility to respond by either spinning up
additional power sources or by triggering load curtailment
operations to reduce the demand [5]. This closed loop cyber-
physical application, modeled as a workflow, needs to com-
bine streaming data arriving from sensors with historic data
available in file archives along with structured collections of
weather forecast data that help the large scale computational
model make an energy use prediction in near real time. A
workflow framework that supports this data model diversity,
including streaming data, structured collections and files,
and the ability to execute reliably and scalably on elastic
computational platforms like the Cloud is currently absent.

In this paper, we address this lacuna by proposing a
scientific workflow framework that supports the diverse data
models required by these emerging scientific applications,
and evaluate its performance and reliability across desktop
and Cloud platforms. Specifically, we make the following
contributions:

1) We motivate and present a workflow architecture that
natively supports the three common data models found
in science and engineering applications – files, struc-
tured collections and data streams – with the ability to
seamlessly transition from one data model to another;

2) We incorporate and evaluate techniques in the work-
flow framework to ensure high performance of stream-
ing applications across desktop and Cloud platforms;
and

3) We describe architectural features that enhance relia-
bility of the dataflows in distributed, Cloud environ-
ments for streaming applications.

The rest of this paper is organized as follows: Section II
motivates the need for workflow support for diverse data
models using applications from energy informatics and
identifies desiderata, Section III introduces the data model
and dataflow primitives used by our workflow framework,
Section IV describes the workflow framework architecture,
Section V highlights features that support high performance
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streaming dataflows on Cloud and hybrid platforms, Sec-
tion VI discusses reliability of streaming applications during
distributed execution, Section VII experimentally evaluates
the performance and reliability of the framework for an
energy informatics application on the Eucalyptus Cloud plat-
form, Section VIII presents related work and we summarize
our conclusions in Section IX.

II. BACKGROUND AND MOTIVATION

A. Energy Informatics Applications

Pervasive deployment of sensors and instruments is al-
lowing fine-grained monitoring of the environment about
us. These range from orbiting satellites and rain gages on
the field, to smart meters at households. While scientists
have been dealing with this data deluge by storing and
processing data periodically, there is a growing need to
analyze these data as they arrive. In addition to the smart
grid application introduced before, we motivate this need
using the GOES satellite data processing application for
solar radiation estimation.

NOAA’s Geostationary Operational Environmental
Satellite (GOES) generates continuous, real-time earth
observations in multiple spectral bands that provide
information for developing meteorological parameters like,
cloud coverage over large regions of the earth [6]. Cloud
cover maps are combined with clear sky radiation models
and used to generate actual net solar radiation (Rns)
intensity maps [7]. Such maps can be used to estimate
power generation from solar panels over the course of a
day, for example, and to plan an appropriate power usage
schedule.

These satellite derived maps can be combined with other
streams of sensor information to develop more sophisti-
cated parameters. For example, the California Irrigation
Management Information System (CIMIS) program2 com-
bines Rns with spatially interpolated estimates of tempera-
ture, wind speed, and relative humidity to create reference
evapotranspiration (ET0) maps [6]. They post these esti-
mates online to help California farmers and water managers
plan their daily water needs [8].

Algorithms for calculating ET0 and Rns maps are com-
putationally costly and data intensive. Though data from the
satellite arrives continuously at the UC-Davis campus, lack
of programming and data models that support both stream
and static file processing cause these data to be processed in
batches, using files to buffer time windows of stream data.
This, combined with the limited compute resources available
locally at CIMIS, means that these maps are currently only
generated once a day. More frequent map updates – every
hour – and at a finer spatial resolution will be beneficial to
both water and solar power managers.

2http://www.cimis.water.ca.gov/cimis/data.jsp
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Figure 1. Interactions in the GOES Solar Radiation Workflow

Figure 1 shows an ideal workflow that uses streams,
files and collections to generate Rns and ET0 maps. Local
computers retrieve and reformat the specialized satellite
and sensor stream data format. Standardized streams are
then made available to Cloud computing systems for image
processing, parameter creation and aggregation of disparate
datasets. The results are high level environmental indicators.

