Homogeneous Coordinates

A way of representing data

Representing n–d space by n+1 dimensions

1. representing big integer numbers

for example,

16bit word for an integer between –32768 and 32767

How to represent a number > 32767 ?

a position [60000, y, z]

homogeneous coordindates:

[30000, y/2, z/2, 1/2]

Homogeneous Coordinates (cont'd)

- 2. defining an object and its transformation
 - distinguish between a vector and a point
 - modify the position of the origin of the coordinate system

there is no room in the 3x3 matrix to specify translation!

 there is no unique homegeneous coordinate representation!

3D View Space

Operations

1. Culling/Back Face Elimination

2. View Volume Clipping

3. Hidden Surface Removal

View Volume (View Frustum)

Perspective Projection

- foreshortening
- line width is not preserved, so are angles
- irreversible

What happens if we move COP to infinitely far away?

3D Screen Space

$$x_s = \frac{d}{z_v} x_v$$
 $y_s = \frac{d}{z_v} y_v$

Expressed in Homogeneous Coordindates

$$\begin{bmatrix} X \\ Y \\ Z \\ w \end{bmatrix} = M \begin{bmatrix} x_v \\ y_v \\ z_v \\ 1 \end{bmatrix} \quad \text{where} \quad M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix}$$

that is,
$$\begin{bmatrix} X \\ Y \\ Z \\ w \end{bmatrix} = \begin{bmatrix} x_v \\ y_v \\ z_v \\ z_v/d \end{bmatrix}$$

after perspective divide

For perspective projection:

$$\mathsf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix}$$

For parallel projection:

$$\mathsf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$x_s = x_v$$

 $y_s = y_v$
 $z_s = 0$ (with projection plan at z=0)

An overall transformatin from World to Screen space can be expressed as:

P' = Mproj Mview P

View Volume and **Depth**

W = Zv

Stages of Vertex Transformation

<u>Clipping</u>

- 1. Point clipping
- 2. Line segment clipping
- 3. Polygon clipping
- 4. Clipping in three dimensions

Compute intersections of line with every window boundary –> expensive

Cohen–Sutherland Algorithm

- try to avoid intersection calculations as much as possible
- based on calculation of binary region codes for each end point of the line

Calculation of region codes:

bit 1 = 1 if x < xminbit 2 = 1 if x > xmaxbit 3 = 1 if y < yminbit 4 = 1 if y > ymax

Trivial accept or reject:

Cohen-Sutherland Algorithm (cont'd)

Algorithm:

- 1. Compute the binary region code for P0 and P1 2. Loop
 - Test for trivial reject or accept (exit?) (C,E)
 - If (code(P0)!=0 and code(P1)=0)

One point is inside and the other is outside. The line must be shortened. (D) One or two intersections must be computed. else if (code(P0)&code(P1)=0)

Both endpoints are outside. (A,B) Intersect with one of the sides of the window, and check the code of the resulting point Liang–Barsky Line Clipping

- for parametric lines
- clip a 2d line against to a rectangle or an arbitrary convex polygon in the plane
- can be generalized to 3d

```
Parametric equation of a line:
x = (1 - u)x_1 + ux_2
y = (1 - u)y_1 + uy_2 where 0 \le u \le 1
or
X = X1 + UdX
y = y_1 + u dy where dx = x_2 - x_1, dy = y_2 - y_1
Xmin \leq X1 + UdX \leq Xmax
Ymin \leq Y1 + Udy \leq Ymax
each of the 4 inequalities can be expressed as
u_{\text{pk}} \le q_k for k=1,2,3,4
where p_1 = -dx, q_1 = x_1 - x_{min}
        p_2 = dx, q_2 = x_{max} - x_1
        p_3 = -dy, q_3 = y_1 - y_{min}
        p_4 = dy, q_4 = y_{max} - y_1
```

Liang–Barsky Line Clipping (cont'd)

- pk = 0 the line is parallel to one of the clipping boundaries
- qk < 0 the line is completely outside the boundary
- $p_k > 0$ the line proceeds from the inside to the outside
- $q_k \ge 0$ the line is inside the parallel clipping boundary

Polygon Clipping

The output of a polygon clipper should be a sequence of vertices that defines the clipped polygon boundaries

Sutherland–Hodgeman Polygon Clipping

4 cases when processing vertices in sequence:

- 1. out -> in : save intersection point and current point
- 2. in -> in : save current point
- 3. in -> out : save intersection point
- 4. out -> out : save none

► Left \rightarrow Right \rightarrow Bottom \rightarrow Top \rightarrow v1 v1 v1 v2 v1' v1' v3 v2', v3 v2', v3 v2'', v2'' v2'', v2'' v3 v3 v2', v3 v2'', v3 v2'', v2'' v2'', v2'' v3 v3 v3

Concave case:

