ECS 175 Introduction to Computer Graphics

Time & Place:

Tue & Thu 12:10-1:30pm Fri 4:10-5:00pm (Discussion) 205 Olson

Instructor:

Kwan-Liu Ma
Office: Room 3025, Eng II

Office Hours: Tue 10:30-11:30am

Thu 2:00-3:00pm

(530) 752–6958 ma@cs.ucdavis.edu

TA:

Oliver Kreylos Room 067, Eng II Office Hours: TBA kreylos@cs.ucdavis.edu

Prerequisite:

ECS110 or ECE73

C, C++ programming Data structures Algorithms

Math 22A

Linear algebra

Good problem solving skill Good debugging skill

Course home Page:

http://www.cs.ucdavis.edu/~ma/ECS175_S00

Course newsgroups:

ucd.class.ecs175 ucd.class.ecs175.d

Textbook:

Required:

Computer Graphics, C Edition, Hearn and Baker, Prentice Hall

Optional:

OpenGL Programming Guide, 3rd ed. Woo, et al., Addison Wesley

Other userful references:

Notes:

UCD Graphics Research Group's class notes and C++ classes http://graphics.cs.ucdavis.edu/Notes.html

OpenGL Tutorial

http://www.eecs.tulane.edu/www/ Terry/OpenGL/Introduction.html

Tools:

Mesa3D website 3-d graphics library with OpenGL API http://mesa3d.sourceforge.net/

Xforms websidte http://bragg.phys.uwm.edu/xforms

Cygwin
Ports of the popular GNU development tools for Windows NT, 95, and 98.

http://sourceware.cygnus.com/cygwin/

Bloodshed Dev-C++
An IDE and C++ compiler for Win9x
environment
http://www.bloodshed.nu/

Computer Graphics What, Why, and How?

What?

 Computer modeling and rendering of real or arteficial objects and the interaction between them.

Why?

- Engineering design
- Presentation Graphics
- Computer Art
- Entertainment
- Education and Training
- Visualization
- **—** ...

How?

 Take 175, and other classes offered by us.

History of 3–D Graphics

Early 1960 at MIT

1st interactive graphics program
"sketchpad" by Ivan Sutherland

Sutherland joined the Harvard faculty with Denny Cohen
1st 3-d flight simulator

1968 Dave Evans and his students at Utah
Shaded image generation
Sutherland joined Utah faculty

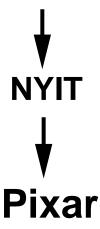
The roots of 3-d graphics developed

Photo-realistic graphics

Modeling

Real-time graphics

Photo-realistic Graphics


Local Illumination 1

1971, Henry Gouraud, Utah
1975, Bui Tong Phong, Utah
used smooth –shading tricks to
make the eye see smooth objects
modeled as polygonal surfaces

1974, Ed Catmull, Utah
1st picture of mathematically
smooth surfaces

1976, developed the concept of **Z-buffer**

also invented Alpha blending and texture mapping

Photo-realistic Graphics

Global Illumination I Early 1980, Turner Whitted Ray Tracing Reflections and directional effects of light Mid 1980, Don Greenberg. Cornell Radiosity diffuse effects of light Integrating ray tracing and radiosity Photo-realism **Exciting special effects**