B. Cloud and Hybrid Platforms

Clouds are gaining acceptance as a viable platform for
data intensive computing in the sciences and engineering.
Besides their well-known benefits, Cloud computing offers
particular advantages for data driven eScience applications,
such as elastic scale-out of computation and on-demand
provisioning of resources with a pay-as-you-go model. For
many novel, loosely-coupled applications that are being
developed, Clouds provide a compelling alternative to clus-
ters and Grids, with the option of public (Amazon AWS3,
Microsoft Azure4, Google AppEngine5) or private (Eucalyp-
tus6, Nimbus7, OpenNebula8) hosting. Even national labs are
beginning to evaluate the advantages of Cloud platforms9.

Public Clouds often provide reliable and scalable data
structures such as message queues (Amazon Simple Queue
Service, Microsoft Azure Queue Service), file and collection
storage (Amazon S3, Microsoft Azure Blob Service), and
tables (Amazon SimpleDB, Microsoft Azure Table Service,
Google BigTable [9]). These can be used as building blocks
for higher order applications. Some of the Infrastructure-
as-a-Service (IaaS) and Platform-as-a-Service (PaaS) Cloud
providers also allow direct TCP socket access to Cloud
Virtual Machines (VMs) from the Internet, with restrictions
(E.g. limited number of public IPs in Amazon, passing
through a load balancer for Azure). While these features

3aws.amazon.com
4www.microsoft.com/windowsazure
5code.google.com/appengine
6www.eucalyptus.com
7www.nimbusproject.org
8www.opennebula.org
9newscenter.lbl.gov/press-releases/2009/10/14/

scientific-cloud-computing/
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can help with higher-performance for streaming applications
[10], there is no public or private Cloud provider that
supports native data structures that meets the needs of
streaming applications.

C. Requirements Summary

The energy informatics applications we have identified
are well suited to run on public or private Clouds. Since
many of the data sources are from scientific instruments or
sensors, the applications will have to span desktop clients or
workstations, which receive the instrument data, and Clouds,
where the majority of computation takes place. Scientific
workflow frameworks provide an ideal starting point to
compose and execute such applications in the Cloud given
their maturity for eScience domains.

These applications also, however, highlight the need for
streaming data models within workflows that can work
effectively across desktop and Cloud platforms. Users need
stream programming abstractions in workflow tasks, just
as file access is taken for granted. These logical stream
abstractions have to be more robust than simple TCP sock-
ets, given the unreliability and opaqueness introduced by
operating in a distributed environment across desktop and
Cloud with different characteristics from a typical local
area network. Reliability of VMs hosting workflow tasks
is another concern to be addressed. Too, there has to
be intelligence to avoid costly (both in time and money)
duplicate movement of the same logical stream. Some of
these existing shortcomings have been exposed in our recent
work [10].

Abstractions in the workflow must also hide the need
to explicitly construct trivial transformations across data
models, such as from streams to files, or files to collections.
Many of these steps should be automated with limited
domain knowledge. This need to move between models is
common in legacy code that do not support streams natively
and operate on time windows of streams as files.

III. WORKFLOW DATA MODEL

Our proposed workflow framework supports the three
data models that were motivated, viz., files, collections
and streams. Tasks in a workflow support these models as
first class input or output ports or parameters. We describe
these models in this section along with specialized dataflow
primitives to operate on them in a transparent manner.

A. Data Model Characteristics

Files: Files are a popular data model for scientific appli-
cations and commonly supported in workflows. They are
bounded-sized data that reside on local disk or a shared
file system, and can be accessed through standard file
system primitives by workflow tasks. A file’s content may
change over time, though scientific data tends to be static as
workflows create updated copies of files rather than change

them in place, for provenance tracking. File storage mediums
are also typically persistent. Files may expose either a well-
defined structure (e.g. HDF or XML) or use an opaque
binary format with random access.

Structured Collections: Collections contain an ordered
set of items with well-defined structure. They are typically
bounded in size. Exposing their structure allows interesting
queries and access patterns. The itemized nature of collec-
tions makes them well suited for tasks to iterate over them.
Collections can be nested and items can potentially refer to
the other two data models – files and streams. Collections
may also have data to object mapping in higher level lan-
guages for access by workflow tasks. Workflow systems such
as Kepler/COMAD [11] and Taverna [3] provide support for
collections.

Data Streams: Streams are a continuous series of binary
data. They are often unbounded in size – a key distinction
– and accessed as a logical byte stream. The continuous
nature of streams also makes them transient unless mapped
to another data model. Streams often need to be handled at
high rates of flow, but these rates can vary. Streams may have
landmarks [12] within them, that act as a point of reference
and serve to delineate them. Landmarks for a stream from
an instrument may be the instrument starting and stopping.

