
Scanline Fill Algorithm

− Intersect scanline with polygon edges

− Fill between pairs of intersections

− Basic algorithm:

 For y = ymin to ymax

 1) intersect scanline y with each edge
 2) sort interesections by increasing x
 [p0,p1,p2,p3]
 3) fill pairwise (p0 −> p1, p2−> p3,)

p0 p1 p2 p3

ymin

ymax

However, we need to handle some special

cases and improve the performance

Special handling:

a) Make sure we only fill the interior pixels

 Define interior:

 For a given pair of intersectin points
 (Xi, Y), (Xj, Y)

 −> Fill ceiling(Xi) to floor(Xj)

 important when we have polygons adjacent
 to each other

b) Intersection has an integer X coordinate

 −> if Xi is integer, we define it to be interior
 −> if Xj is integer, we define it to be exterior
 (so don’t fill)

Special handling (cont’d)

c) Intersection is an edge end point

ymin

ymax

p0 p1 p2

Intersection points: (p0, p1, p2) ???

−> (p0,p1,p1,p2) so we can still fill pairwise

−> In fact, if we compute the intersection of the
 scanline with edge e1 and e2 separately,
 we will get the intersection point p1 twice.
 Keep both of the p1.

e1 e2

scanline

Special handling (cont’d)

c) Intersection is an edge end point (cont’d)

However, in this case we don’t want to count
p1 twice (p0,p1,p1,p2,p3), otherwise we will
fill pixels between p1 and p2, which is wrong

p0 p1 p2 p3
e1

e2

Special handling (cont’d)

c) Intersection is an edge end point (cont’d)

Rule:

If the intersection is the ymin of the edge’s
endpoint, count it. Otherwise, don’t.

ymin

ymax

p0 p1 p2

e1 e2

scanline Yes, count
p1 for both
e1 and e2

p0 p1 p2 p3
e1

e2

No, don’t count
p1 for the edge e2

