
Scientific Workflow Design 2.0: Demonstrating
Streaming Data Collections in Kepler

Lei Dou?, Daniel Zinn?, Timothy McPhillips?, Sven Köhler?, Sean Riddle?, Shawn Bowers†, Bertram Ludäscher?

?UC Davis Genome Center, University of California, Davis, CA 95616, USA

†Department of Computer Science, Gonzaga University, Spokane, WA 99258, USA

{ldou,dzinn,tmcphillips,svkoehler,swriddle,ludaesch}@ucdavis.edu

bowers@gonzaga.edu

Abstract—Scientific workflow systems are used to integrate ex-
isting software components (actors) into larger analysis pipelines
to perform in silico experiments. Current approaches for han-
dling data in nested-collection structures, as required in many
scientific domains, lead to many record-management actors
(shims) that make the workflow structure overly complex, and
as a consequence hard to construct, evolve and maintain. By
constructing and executing workflows from bioinformatics and
geosciences in the Kepler system, we will demonstrate how
COMAD (Collection-Oriented Modeling and Design), an extension
of conventional workflow design, addresses these shortcomings.
In particular, COMAD provides a hierarchical data stream model
(as in XML) and a novel declarative configuration language
for actors that functions as a middleware layer between the
workflow’s data model (streaming nested collections) and the
actor’s data model (base data and lists thereof). Our approach
allows actor developers to focus on the internal actor processing
logic oblivious to the workflow structure. Actors can then be
re-used in various workflows simply by adapting actor config-
urations. Due to streaming nested collections and declarative
configurations, COMAD workflows can usually be realized as
linear data processing pipelines, which often reflect the scientific
data analysis intention better than conventional designs. This
linear structure not only simplifies actor insertions and deletions
(workflow evolution), but also decreases the overall complexity
of the workflow, reducing future effort in maintenance.

I. INTRODUCTION

Research in the area of scientific workflows received at-
tention from the database community due to the structurally
complex or large data involved, resulting in challenges for
data management and efficient execution. Scientific workflow
systems are used to build complex scientific analysis pipelines
from existing software components (wrapped as actors) based
on a dataflow-oriented paradigm. Actors have distinct ports
over which they receive input data and emit output data. Dur-
ing workflow design, actors are placed on a canvas and output
ports are linked to input ports to form the workflow graph,
which specifies the dataflow during workflow execution.

In many scientific domains, data is structured hierarchically
in (nested) collections. For example, meteorological data is of-
ten organized by station, county and state; bioinformatics data
comprises nucleotides or amino-acid sequences, organized by
genes, organisms, species, or larger groups. To maintain data
associations, current workflow systems [3, 4, 6, 7, 9, 11]
provide the capability to create user-defined record or list-data
structures. However, workflows deploying these user-defined
“collection types” necessarily contain many shim actors to

assemble or disassemble these structures. For example, Lin et
al. [8] report that the workflows in myExperiment include on
average 30% shim actors. Using these shims in the workflow
effectively couples the data-organization with the workflow
graph. Resulting designs are thus not only hard to create and
understand (many actors are not scientifically meaningful), but
also hard to evolve (changes to the list or record structures
often require major re-designs of the workflow structure).
Providing programing abstraction to make scientific workflow
design more effective is a major challenge, which COMAD
takes a first step in addressing.

We will demonstrate1 how Collection-Oriented Modeling
and Design (COMAD) not only eliminates these shim actors,
but also provides several other design properties (e.g., descrip-
tive actor interfaces, decoupling of workflow graph and data
structures). In COMAD, the hierarchical data is flattened into a
token stream much like a SAX stream of XML data. During
workflow execution, the data is streamed through the workflow
from one actor to another. Similar to workers on conveyer belt
assembly lines, actors in COMAD pick up certain data from
the stream, process it and put the output back into the stream.
All the data selection, validation, conversion, and insertion is
performed automatically by the COMAD configuration layer.
Configurations are expressed in a declarative actor scoping
and binding language that uses XPath-like expressions.

In this work, we describe and demonstrate the key concepts
of COMAD 2.0, which we recently released as a Kepler
module2. These are (1) stream-based workflow execution, (2)
nested, labeled collections of data with possible annotations,
and the (3) scoping and binding configuration language. While
our prior work has shown the overall effectiveness of nested
collections for scientific workflow design [10, 13], and pro-
posed early steps in adapting an XML-based configuration
language [12], this work describes extensions to the data
model, the configuration language, support for annotations, as
well as the system architecture of our released implementation.

II. SYSTEM OVERVIEW

A. Data Model: Streaming Nested Labeled Collections

The logical data model of COMAD consists of three enti-
ties: nested labeled collections, data items, and annotations.

1For a movie see http://youtube.com/watch?v=rYBbInsOonQ
2The open-source, BSD-licensed COMAD 2.0 module is available for

domain and computer scientists via the Kepler Module Manager.

978-1-4244-8960-2/11/$26.00 © 2011 IEEE ICDE Conference 20111296

HumidityDataCollection

station

CollectionPoint

Collection
Annotation
Data

CollectionPoint
CollectionPoint
CollectionPoint

station

station_number
s5

start_time
01-01-2008

end_time
01-01-2009

station_ number
s2

timestamps
1.196499599 E9

humidity
36. 799999

>H
um
idityD

ataC
ollection

start_tim
e:01-01-2008

end_tim
e
:01-01-2009

>

Station
station_num

ber:S2

>

C
ollectionP

oint

<

hum
idity

tim
estam

ps

C
ollectionP

oint

>

C
ollectionP

oint

<

hum
idity

tim
estam

ps

C
ollectionP

oint

>

C
ollectionP

oint

<

hum
idity

tim
estam

ps

C
ollectionP

oint

<

Station

>

Station
station_num

ber:S5

>

C
ollectionP

oint

<

H
um
idity:1.196499599

9

Tim
estam

ps:36.799999

C
ollectionP

oint

<Station

<H
um
idityD

ataC
ollection

(a)

(b)

DataTokenAnnotationToken

ClosingDelimiterToken> OpeingDelimiterToken <

Fig. 1. Humidity data represented in the COMAD data model: Logical tree-
structure (a), and corresponding physical token stream (b).

Collections are labeled containers for other entities including
collections themselves leading to a tree-like data organization
much like XML. Data items represent the domain-specific
data, which can be of simple types like Integer or String
as well as of user-defined Java-classes wrapping data such
as Images, DNA sequences, or phylogenetic trees. Each data
item has a type attribute, and an optional user-defined la-
bel. Furthermore, both collections and data items can have
additional annotations associated with them. Annotations can
be seen as special data items with a strong relationship to
the annotated entity; their label (called key) is mandatory
and unique amongst other annotations for the same data or
collection. Furthermore, annotations of collections are inher-
ited by enclosed data entities and nested collections, allowing
these nested entities direct access to this meta-data. If nested
collections or nested data items have an explicit annotation
with the same key as an implicit, inherited annotation, then
the explicit one overwrites the implicit one.

Physically, this data model is implemented as a token
stream, similar to a SAX-like serialization of XML data. Each
logical entity is mapped to specific tokens (DataToken, An-
notationToken, CollectionDelimiterToken). Provenance infor-
mation about data, annotations, and collections is maintained
via special annotation-tokens that are automatically inserted
into the stream by the COMAD framework. Figure 1 shows an
example of the logical structure and the physical stream-layout
of humidity data collected from multiple weather stations in
the COMET project [5].

The COMAD data model natively supports collection-
oriented data, which is conventionally mapped to specific
opaque types (built from arrays, lists or records). Having the
data “disassembled” in the COMAD stream, obviates explicit
assembly/disassembly shims. Instead, declarative actor con-
figurations are used to denote which data is selected from
the token stream. The actual stream processing to evaluate
the “binding queries” is performed by the framework. Since
data selection and packaging is performed by the framework,
the graph structure of COMAD workflows is usually much
simpler. Furthermore, since the data is staged for the actor
by the framework, also actor development is simplified. By
using annotations, additional data can be closely attached

to collections and data items. Simple tags, for example, are
commonly used in practice to select or group data accordingly
for different analysis purposes. The COMAD configuration
language allows to use annotations directly as input, or as
conditions for filtering input data.

B. Actor Anatomy

The main components of a COMAD actor are its black-
box and its configurations. The former implements the sci-
entifically meaningful computations (e.g., data analysis), the
latter declaratively describes the data handling via black-box
signature, scope, and data bindings.

The black-box signature is defined by the actor developer.
It declares the data inputs and outputs of the black-box,
including data type and cardinality. Any system built-in type
or user defined type can be used. We allow the usual options
for cardinality: one, zero or one, one or more, and zero or more
represented by no suffix, ?, +, and * respectively. For example,
StringToken+ represents a non-empty list of type StringToken.

The scope parameter defines the subtrees (scope matches)
inside the actor’s input, over which the actor is invoked.
Collections that are not inside scope matches are ignored by,
i.e., passed through, the actor.

During each invocation, input/output data bindings select
the concrete input data for the black-box from the scope match,
and define where the black-box’s output should be inserted into
the data stream. While the scope points to a collection, data
bindings point to data or annotation items. The data bindings
must be consistent with the black-box signature, which is
ensured by the COMAD framework during workflow design-
time (if possible) and during runtime. The cardinality test, for
example, guarantees that for each black-box firing, there will
be data provided to all black-box inputs that disallow empty
inputs. Furthermore, a type consistency test guarantees that
bound data is compatible with the data input requested by the
signature, and it guarantees that the black-box’s output data
is compatible with the data-type requested in the output data
binding. Here, compatible means that either their types match,
or there exists a lossless conversion, which will be performed
automatically by the COMAD framework.

The distinction between signature and data bindings clearly
separates the role of actor developer and workflow designer,
and thus facilitates actor re-use. Actor development is reduced
to implementing the core computation logic and defining an
appropriate, workflow-independent signature. The workflow
designer chooses actors from a library, and configures their
data bindings according to the black-box signature and the
concrete data stream of the workflow. Thus, actors can easily
been adapted to workflows with different data organizations.

C. Actor Scoping and Binding Language

The actor scoping and binding language (SBL) is used
to define the scope and data bindings of COMAD actors.
It allows to specify data selection for black-box input, and
data placement for black-box output. To enable more general
stream transformations, SBL also supports the creation and

1297

deletion of collections, data items and annotations. Via specific
extensions to XPath, these operations can be specified based
on the location within the collection/XML structure, existing
annotations, and other conditions.

Based on XPath, SBL expressions consist of a path anchor,
followed by axes and tests. Scope expressions are implicitly
anchored at the root-collection, whereas data bindings are
anchored to their respective scope matches. Like XPath, SBL
uses ‘/’ and ‘//’ axes to denote child or descendent relationships
within the collection structure. Label-tests within the path ex-
pressions are applied to collections (referring to the collection-
label) and data items, where the test is by default applied to
the type of the item. Our experience, gained from working
with domain-scientists, shows that this coincides with the way
scientific procedures are described: “Read the alignment data
of the multiple sequences and output a Newick data item for
the inferred phylogenetic tree.” Annotations can be selected
based on their key with a prepended @-symbol (like XML
attributes in XPath). Qualifiers (e.g., referencing annotation
and data values) can be used as conditional “side-axes” to
select items more precisely. SBL is used to select input data
for the black-box, as well as to specify where the output
data is placed into the nested collection structure. To insert
output items relative to where input was located or relative
to other outputs destination, we introduced port references
that can be used as an alternative anchor-point for the path
expressions in output data bindings. To allow deletions of
data items, collections and annotations from the data stream, a
special delete decoration can be added to input data bindings,
making it easy to define filter actors. Furthermore, create
decorations can be used to create new collections per actor
invocation, black-box firing, or as a peer collection of the
scope matches, making it very easy to organize the output
data in a flexible way. These features for data organization
and collection-management have been proven to be very useful
based on our work with domain-scientists.

D. Framework Architecture

Figure 2 shows the architecture of the COMAD framework.
COMAD workflows can usually be built as linear workflows
with data streaming through the actors like items on a physical
assembly line. Each black-box is enclosed by a configuration
layer that provides data management functionalities. The con-
figuration layer comprises five modules. From bottom upwards
they are the following:
Token Handler. Actor developers can choose to interact
with the incoming data stream in an event-driven mode by
registering custom token handlers. Also, the remaining four
modules are implemented via token handlers.
Scope Matcher & Data Binder. This module determines
scope matches, buffers actor input data according to its data
bindings, and writes actor output data back into the token-
stream. All tokens outside the scope directly bypass the actor.
Data Type Validator & Converter. This module tests
type consistency between the bound data and the black-box

A1 A2 A3 A4 A5

Internal

callback

Black-box

Configuration Layer

Token Handler
Scope Matcher & Data Binder

Data Type Validator & Converter

Provenance Recorder
Actor Invocator & Black-box Firer

{...}{...} {...}

input data buffer

f1f2

output data buffer

f1f2

Token Stream

Fig. 2. Architecture of the COMAD Framework.

signature. If consistent, data is converted to the expected type
if needed and put into buffers.
Actor Invocator & Black-box Firer. Each scope match
constitutes one actor invocation. As soon as there is input data
for all black-box inputs that disallow empty data, the black-
box is executed (i.e., actor is fired) with this group of buffered
data. If there are multiple groups of buffered data available
during the actor invocation, the actor will be fired multiple
times. The output of each firing (if existent) is inserted into the
corresponding output buffers, which then, will be re-inserted
into the stream by the scope matcher and data binder module.
Provenance Recorder. This module captures provenance
information about creations and deletions of data items. By
default, the dependencies of a created item are set to all the
input data inside the current actor scope match that has been
processed so far. These dependencies can be customized, for
example to only depend on the input data of one firing, or a
specific subset of these.

III. DEMONSTRATION DETAILS

We will demonstrate actor development and workflow de-
sign based on several workflows originating from research
performed in environmental science and bioinformatics.

A. COMET Workflow

This workflow analyzes meteorological data from weather
stations in California in the context of the COMET project [5].
The workflow’s main steps are: (1) collecting hourly humidity
data from weather stations, (2) aggregating these data based
on time windows and calculating statistical values for each
window. Statistics include basic aggregates such as minimum,
maximum, and average, as well as more complex ones like the
“growing degree days” (Gdd). The final step in the workflow
is (3) drawing a time-based trend graph. This demonstration
will emphasize the following COMAD features:
Linear workflow structure. Like many COMAD workflows,
this workflow exhibits a simple linear structure; see Fig. 3(a).
Each actor picks up data from its input stream, processes
it and outputs the results back to the data stream according
to its scope and data bindings. The configurations for the
GDDCALCULATOR actor are shown in Fig. 3(b): Its scope
is //AggregationResult/window, where it binds the
DoubleToken labeled with min and max to the corresponding

1298

(a)

(b)

(c)

Fig. 3. COMET workflow built with the COMAD framework (a) and standard
Kepler PN (c). (b) shows GDDCALCULATOR configuration.

input ports of the black-box component. The Tbase value
is bound to an annotation, which can be defined at a higher
collection-level (e.g., as a global configuration on the overall
root collection). The annotation is accessible here due to the
inheritance semantics of annotations. The computed growing
degree days value is then inserted as a new DoubleToken with
label gdd under the window collection. Fig. 3(c) shows a
functional equivalent workflow built using a conventional pro-
cess network (PN) model. Note that the linear structure of the
COMAD workflow more clearly reflects the data analysis than
the PN workflow, which contains record/array management
shims besides the scientifically meaningful actors.
Streaming mode. To demonstrate the streaming execution
model of COMAD workflows, we will add a SEQUENCEPLOT-
TER actor after the original plotter, RPLOTTER. SEQUEN-
CEPLOTTER implements a plotter that dynamically updates
its display as new data is streamed into its input port. Our
demonstration will show that SEQUENCEPLOTTER begins
plotting long before RPLOTTER although it is placed behind
RPLOTTER in the workflow. This behavior is because the
RPLOTTER actor does not plot until all data is received; but,
since the data stream is passed on, the SEQUENCEPLOTTER
can display the data as it arrives incrementally.
High reusability and adaptability of COMAD actors. We
will demonstrate the adaptability of COMAD actors and work-
flows by demonstrating necessary workflow changes to cope
with input data changes (e.g., renaming collections, and adding
more hierarchies). Originally, data from one station is used,
then from multiple stations within one county, and finally from
stations of multiple counties. The workflow adapts to these
changes without any necessary changes to the configurations.
Only if we rename input collections do we need to change the
scope or binding parameters of affected actors.
Ease of actor development. We will walk through the
source-code of the WINDOWSGENERATOR actor. Here, only
the window generating logic is implemented. No additional