One common and implicit data model that is supported by
workflows are value parameter types such as strings, num-
bers and booleans. These are well understood and commonly
supported. Their discussion is omitted for brevity.

B. Workflow Primitives for Streaming

1) Always-On Workflows: Traditionally, when a workflow
is executed, tasks in the workflow are orchestrated to execute
in a certain order. Tasks typically execute once, as for exam-
ple in the DAGman10 workflow model, or several times in
case control flows like iterations are allowed, and the work-
flow eventually stops. Introducing a streaming and collection
notion in a workflow also allows tasks in the workflow to be
invoked multiple times. While collection oriented workflows
have used it earlier to introduce control flow into a pure
data flow workflow by iterating over a collection [3], the
use of unbounded streams brings the possibility of always-
on workflows that are alive and executing constantly. This
provides a more natural execution model [13] for workflows
that are constantly responding to environmental conditions
based on stream outputs from sensors.

2) Transforming between Models: The need to transform
from one data model to another is common as part of
workflow composition and execution. This helps to support
legacy applications, to match the output type from a previous
workflow activity to a required input type by a subsequent
activity, and sometimes even to rewrite workflow patterns
(e.g., from sequential to pipeline parallel) and better leverage

10www.cs.wisc.edu/condor/dagman
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available computational resources. A legacy application may,
for example, require temperature values to be present in
a file to use it as input type while a previous activity
generates a structured collection. This requires a form of
“materialization” of the data.

Traditionally, activities called “shims” [14] have been
used to explicitly map between data structures and types in
a workflow. However, when using different data models, it is
possible for the workflow framework to automate translation
from one model to another while conforming to certain rules.

Mapping from files to collections and back is possible
when the files have structure – possibly domain dependent.
For example, a NetCDF file containing a 2-dimensional array
of temperature values can be mapped to a collection of
1-dimensional arrays of temperatures, or a doubly-nested
collection of temperatures. For workflows used in environ-
mental sciences, providing such a NetCDF mapping function
can help implicitly translate between the models, and just the
row- or column-major transformation need be specified. A
similar argument can also be made for XML based files that
naturally fit a collection model [15].

Transforming from streams to files and back is more
easily managed since both operate intrinsically on bytes,
but it may provide limited benefits when done naively. It
is possible to trivially write bytes from a stream to a file,
and chunk by the number of bytes to control size of a
single file. But this works in practice for only the simplest
of cases where a stateless task operates on each byte in
the stream or file independently. A more useable notion of
capturing streams to files comes from landmarks defined in
the streams [12]. Landmarks form the logical boundaries
between portions of the stream and can be specific events,
such as an instrument going on or off, logical or real
timestamps, or byte-boundaries for a series of fixed-sized
data structures. Capturing data between two landmarks, in a
single file or a collection of files with offsets from the head,
will prove more useful for mapping data models between
two tasks.

Going from collections to streams also becomes tractable
with the use of landmarks. While data between landmarks
can be treated as one item in a collection, the continuous
nature of streams means that the size of items or the number
of items can grow large. Collections need to be bounded by
the number of items. Mapping collections to streams also
requires thought on the serialization to be performed. This
may again be domain specific, but the workflow framework
can provide the hooks for automation.

3) Pipeline Parallelism: A streaming model innately al-
lows pipeline parallelism among workflow tasks. Once a task
completes processing a particular region of the stream, it can
generate an output in its stream output port and continue
processing the next region in the stream. Subsequent tasks
can start and continue operating on the output stream values.
Combined with a Cloud platform, this allows pipelined

tasks to be run on different VMs and scaleout on available
resources. The logical streaming model – as opposed to
a physical TCP socket – also allows elasticity of tasks,
by permitting stateless tasks to migrate to other VMs and
scaleout computation, or to gather in a single VM and
conserve resources. The benefits of pipeline parallelism,
however, only extend to those tasks that are linked together
by streams.

4) Data Parallelism: Data parallelism is often exploited
by scientific workflows [16] and is a predominant way to
achieve efficient execution on distributed resources. Trivial
data parallelism using streams is inhibited since streams
arrive over a period of time and the workflow framework
needs to provide the necessary logic to distribute streams to
stateless tasks that can operate on the streams in parallel.

