
Scanline Fill Algorithm

− Intersect scanline with polygon edges

− Fill between pairs of intersections 

− Basic algorithm: 

      For y = ymin to ymax 

        1) intersect scanline y with each edge 
        2) sort interesections by increasing x
            [p0,p1,p2,p3] 
        3) fill pairwise  (p0 −> p1, p2−> p3, ....) 
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However, we need to handle some special 

cases and improve the performance 

Special handling: 

a) Make sure we only fill the interior pixels 

    Define interior: 

    For a given pair of intersectin points 
    (Xi, Y), (Xj, Y)
    
     −> Fill ceiling(Xi) to floor(Xj)   
   
    important when we have polygons adjacent
    to each other   

b) Intersection has an integer X coordinate

    −> if Xi is integer, we define it to be interior
    −> if Xj is integer, we define it to be exterior 
         (so don’t fill)   



Special handling (cont’d)

c) Intersection is an edge end point
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Intersection points:  (p0, p1, p2) ???
                         
−> (p0,p1,p1,p2) so we can still fill pairwise

−> In fact, if we compute the intersection of the 
     scanline with edge e1 and e2 separately, 
     we will get the intersection point p1 twice. 
     Keep both of the p1. 
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Special handling (cont’d)

c) Intersection is an edge end point  (cont’d)

However, in this case we don’t want to count
p1 twice   (p0,p1,p1,p2,p3), otherwise we will
fill pixels between p1 and p2, which is wrong
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Special handling (cont’d)

c) Intersection is an edge end point  (cont’d)

Rule: 

If the intersection is the ymin of the edge’s 
endpoint, count it. Otherwise, don’t. 
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scanline Yes, count
p1 for both 
e1 and e2 
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No, don’t count 
p1 for the edge e2


