Homogeneous Coordinates

A way of representing data

Representing n—d space by n+1 dimensions
1. representing big integer numbers

for example,

16Dbit word for an integer between
—32768 and 32767

How to represent a number > 32767 ?

a position [ 60000, vy, z |
homogeneous coordindates:

[ 30000, y/2, z/2, 1/2 ]



Homogeneous Coordinates (cont’d)

2. defining an object and its transformation

— distinguish between a vector and a point

— modify the position of the origin of the
coordinate system

there is no room in the 3x3 matrix to
specify translation!

linear transformation translation
(rotation, _ e
scaling, K
reflection, 3
shearing, 3x3 - X
) 1

1x3 - 1x1 "
perspective / K overall scaling
transformation

— there is no unigue homegeneous coordinate
representation!

“~h=07?



3D View Space

Operations

1. Culling/Back Face Elimination

/

Line of sight
-

-

N

Visibility = NpeN >0
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2. View Volume Clipping

3. Hidden Surface Removal




View Volume (View Frustum)
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clip plan

view pla
window

back clip plane

view plane
front clip plane back clip plane



Perspective Projection

— foreshortening

— line width is not preserved, so are angles

— Irreversible
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What happens if we move COP to

Infinitely far away?
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3D Screen Space

projection plane
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Zv
Xs
P(Xv,yv,zv)
v Xv
pyv Vs P(Xv,yv,Zv)
d
projection plane
Xs _ Xv Ys _ yv
d Zv d Zv
Xs = d—XV Ys = d—yv Non-linear!!
Zv Zv



d _d
XS = == Xv ys = —Yv
YAY, YAY,

Expressed in Homogeneous Coordindates

X Xv 1 00
Y yv 010
Z:M yAY, where M:OOl
w 1 0O 01/
X Xv
. Y Yv
that is, 7| = -
W zvld

after perspective divide

I OOOOI

Xs X/w Xv/W

ys| _ |Yw]| _ [|y/w
Zs | = |Z/w - d

1 w/iw 1




For perspective projection:

100 O

O 10 O

M=o 01 o

O 01/ d O

For parallel projection:

100 O

O 10 O

M=o 00 0

O 00 1
Xs = Xv
ys = Yv

zs =0 (with projection plan at z=0)

An overall transformatin from World to Screen
space can be expressed as:

P’ = Mproj Mview P




View Volume and Depth

Zs = 7 W = Zv
. 1-(d/zv)
f —d
_ - . d
dh 0 0 0 | STH
M- 0 dh O 0 9
ro'_ O O f/(f_d) —df/(f—d) =
o o0 1 o | T

- - 75 =fzvl(f-d) - df(f-d)

W = Zv



Stages of Vertex Transformation

Vertices

model—-view
maxtrix

¢ view coordinates

projection
matrix

clip coordinates

Y

perspective
division

normalized device
coordinates

viewport
transformation

¢ window coordinates



Clippin

1. Point clipping

2. Line segment clipping

3. Polygon clipping

4. Clipping In three dimensions

Point Clipping

clip window

Xmin < X < xmax
ymin <y < ymax

Otherwise, do not draw the point
Line Clipping

Brute Force Line Clipping

Compute intersections of line with every

window boundary —> expensive

(xmax,ymax)
®

(xmin, ymin)




Cohen-Sutherland Algorithm

— try to avoid intersection calculations as much
as possible

— based on calculation of binary region codes
for each end point of the line

1001 | 1000 1010 bit 1: left edge

bit 2: right edge
bit 3: bottom edge
bit 4: top edge

0001 0000 0010

0101| 0100 0110

bit 1
Calculation of region codes:

bitl=1 if X <xmin s

bit2 =1 if x> xmax V /D
bit3=1 ify <ymin

bitd=1 ify>ymax 7~ V 4 /

Trivial accept or reject:

If (code (PO) | code(P1)) =0 —> accept (e.g., C)
if (code (P0O) & code(P1)) '=0 —> reject (e.g., E)

bitwise AND
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Code(P0)&Code(P1) £ 0

E 0010 0010
Code(P0O) = Code(P1) =0
C 0000 0000

Code(P0)&Code(P1) =0
B 0001 1000
A 0001 1000
Code(P0) #0, Code(P1) = 0; or vice versa

D 0000 0010



Cohen-Sutherland Algorithm (cont’'d)
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Algorithm:

1. Compute the binary region code for PO and P1
2. Loop

— Test for trivial reject or accept (exit?) (C,E)
— If (code(P0)!=0 and code(P1)=0 )

One point is inside and the other is outside.
The line must be shortened. (D)
One or two Iintersections must be computed.
else
if (code(P0)&code(P1)=0 )

Both endpoints are outside. (A,B)
Intersect with one of the sides of the window,
and check the code of the resulting point




Liang—Barsky Line Clipping

— for parametric lines

— clip a 2d line against to a rectangle
or an arbitrary convex polygon in the plane

— can be generalized to 3d

Parametric equation of a line:

X = (1-u)x1 + ux2

y=(1-u)yr+uy2 where O<u<l

or

X = X1 + udx

y=y1+udy where dx=x2—x1, dy=y2-y1

Xmin < X1 + udX < Xmax
ymin £ y1 + udy < ymax

each of the 4 inequalities can be expressed as
upk < gk fork=1,2,3,4

where p1 = —dX, g1 = X1 — Xmin
P2 =dX, (2= Xmax — X1
P3 = —dy, g3 =Yy1 — Ymin
p4=dy, g4 =Ymax—YVy1




Liang—Barsky Line Clipping (cont'd)
P1 = —dX, g1 = X1 — Xmin
P2 =dX, (2= Xmax — X1

P3 = —dy, g3 =Yyl — Ymin
p4=dy, QJ4=Ymax—VYi1

pk=0 the line is parallel to one of the
clipping boundaries

gk <0 the line is completely outside
the boundary

Pk >0 the line proceeds from the inside
to the outside

gk >0 the line is inside the parallel clipping
boundary




Polygon Clipping

The output of a polygon clipper should be a
sequence of vertices that defines the clipped
polygon boundaries

Sutherland—Hodgeman Polygon Clipping

— clip the polygon to each of the
window boundaries in succession

— edge and vertex defintions of the
polygon are updated accordingly

i




4 cases when processing vertices in sequence:

1. out —> In : save intersection point and
current point

2.1n —>In : save current point

3. In —> out : save intersection point

4. out —> out : save none
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Concave case:

clipped

tessellation
-