Using the concept of landmarks, there are two ways
to achieve data parallelism for stateless tasks operating
on streams. One, the streams can be mapped to bounded
collections (or files) using transformations discussed before,
bounded by number of items or a time window per col-
lection, and the items in the collection be executed data-
parallel by instances of the same task. This is an explicit
materialization of the stream and the time to buffer the
stream is overhead unless it is pipelined.

Alternatively, the stream can be duplicated and passed
to multiple instances of a task, with each task responsible
for processing beyond the ith landmark. The tasks would
either track and skip regions between landmarks that are
not of interest, which has limited overhead if the tasks
are collocated in the same Cloud VM, or the streaming
framework can perform an implicit filter by landmark for
optimization.

However, certain tasks need to maintain state between
invocations. These tasks range from computing simple aver-
ages, maxima, or minima, up to performing complex stream
analysis such as determining frequent itemsets [17]. Here,
the data units (e.g., single data items, collections or files)
need to be processed sequentially, precluding the use of
data-parallel approaches altogether.

IV. ARCHITECTURE

Figure 2 summarizes our proposed Workflow architecture.
The workflow engine orchestrates the overall execution and
is often located on a computer outside the Cloud (laptop,
desktop, or server for long-running workflows). We chose to
extend the RestFlow [18] workflow engine since it provides,
besides the regular DAG workflow execution model, the abil-
ity to invoke workflow tasks multiple times and to manage
collections passed between task invocations. The workflow
tasks inside the RestFlow system orchestrate workers in
the Cloud. Work requests and responses are communicated
through a queue, provided by the Cloud infrastructures. This
allows for automatic load balancing and fault tolerance since
work requests are only “leased” by a task and destroyed
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Figure 2. Architecture of Workflow Framework across Cloud Platforms.
Green arrows represent high-performance streaming data flow; blue arrows
represent smaller control data flow.

only after the work has been performed successfully. Besides
existing support for accessing and operating on files and
collections provided by RestFlow, we provide the additional
modeling abstraction of named, fault-tolerant, shareable, and
persistent streams. To facilitate inter-workflow operability
and re-use, we implement a stream-management system
outside the workflow engine to provide this abstraction.

The stream-management system runs predominantly in-
side the Cloud, currently as user-processes. In the future,
Cloud providers may provide such streams as IaaS abstrac-
tion. Its main component is a registry service that maintains
a list of known streams and the endpoints where particular
streams are provided. The registry maintains this state in
a persistent Cloud table. Stream managers run as separate
processes on the Cloud VMs, and can function as stream
providers. When a task creates an output stream, it contacts
a nearby/local stream server that registers the stream. The
data is requested by the stream manager if the stream does
not exist already or if the overwrite flag is set. If the persist
flag is set, the stream manager will also cache the data
stream to BLOB storage as it is received. For uploading
to BLOB cache, we chunk streams based on maximum
chunk-size and time-out configurations, whichever occurs
first. When a stream is accessed for reading inside the
Cloud, a registry-lookup is performed to obtain a nearby
stream-manager from which the stream can be read. When
accessed from outside the Cloud, the contacted manager
will transparently forward the stream to others who need
it. This allows the registry to use Cloud-internal addresses
for the managers. It further requires no modification to
existing Cloud infrastructures, which provide load balancing
mechanisms for TCP connections.

V. STREAM PERFORMANCE FEATURES ON CLOUD

Unlike the performance of common Cloud data services
like files, blobs, tables and queues, the performance of
streams within Clouds is less studied. In our earlier work
[10], we demonstrated the superior data transfer bandwidth
using streams as a transport mechanism for moving files
into the Azure public Cloud, relative to BLOB file transfers.
Besides those transfer optimizations, several novel features

have been incorporated on top of our workflow framework
to make it performant for a streaming data model spanning
desktop and Cloud platforms.

The use of named streams and landmarks allow streams
to be shared with multiple destinations. This is of prime
importance when a stream source at a task running in the
desktop is shared by several workflow tasks in the Cloud.
Duplicating this stream transfer will use up bandwidth and
be punitive in terms of cost. It may also affect the latency
of task execution since some Cloud vendors throttle the
cumulative bandwidth for a single user account into their
public Cloud. The peering stream managers we support
in combination with the stream registry addresses this by
sharing the stream within the Cloud while passing just one
stream from desktop to Cloud. The empirical advantages of
this are illustrated in Section VII-B1.