code has to be written to interact with the collection-oriented
stream, neither for fetching inputs nor for placing outputs.
Provenance recording. Provenance is recorded by the frame-
work while the data stream passes through the workflow
actors. We will use the ProvenanceBrowser [1] to show the
recorded provenance and demonstrate the various dependency
policies, e.g., per-scope, per-firing, or black-box-defined.

B. BioMoby Workflows

A COMAD actor is configurable via its scope and input
bindings; even the black-box component itself and its signature
can be configured. Therefore, groups of similar services can be
mapped to a single COMAD actor instead of developing a large
number of actors with similar behavior. We will demonstrate
this via an actor we created to wrap BioMoby [2] services.
After instantiation with the service name as a parameter,
black-box signatures (including data-types and cardinalities)
are automatically configured based on the published BioMoby
service description. We will demonstrate two workflows com-
posed of BioMoby services: A BLAST workflow (to find DNA
sequences that are similar to an input sequence), as well as a
phylogenetics workflow which infers phylogenetic trees from
a group of input DNA or protein sequences.
Acknowledgements. This work was supported in part by NSF
awards DBI-0960535, OCI-0722079, AGS-0619139, and DOE
DE-FC02-07ER25811.

REFERENCES
[1] M. K. Anand, S. Bowers, and B. Ludäscher. Provenance browser:

Displaying and querying scientific workflow provenance graphs. In
ICDE, pages 1201–1204, 2010.

[2] Biomoby. http://www.biomoby.org.
[3] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and H. Vo.

VisTrails: visualization meets data management. In SIGMOD’06, pages
745–747. ACM, 2006.

[4] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson,
M. Shields, I. Taylor, and I. Wang. Programming scientific and dis-
tributed workflow with Triana services. Concurrency and Computation:
Practice and Experience, 18(10):1021–1037, 2006.

[5] Comet project. http://comet.ucdavis.edu.
[6] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,

K. Vahi, G. Berriman, J. Good, et al. Pegasus: A framework for map-
ping complex scientific workflows onto distributed systems. Scientific
Programming, 13(3):219–237, 2005.

[7] T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin, M. Sid-
diqui, H. Truong, A. Villazon, and M. Wieczorek. ASKALON: A Grid
Application Development and Computing Environment. International
Workshop on Grid Computing, pages 122–131, 2005.

[8] C. Lin, S. Lu, X. Fei, D. Pai, and J. Hua. A task abstraction and mapping
approach to the shimming problem in scientific workflows. In IEEE Intl.
Conf. on Services Computing, Bangalore, India, 2009.

[9] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. Lee, J. Tao, and Y. Zhao. Scientific workflow management and
the Kepler system. Concurrency and Computation: Practice and
Experience, 18(10):1039–1065, 2006.

[10] T. McPhillips, S. Bowers, D. Zinn, and B. Ludäscher. Scientific work-
flow design for mere mortals. Future Generation Computer Systems,
25(5):541–551, 2009.

[11] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M. Pocock, A. Wipat, and P. Li. Taverna: A
tool for the composition and enactment of bioinformatics workflows.
Bioinformatics Journal, 20(17), 2004.

[12] D. Zinn, S. Bowers, and B. Ludäscher. Xml-based computation for
scientific workflows. In ICDE’10, pages 812–815, 2010.

[13] D. Zinn, S. Bowers, T. M. McPhillips, and B. Ludäscher. Scientific
workflow design with data assembly lines. In WORKS’09, 2009.

1299