Modeling Techniques

Structural modeling

Hierarchical modeling

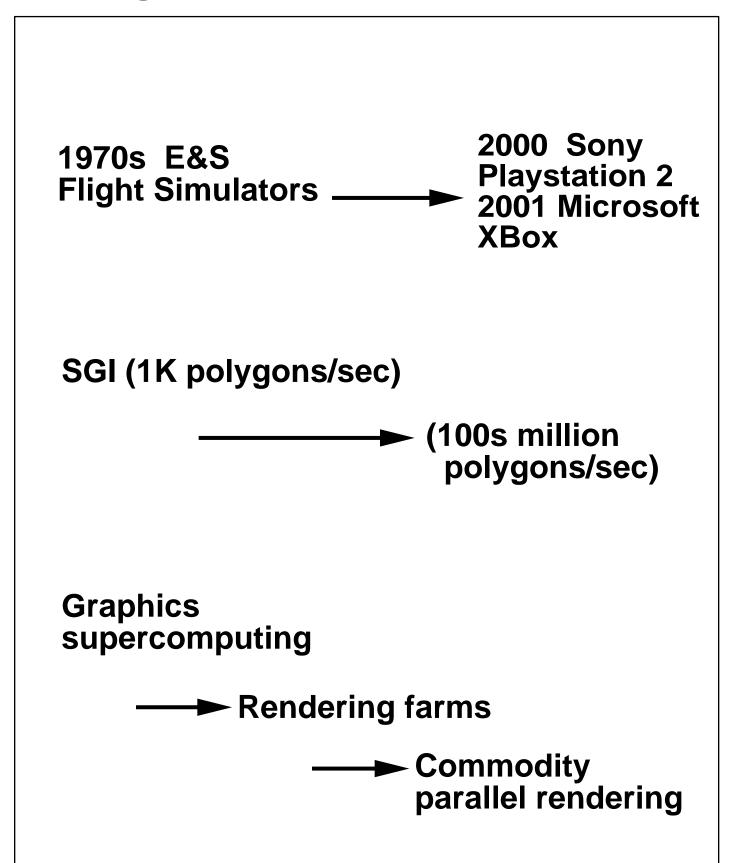
Curve and surface modeling

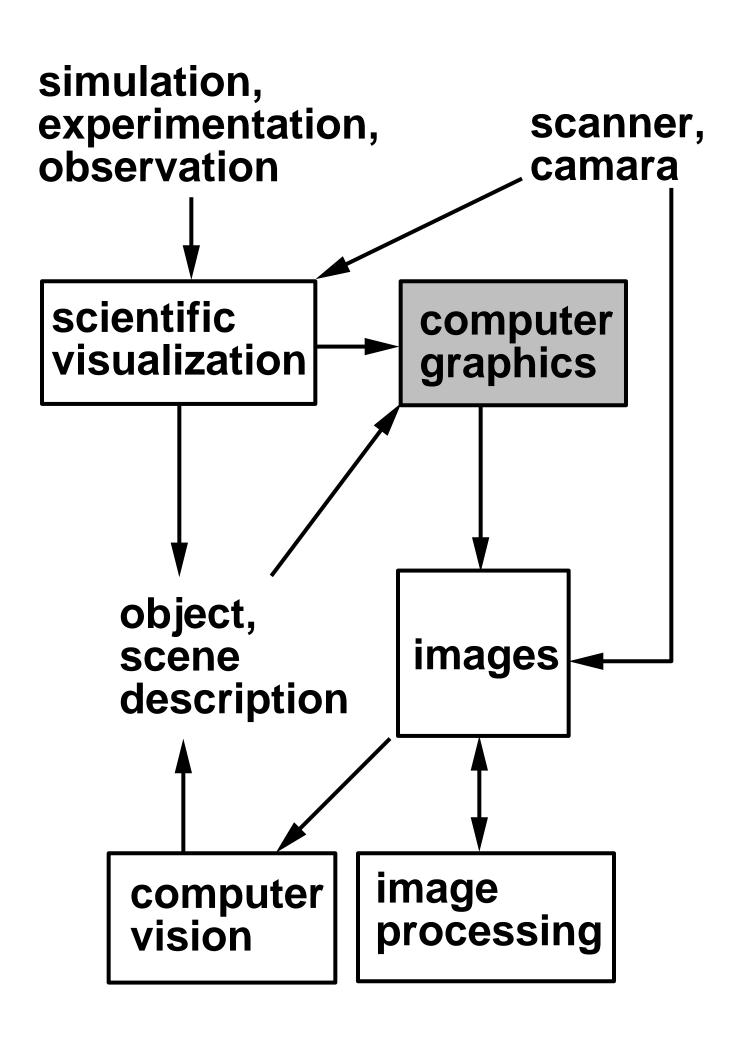
Solid modeling

Fractal modeling

Soft Object modeling

Grammar-based modeling


Procedural modeling


Texture modeling

Volume modeling

Image-based modeling

Realtime Graphics High Performance Graphics

What will you learn in this class?

- 1. Computer graphics jargons
- 2. Transformation geometry
- 3. Rasterization
- 4. 3-d viewing
- 5. Shading
- 6. Texture mapping
- 7. Antialiasing
- 8. Hierarchical modeling
- 9, Curves and surfaces
- 10. Overview of advanced techniques
 - Ray tracing
 - Radiosity
 - Animation
 - Scientific Visualization

— ...

Where to learn more?

275 Advanced Computer Graphics

177 Intro. to Scientific Visualization 277 Advanced Visualization 276 Advanced Volume Visualization

178 Intro. to Geometric Modeling 278 Advanced Geometric Modeling

Animation

Computational Geometry

Virtual Reality

163 Human Computer Interfaces

Research projects

Join us!!
UCD Visualization and Graphics
Research Group

http://graphics.cs.ucdavis.edu

Programming Assignments

- 1. 2-d rasterization (15%)
- 2. 3-d viewing (15%)
- 3. Local illumination (15%)
- 4. Texture mapping & antialiasing (20%)

grading:

- completeness & correctness (70pt)
- interface & interaction mechanism (15pt)
- program structure & documentation (15pt)
- additinal features (up to 10pt)

No assignment will be accepted if it is incomplete!