The ability of the stream manager to cache the streams
locally on VM disk ensures that the performance benefits
of shared streams will outlast the memory available in the
VM. Additionally, the use of Cloud persistent storage to
cache some of the streams will help them be reused within
the Cloud beyond the lifetime of the VM, and also offload
bandwidth or computation overhead on a VM caused by its
sharing a stream.

Currently, our stream managers do not coordinate access
to replicas of streams and it is likely under certain cases
for a particular VM hosting a stream to be overloaded by
requests. We are working on more intelligent and fair stream
sharing.

VI. RELIABILITY FOR STREAMING APPLICATIONS

The always-on nature of our applications and their use by
a large user community means that the workflows should
exhibit tolerance to faults. Our earlier work has identified
fault recovery models for file based workflows [19]. Here,
we restrict our attention to the reliability of workflows that
use a streaming model.

There are two aspects of fault resistance: (1) transient
or permanent loss of physical network, and (2) loss of
virtual machines in the Cloud or services running on them.
Transmitting streams across desktop and the Cloud over TCP
sockets can be prone to error, particularly given the long
lifetime of the logical streams. A network reconfiguration on
the desktop workstation, migration of a laptop to a different
wireless network or the restart of a desktop server stream
source after installing patches can all cause unintentional
loss of network connection between desktop and Cloud for
various periods of time. The use of a logical stream model,
exposed as a Java class implementing an interface similar
to a byte stream, hides the underlying network transport
and loss from the workflow application. A disconnect of the
TCP socket due to transient network error can be recovered
by reconnecting to the same source. A permanent network
failure can be sidestepped by locating and connecting to a
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replicated stream source if available, or an optimistic attempt
to reconnect with the original source. The protocols used
by the stream managers to communicate with each other
seamlessly recovers from the point at which the physical
stream was broken, and translates to just a slight increase in
latency for the receiver of the stream rather than a permanent
failure. This is shown in our experiments in Section VII-C.

The loss of network connectivity between VMs in the
Cloud is less frequent, but can be handled in the same
manner as above. More of a concern is the loss of a VM
instance due to, say, the loss of the physical host or a rolling
upgrade to the Cloud fabric [20], [21]. One casuality in such
a case could be the stream cached in the memory or local
disk of the VM that was lost. We address this by trickling the
stream from the VM memory/local disk to Cloud persistent
store in a background thread. This ensures persistence of the
stream window even if the VM is lost and limits the extent
to which the stream has to be retransmitted from desktop
client to the recovered VM instance or other VM instances
accessing that stream.

VII. EVALUATION

We investigate the feasibility of our streaming work-
flow framework, and study the performance and reliability
features outlined in Section VI and V. Our experiments
use synthetic workloads that are similar in data size and
computational needs to the GOES solar radiation and evap-
otranspiration workflow, which we have examined in earlier
work [10].

A. Experimental Setup

We used a private Eucalyptus Cloud [22], running at
University of Southern California. The Debian Linux VMs
have a 2GHz CPU core and 2GB of RAM each, and the
underlying host machines are interconnected with Gigabit
Ethernet. Throughout our experiments, there was no other
load on these machines. Each VM instance used in our
tests ran on a different host machine to ensure uniform
network speeds between VM machines. We chose such a
controlled private Cloud environment to “micro-benchmark”
our proposed features. In public Clouds, where network and
host load is much more inconsistent, we expect to see the
same general trends, however, overlaid with “unpredictable”
noise. Our workflows are orchestrated and obtain input
data from a Debian machine lore located at University
of California at Davis, that acts as a user “desktop”. The
network bandwidth between lore and the Eucalyptus Cloud
head node is 10MBit/s. Neither CPU nor data intensive com-
putation is performed on lore; its particular specification
is thus irrelevant. We performed each experiment at least
three times and show performance average as well as the
minimum and maximum measurements as error bars.
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B. Streaming Application Performance

Here, we investigate the workflow performance for
streaming applications, focused on data stream sharing and
pipeline parallelism.

