
Homogeneous Coordinates

A way of representing data

Representing n−d space by n+1 dimensions

1. representing big integer numbers

for example,

16bit word for an integer between
−32768 and 32767

How to represent a number > 32767 ?

a position [60000, y, z]

homogeneous coordindates:

 [30000, y/2, z/2, 1/2]

2. defining an object and its transformation

Homogeneous Coordinates (cont’d)

− distinguish between a vector and a point

− modify the position of the origin of the
 coordinate system

 there is no room in the 3x3 matrix to
 specify translation!

3x3
3
x
1

1x11x3

linear transformation translation

perspective
transformation

overall scaling

(rotation,
 scaling,
 reflection,
 shearing,
 ...)

− there is no unique homegeneous coordinate
 representation!
−

h

h = 0 ?

3D View Space

1. Culling/Back Face Elimination

Operations

Line of sight

N
Np

Visibility = Np N > 0

2. View Volume Clipping

3. Hidden Surface Removal

View Volume

back clip plane

front
clip plane

view plane
window

COP

(View Frustum)

back clip planefront clip plane
view plane

COP h

Perspective Projection

− foreshortening

− line width is not preserved, so are angles

− irreversible

COP

What happens if we move COP to
infinitely far away?

cop

projection plane

vrp

d

P(xv,yv,zv)
xs

zv

xv

cop

projection plane

vrp

d

P(xv,yv,zv)ys

zv

yv

xs
=

xv

d zv

ys
=

yv

d zv

3D Screen Space

xs = d
zv

xv ys =
d
zv

yv Non−linear!!

Expressed in Homogeneous Coordindates

X/w
Y/w
Z/w
w/w

xs
ys
zs
1

=

xs = d
zv

xv ys =
d
zv

yv

X xv
Y yv
Z zv
w 1

= M

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

M =where

X xv
Y yv
Z zv
w zv/d

=that is,

after perspective divide

xv/w
yv/w
 d
 1

=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

M =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

M =

For parallel projection:

For perspective projection:

xs = xv
ys = yv
zs = 0 (with projection plan at z=0)

P’ = Mproj Mview P

An overall transformatin from World to Screen
space can be expressed as:

View Volume and Depth

xs = d
zv

xv ys =
d

zv

yv

COP h

d

hh

(−1 < xs, ys < 1)

zs = ?

= f
f − d

1 − (d/zv)

f

w = zv

d/h 0 0 0
0 d/h 0 0
0 0 f/(f−d) −df/(f−d)
0 0 1 0

M =

xs = d
xv

h

ys = d
yv

h
Zs = fzv/(f−d) − df(f−d)

w = zv

proj

 model−view
 maxtrix

projection
 matrix

perspective
 division

 viewport
transformation

Vertices

Stages of Vertex Transformation

view coordinates

clip coordinates

normalized device
coordinates

window coordinates

Clipping

1. Point clipping
2. Line segment clipping
3. Polygon clipping
4. Clipping in three dimensions

Point Clipping

xmin < x < xmax
ymin < y < ymax

(xmin, ymin)

(xmax,ymax)

Otherwise, do not draw the point

Line Clipping

A

B

C

D

E

Brute Force Line Clipping

Compute intersections of line with every
window boundary −> expensive

clip window

Cohen−Sutherland Algorithm

− try to avoid intersection calculations as much
 as possible
− based on calculation of binary region codes
 for each end point of the line

0000

0100

1000 1010

0010

0110

1001

0001

0101

bit 1: left edge
bit 2: right edge
bit 3: bottom edge
bit 4: top edge

bit 1

Calculation of region codes:

bit 1 = 1 if x < xmin
bit 2 = 1 if x > xmax
bit 3 = 1 if y < ymin
bit 4 = 1 if y > ymax

Trivial accept or reject:

if (code (P0) | code(P1)) = 0 −> accept

if (code (P0) & code(P1)) !=0 −> reject

A

C
B D

E

(e.g., C)

(e.g., E)

bitwise AND

A

C
B D

E

E 0010 0010

C 0000 0000

B 0001 1000

A 0001 1000

D 0000 0010

Code(P0)&Code(P1) = 0

Code(P0)&Code(P1) = 0

Code(P0) = Code(P1) = 0

Code(P0) =0, Code(P1) = 0; or vice versa

Cohen−Sutherland Algorithm (cont’d)

Algorithm:

1. Compute the binary region code for P0 and P1
2. Loop

 − Test for trivial reject or accept (exit?)

 − If (code(P0)!=0 and code(P1)=0)

 One point is inside and the other is outside.
 The line must be shortened.
 One or two intersections must be computed.
 else
 if (code(P0)&code(P1)=0)

 Both endpoints are outside.
 Intersect with one of the sides of the window,
 and check the code of the resulting point

A

C
B D

E

(A,B)

(D)

(C,E)

Liang−Barsky Line Clipping

− for parametric lines

− clip a 2d line against to a rectangle
 or an arbitrary convex polygon in the plane

− can be generalized to 3d

x = (1−u)x1 + ux2
y = (1−u)y1 + uy2 where 0 < u < 1

x = x1 + udx
y = y1 + udy

xmin < x1 + udx < xmax
ymin < y1 + udy < ymax

upk < qk for k=1,2,3,4
each of the 4 inequalities can be expressed as

or

where dx=x2−x1, dy=y2−y1

Parametric equation of a line:

where p1 = −dx, q1 = x1 − xmin
 p2 = dx, q2 = xmax − x1
 p3 = −dy, q3 = y1 − ymin
 p4 = dy, q4 = ymax − y1

 p1 = −dx, q1 = x1 − xmin
 p2 = dx, q2 = xmax − x1
 p3 = −dy, q3 = y1 − ymin
 p4 = dy, q4 = ymax − y1

Liang−Barsky Line Clipping (cont’d)

pk = 0

qk < 0 the line is completely outside
 the boundary

the line is parallel to one of the
clipping boundaries

q1<0
p1=0

1 2

3

4

q2>0
p4>0

pk > 0

qk > 0 the line is inside the parallel clipping
 boundary

the line proceeds from the inside
to the outside

.....

Sutherland−Hodgeman Polygon Clipping

− clip the polygon to each of the
 window boundaries in succession
− edge and vertex defintions of the
 polygon are updated accordingly

Polygon Clipping

The output of a polygon clipper should be a
sequence of vertices that defines the clipped
polygon boundaries

4 cases when processing vertices in sequence:

1. out −> in : save intersection point and
 current point
2. in −> in : save current point
3. in −> out : save intersection point
4. out −> out : save none

v1

v2

v3
v2’

v3’v2"

v1’

Left Right Bottom Top

v1 v1 v1

v2 v1’ v1’

v3 v2’, v3 v2’, v3 v2", v2’ v2", v2’

v3 v3

v3’ v3’

Concave case:

clipped

tessellation

