Region Fill Algorithms

— Seed Fill Approaches

e Boundary Fill
* Flood Fill

Work at the pixel level. Suitable for interactive
painting applications

— Scanline Fill Approaches
Work at the polygon level

Better performance



Seed Fill Algorithms

— Connectedness
® A4-connected region:
From a given pixel, the region that you can

get to by a series of 4 way moves
(north, south, east, west)

L JOX
O

e 8-connected region:

From a given pixel, the region that you can
get to by a series of 8 way moves
(north, south, east, west, NE, NW, SE, SW)

000
L JOX
000



Boundary Fill Algorithm

— Start at a point inside a region
— Paint the interior outward toward the boundary
— The boundary is specified in a single color

— Fill the 4—connected or 8—connected region

void boundaryFill4 (int x, int y, int fill, int boundary)
{

Int current;

current = getPixel (Xx,y);

If (current !'= boundary && current !=fill) {
setColor(fill);
setPixel(x,y);

boundaryFill4 (x+1, v, fill, boundary);
boundaryFill4 (x-1, v, fill, boundary);
boundaryFill4(x, y+1, fill, boundary);
bonddaryFill4(x, y—1, fill, boundary);




4—connected fill is faster, but can have

problems:

L JOlO]
000




Flood Fill Algorithm

— Used when an area defined with multiple color
boundaries

— Start at a point inside a region

— Replace a specified interior color (old color)
with fill color

— Fill the 4—connected or 8—connected region
until all interior points being replaced

void floodFill4 (int x, inty, int fill, int oldColor)

If (getPixel(x,y) == oldColor) {
setColor(fill);
setPixel(X,y);

floodFill4 (x+1, vy, fill, oldColor);
floodFill4 (x-1, v, fill, oldColor);
floodFill4(x, y+1, fill, oldColor);
floodFill4(x, y—1, fill, oldColor);