1) Shared Streams: A major bottleneck in Cloud archi-
tectures is the data movement from local resources to remote
Clouds and back. We evaluate the effect of stream sharing
using a workload that consists of 7 identical workflows with
14 tasks each. Each workflow deploys 7 independent streams
by having 7 sender and 7 receiver tasks. The sender tasks
1-7, which run on the desktop machine, create a stream
and each write 10MB of data into it. The receiving tasks
8-14, open these streams and consume the data, i.e., task
1 streams to task 8, etc. To evaluate stream sharing, we
consider four scenarios: a) all 7 × 7 streams are distinct,
and the data is available only on the desktop machine. b)
the 7 workflows operate on the same input data (i.e., there
are only 7 distinct streams), which is available on the local
desktop machine. In c) and d), we similarly consider 49 and
7 distinct input streams, however here, the input streams
are available in the Cloud already. In all cases, two logical
data movements occur: from desktop to a stream manager
in the Cloud, and from the stream managers to Cloud VM.
Furthermore, since the mechanisms for selecting a stream
manager (i.e., TCP load-balancer) and for selecting a Cloud
VM for a task (i.e., Cloud message queue) are independent
of each other, a transfer from stream manager to the worker
is likely to occur. For each of the 4 cases, we launch all 7
workflows in parallel.

Figure 3 shows the total wall-clock execution times for
our workloads, i.e., we measure the time from starting the
workflows until the last workflow has finished. Execution
time in a) is 420 seconds reflecting the uplink bottleneck
(7×7×10MB×8Bit/420s=9.3MBit/s). In b) we achieve a
speedup of 7x since the shared input streams are detected by
the stream subsystem avoiding redundant data movement to
the Cloud. This data sharing is achieved transparently, by the
stream subsystem utilizing the stream registry and the fact
that streams are registered with an identifying name. We also
consider cases c) and d), in which the input data is already
available in the Cloud. Here, only the data movement from
stream managers to worker is performed. In c) and d), we
achieve a data movement bandwidth of around 300MBit/s
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Figure 4. Investigating Pipeline Parallelism

and 400Mbit/s, respectively. While the same amount of data
is moved in c) and d), we attribute the better performance
of d) to the fact that less data has been loaded from disk by
the stream managers.

2) Pipelined Parallelism: In the next experiment, we
investigate pipeline parallelism with relatively large data
movements and computational load. Our workflow

S s0−→ A s1−→ B s2−→ C s3−→

consists of four tasks in a pipeline. The source task S,
running on the desktop machine, produces a stream of
100MB size. Tasks A, B, and C (running on the Cloud) each
transform their input stream and produce an output stream.
While s0 has a size of 100MB, s1, s2, and s3 are sized
1GB each. This is a common pattern: the first Cloud task
increases the data size by, for example, decompressing input.
All three transformation tasks are streaming, that is they can
produce a (prefix of the) output data stream after having seen
only a prefix of the incoming data stream. The “streaming
degree” of a task is characterized by the granularity in which
it can produce output from seen input. In our experiment,
we consider the case of (i) very stream-friendly tasks that
operates on the input stream in chunk-sizes of 10MB (1MB
for task A) resulting in 100 chunks; and the case (ii) in which
25% increments of the stream have to be consumed before
the respective 25% of output stream is produced. Chunk-
sizes here are 250MB (25MB for task A). Note, that the
task implementation itself decides when output data can be
produced. In general, tasks will have dynamically varying
“chunk-sizes” during a workflow run. Besides the chunk-
size, we also vary the computational work that a task has
to perform per chunk from a no-op (no workload) to a busy
wait of 1.2s for the smaller 10MB chunks and 30s for the
larger 250MB chunks; note that both workloads add up to
120s for the whole stream, which is performed by each of
the three tasks.

Workflow end-to-end wall-clock execution times are
shown in Figure 4; on the X-axis, we vary the number
of used VMs (1VM or 3VM), the number of concurrently
running workers on the VMs (1W or 3W), the computational
load (0s or 120s), the stream chunk size used (10MB or

250MB), and whether the input stream of 100MB is already
available in the Cloud (SH), or has to be uploaded by
the desktop (UP). Figure 4 shows a subset of the possible
combinations that show interesting results. In cases without
CPU load and without desktop-Cloud upload (0s and SH),
the workflow execution is fast; using 1VM or 3VMs has
comparable performance, that is streaming from one VM to
the next is comparable to data streaming within the same
VM. Note, that since an output stream in the Cloud is
streamed to the stream manager on the same host, the stream
managers are co-located with the data producer. When the
workflow is executed completely in series (1VM 1W), using
100 chunks is 24% slower than using only 4 chunks. We
attribute this slow-down to the increased amount of work
to manage the smaller blocks individually. The observation
that the execution time for (3VM 3W 10MB) is 12% faster
than for (1VM 3W 10MB) reinforces this hypothesis.