Midterm (25%)

Quizs (10%)

Sample Grades

Regrade:

regrades must be turned in no later than one week aftern the graded paper were made avialable

Turn-in Procedure

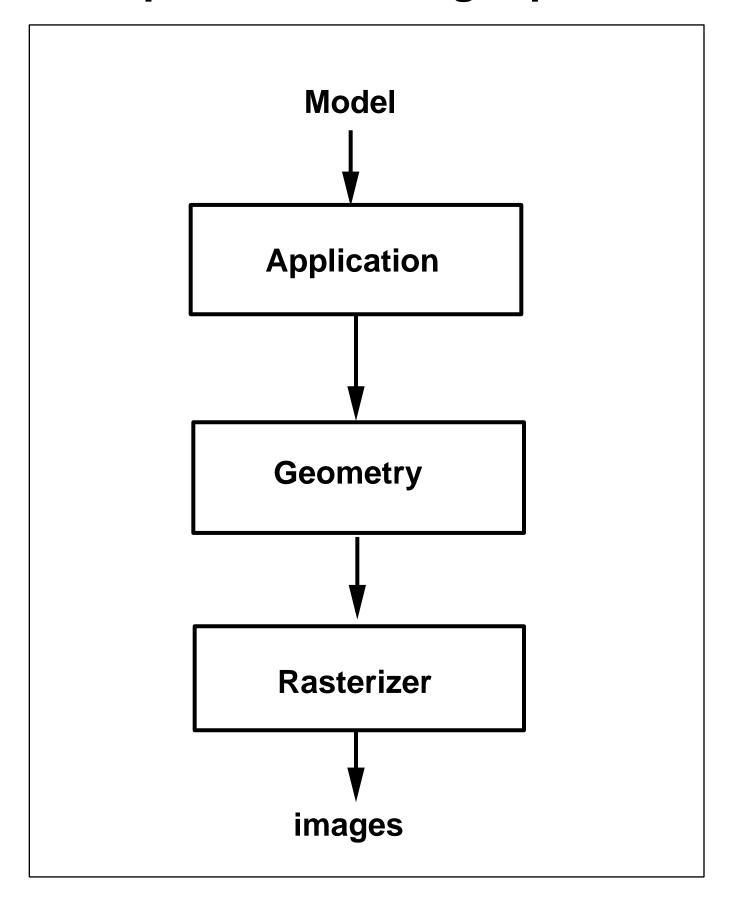
The assignments are to be e-mailed to the reader/TA, according to the following instructions:

A README and Makefile is required for ECS 175. The README should describe how to compile the programs (with the Makefile), how to operate the programs, and the output of the program that we should expect. No executable files, nor ".o" files should be sent to the reader.

Package your files for e-mail as follows.

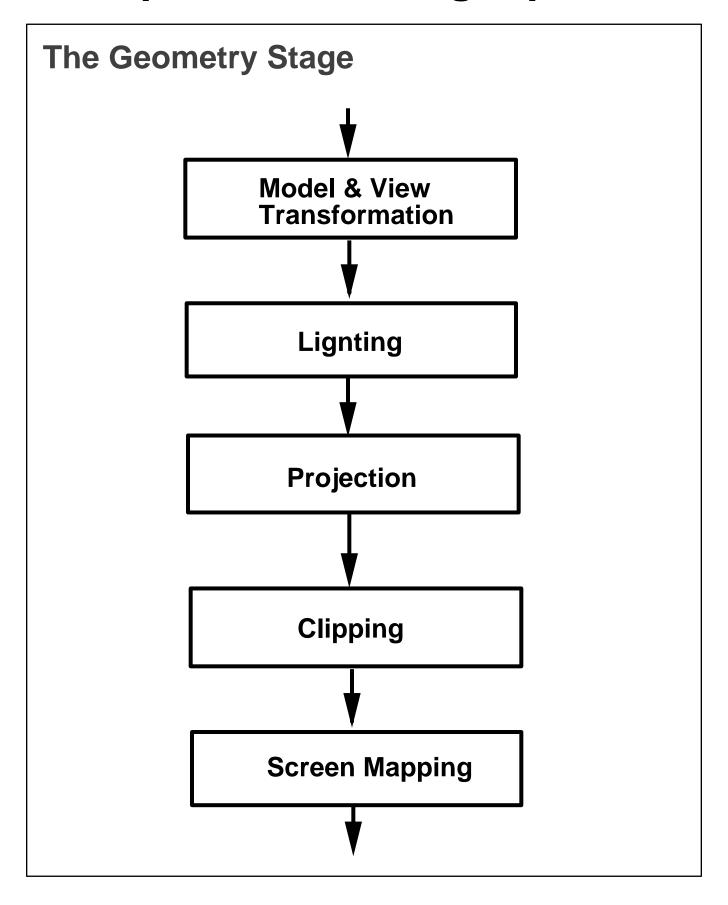
- a) put all your source, input, README, and Makefile files in a directory named unameN, where uname is your CS login name, and N is the assignment number. (example: if your login name is joe, and you are turning in assignment 3, you want to put the files under the directory joe3) Then do the following from the shell prompt (replace unameN with the appropriate username and assignment number):
- b) tar cvf uidN.tar uidN
- c) uuencode unameN.tar unameN.tar > unameN.uu
- d) mail cs175r@cs.ucdavis.edu < unameN.uu

Policies, Cheating and Plagiarism


Produce your own code!!!!

Last day to drop

April 27


Waiting List

The Application Stage

- Interact with the model, user inputs
- Decimation
- Hierarchical view frustum culling
- Collision detection
- Geometry morphing
- Implemented in software!

The Rasterizer Stage

- Rasterization or Scan Conversion
- Assign correct colors to the pixels
- Texturing
- Double buffer
- Z-buffer
- Transparency?
- Stencil buffer, A-buffer, ...
- Implemented in hardware!