More interesting results are obtained when not only data
is moved, but also CPU load is performed. We note that
a serial execution of the workload has a lower bound on
the execution time of 3×120s=360s. Letting 3 workers
run concurrently on 1VM does not improve performance,
which is expected since the tasks perform CPU intensive
busy waiting. Here, the penalty of having a smaller chunk-
size is reduced to about 0.5%. Once three VMs are used,
pipeline parallelism is exploited. In the case of 4 chunks, the
workflow has a speedup of 1.8x compared to the execution
on one host. Furthermore, when the chunk-size is reduced
to 10MB, we obtain a speedup of 2.6x – only 13% short of
a perfect speedup of 3x.

Pipeline parallelism mitigates the impact of adding addi-
tional stages. The overall execution time varies significantly
only if the added stages have a much lower throughput. This
is demonstrated by the case in which the input data is not
available in the Cloud, but has to be streamed into the Cloud
first. Although uploading the data takes around 80s (see
earlier examples; 10MBit/s), the execution time increases
only by 35s for the 250MB chunks and 4.8s for chunks
sized 10MB.

C. Testing Reliability

We investigate the fault-resistance of our stream abstrac-
tion with a simple workflow that contains one task reading
a stream. We consider two cases: a) the task is run in the
Cloud, and b) the task is run on the desktop (i.e., the data
is downloaded from the Cloud). We use a stream size of
1GB and 100MB respectively. After 10% of the stream has
been received, we simulate a failure of the stream manager
by killing the stream manager process. The kill command
is triggered from inside the task via an asynchronous ssh-
connection to the stream manager’s VM11. In both cases,

11We used a fixed port-forwarding from Cloud head node to the VM in
the Cloud–desktop use-case to reach the Cloud VM from the desktop.
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the stream is replicated at two stream managers such that
the second manager can also serve the stream. The second
stream manager does not monitor the first one, and the fail-
over is completely performed by the stream implementation
inside the task.
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Figure 5. Runtimes while tolerating failures

 0

 0.5

 1

 1.5

 2

 2.5

 3

cloud detect

cloud resume

remote detect

remote resume

e
la

p
s
e

d
 t

im
e

 [
s
e

c
]

0.4

1.0

6.4

0.1

Figure 6. Timings for failure detection and resume

Our experiments demonstrate that the failure is hidden
by our stream abstraction, i.e., the task can successfully
download and operate on the stream as if there was no error.
Figure 5 shows that while the failure introduces a slowdown
of around 1 second inside the Cloud (slowing transfer speed
from 919Mbit/s to 840MBit/s), the difference for Cloud–
desktop is only 350ms on average causing a slowdown of
less than 0.4%. In Figure 6, we show the time to detect the
failure (measured as the time span from initiating the remote
kill command to receiving an exception while reading from
the TCP socket), and the time to resume reading (the time
span from exception to when new data has arrived). As
expected, the detection is much faster inside the Cloud
than it is from Cloud to desktop. Interestingly, however,
the time to detect the failure is not wasted: Although the
server process is killed within a fraction of a second (manual
observation), the desktop client is still receiving data for
another 5 seconds. This behavior is due to the implicit
buffering of data packets as sent through the (inter-) network.

Furthermore, note that the desktop-Cloud resume is much
faster than the Cloud-internal resume. This is because inside
the Cloud, we first try to contact the same stream manager
again, and then contact the registry to obtain a list of stream
managers providing the stream, from which we randomly
select one. From outside the Cloud, we simply connect to
the load-balancer on the Cloud-framework, without doing a
round-trip to the registry. Since we had only two managers
running, the round-robin connect was successful immedi-
ately. In case there are more stream managers running,
and the load balancer selects one that does not provide
the stream, then the stream manager itself will contact
the registry, and pull the stream from an appropriate other

manager to forward it to the client.
This fail-stop of the stream-manager was easy to detect

by our system since the still running VM will reset the TCP
connection. In case of permanent network errors or crashes
of the whole VM, appropriate mechanisms for detecting
failure need to be deployed. Since network outages and
complete VM failures are indistinguishable by the client,
a balance between tolerance against shorter outages and
declaring a VM as lost need to be found. One observation
was that TCP does not reset the connection even after 2
minutes of network outage (tested via iptables DROP and
DENY rules).

VIII. RELATED WORK

There are several frameworks and platforms, spanning
workflows, stream processing and Cloud programming mod-
els, which support a subset of the features that we require
and have presented in this article.

A. Scientific Workflows

Scientific workflows allow composition of applications
using a control and/or data flow model [23]. Scientific
Workflows have been well studied [3], [16], [24]–[26], and,
more recently, adapted to run on Cloud platforms [26], [27].
The data models supported by workflows have grown to
include value parameters, files and collections [2]. However,
one key data model that has been absent from workflows
is streams. While [23] mentions collections as being a
type of stream, we make the distinction that streams are
unbounded, often have opaque structure, and require high
performance to keep up with the generating instrument or
sensor. Some workflow systems [28] have also used the
streaming transport in GridFTP [29] for data transfers in
the Grid. We distinguish this use of socket streaming for
transport of files (also used in our recent work [10]) from the
logical data streams we introduce in this paper and support
at the workflow data model level.

The closest comparable work to ours is by the Stream-
Flow model for workflows [30]. StreamFlow incorporates
complex event processing (CEP) into WS-BPEL workflows
by introducing a StreamFlow edge into the data flow model,
and specialized tasks that perform event processing. While
similar in some respects, we make distinct contributions.
The CEP model used by StreamFlow data edges is more
similar to unbounded collections than our treatment of
logical streams [31]. Consequently, it makes structural as-
sumptions of streams comparable to collections, such as a
time series of events and the ability to perform filters on
event streams. Our streams are intentionally more basic since
our structured collection data model provides many features
of StreamFlow, except unboundedness. Also, our logical
streams demonstrate reliability features and performance
optimization for Clouds absent in StreamFlow, which uses
the Esper CEP engine for event processing. In addition, we
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reduce complexity by providing a single workflow execution
model that combines file, collection and stream processing
and executes tasks multiple times as necessary in an always-
on fashion, rather than separate the workflow into a pure
CEP workflow and a pure static workflow.

B. Stream and Complex Event Processing

Both stream processing systems and complex event pro-
cessing engines are well established areas. Stream pro-
cessing allows continuous queries to execute on a moving
window of data, and has its roots in data processing in sensor
network. Salient streaming systems include TelegraphCQ
[12], and Aurora [32]/Borealis [33], and a Continuous Query
Language (CQL) [34] inspired by SQL have been proposed.
Stream processing has also been studied in Grid computing
as part of the OGSA-DAI project [35]. Complex event
processing (CEP) attempts to detect event patterns that
occur across disparate event streams. CEP has been used
in the financial industry to predict stock market behavior,
and several vendors [36]–[39] provide technology solutions.
While our logical stream data model is similar to the streams
used in stream processing systems, our unique contribution
comes from combining streams into a scientific workflow
environment and allowing it to coexist with the other data
models: files and collections.

C. Map-Reduce Platforms

The Map-Reduce programming model and its Hadoop im-
plementation have been popular for composing applications
in the Cloud. Several scientific applications are also starting
to use it. A recent work, Map-Reduce Online [40] extends
the batch oriented Map-Reduce model to include a streaming
model to allow pipelining between Map and Reduce tasks.
However, Map-Reduce by itself is not expressive enough
compared to scientific workflows. In fact, some workflow
systems have even included an optimized Map-Reduce pat-
tern as a task available for workflow composers [41].

IX. CONCLUSIONS

In this paper, we have shown the need for streaming
support in scientific workflows to support the next generation
of scientific and engineering applications that respond to
events in the environment at real time. We propose a data
model for streams that can coexist with collections and files
that are currently supported by workflows. Our implemen-
tation of this abstraction for the RestFlow workflow system
shows it to be performant and reliable for operating across
desktop and the Cloud. We plan to further build on this initial
framework to implement the energy informatics applications
we motivated and address novel data optimization challenges
that emerge.
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[10] D. Zinn, Q. Hart, B. Ludäscher, and Y. Simmhan, “Streaming
satellite data to cloud workflows for on-demand computing of
environmental data products,” in 5th Workshop on Workflows
in Support of Large-Scale Science (WORKS), 2010.

[11] L. Dou, D. Zinn, T. McPhillips, S. Köhler, S. Riddle,
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