
Homework #4 
 
Problem One (2.1.2) 
Determine which characteristics o  an algorithm the following procedures have and which they lack. f
a) procedure double(n: positive integer) 
 while n > 0 
  n := 2n 
Since n is a positive number, the while loop in this algorithm will run forever, therefore this algorithm 
is not finite. 
 
b) procedure divide(n: positive integer) 
 while n >= 0 
 begin 
  m := 1/n 
  n := n – 1 
 end 
Since algorithm is not effective since the line “m := 1/n” cannot be executed when n=0, which will 
eventually be the case. It can also be argued that this algorithm is not finite: if a line in the algorithm 
cannot be completed, the algorithm as a whole cannot be completed. It can also be argued that the 
algorithm lacks correctness since the “m := 1/n” line will also keep the algorithm from arriving at a 
correct answer. 
 
c) procedure sum(n: positive integer) 
 sum := 0 
 while j < 10 
  sum := sum + j 
The value of j is never set in the algorithm, so the algorithm lacks definiteness. Without knowing the 
initial value of j, the behavior of this algorithm is undetermined.  
 
d) procedure choose(a, b: integers) 
 x := either a or b 
The only line in the algorithm is ambiguous, how does the algorithm decide which value (a or b) to 
assign to x? Without knowing how this decision is made, the behavior of this algorithm is 
undetermined; therefore, this algorithm lacks definiteness. 
 
Problem Two (2.1.16) 
Describe an algorithm for finding the smallest integer in a finite sequence of natural numbers. 

procedure find_min(a0, a1, …, an: positive integer) 
 min := a0 

for j := 1 to n 
 if (min > aj) then :min = aj 

 
Problem Three (2.1.18) 



Describe an algorithm that lo ates the last o urrence of the smallest element in a finite list of integers, 
where the integers in the list are not necessarily distinct. 

c cc

procedure find_min(a0, a1, …, an: positive integer) 
 min := a0 
 index := 0  

for j := 1 to n 
 if (min >= aj)  

then  
begin 

min := aj 
index := j 

  end 
 
Problem Four (2.2.2) 
Determine whether each of these functions is O(x2) 
a) f(x) = 17x + 11  Yes, the determining factor in f(x) is less than or equal to x2. 
b) f(x) = x2 + 1000 Yes, the determining factor in f(x) is x2 which is equal to x2. 
c) f(x) = xlog(x) Yes, the determining factor in f(x) is xlog(x) which is less than x2. 
d) f(x) = x4/2  No, the determining factor in f(x) is x4 which is greater than x2. 
e) f(x) = 2x  No, the determining factor in f(x) is 2x which is greater than x2. 
f) f(x) = ⌊x⌋∙⌈x⌉ Yes, the determining factor in f(x) is approximately x2 which is equal to x2. 
 
Problem Five (2.2.6) 
Show that (x3 + 2x)/(2x + 1) is O(x2) 
 
Let: f(x) = (x3 + 2x)/(2x + 1) <  (x3 + 2x)/2x = (½)x2 + 1 f2(x) = (½)x2 + 1 g(x) = x2 
 
Since f(x) < f2(x), if f2(x) = O(g(x)) then it must also be true that f(x) = O(g(x)). 
If f2(x) = O(g(x)), then |f2(x)| ≤ C*|g(x)| when n > k for some integer value C and some real number k. 
 
Our building blocks are: x2 
 
(½)x2 + 1 ≤? _________ 
(½)x2 + 1 ≤? x2  (½)≤ 1, is always true, therefore,  (½)x2 ≤ x2 is true for all x. 
(½)x2 + 1 ≤? x2 + x2  1 ≤ x2, is true for all x ≠ 0. 
(½)x2 + 1 ≤ 2x2   
 
Therefore, let C=2 and k=1, with these values “|f2(x)| ≤ C*|g(x)| when n > k” is a true statement. Since 
f2(x) = O(g(x)), it necessarily follows that f(x) = O(g(x)) as well. 
 
 
Problem Six (2.2.18) 
Let k be a positive integer. Show that 1k + 2k + … + nk is O(nk+1) 
 



1k + 2k + … + nk  < nk + nk + … + nk  = n*(nk) = nk+1 
 
Since the sum (nk + nk + … + nk) is greater than the sum (1k + 2k + … + nk) and it is clearly O(nk+1) 
since the sum is, exactly, nk+1, it necessarily follows that the smaller sum of (1k + 2k + … + nk) is also 
O(nk+1) . 
 
 
Problem Seven (2.2.24) 
Note that the solutions for this problem demonstrate that there are two methods for solving these 
types of problems: one that is systematic and more “math-heavy” and one that that is fluid and relies 
more on English. Some of the solutions use the systematic method and some use the English method. 
The point is that both are valid methods for solving the problem. 
 
a) Show that (3x + 7) is θ(x) 
Let f = 3x + 7  and  g= x 
f = O(g)         g = O(f) 
3x + 7 ≤? 3x  3 ≤ 3 is always true so 3x≤3x is true for all x  x ≤? 3x  x≤3x is true for all x>0. 
3x + 7 ≤? 3x + x  7 ≤ x is true when x ≥ 7    x ≤ 3x + 7 0≤7 is always true 
3x + 7 ≤ 4x   
Therefore, let C1=4, k1=7, C2=1, and k2=7. With these values “|f(x)| ≤ C1*|g(x)| when n > k1” and “|g(x)| ≤ C2*|f(x)| when n > k2” 
are true statements and f = O(g) and g = O(f). There fore, f = θ(g). 

 
b) Show that (2x2 + x – 7) is θ(x2) 
Let f = 2x2 + x – 7 and  g= x2 
f = O(g)         g = O(f) 
2x2 + x - 7 ≤? 2x2  2 ≤ 2 is always true so 2x2≤2x2 is true for all x x2 ≤? 2x2  x2≤2x2 is true for all x. 
2x2 + x - 7 ≤? 2x2 + x2 1 ≤ x is true for x≥1so x≤x2 is true for x≥1  x2 ≤ 2x2 + x – 7 0≤(x-7) for x≥7 
2x2 + x - 7 ≤ 3x2  -7 < 0 is always true, so the inequality is true 
   
Therefore, let C1=3, k1=1, C2=1, and k2=7. With these values “|f(x)| ≤ C1*|g(x)| when n > k1” and “|g(x)| ≤ C2*|f(x)| when n > k2” 
are true statements and f = O(g) and g = O(f). There fore, f = θ(g). 

 
c) Show that floor(x + ½) is θ(x) 
Let f = floor(x + ½) and  g= x 
Notice if x has a fractional component less than ½, floor(x + ½) = x, and if x has a fractional 
component greater than or equal to ½ then floor(x + ½) = x+1, in either case, floor(x + ½) is strictly 
less than 2x for any positive value of x. So, let C=2 and k=1 and we have that f = O(g). By similar 
reasoning, x is inherently less than or equal  floor(x + ½) for any positive value of x. So, let C=1 and 
k=1 and we have that g = O(f). Since f=O(g) and g=O(f), it is also true that f = θ(g). 
 
d) Show that log2(x2 + 1) is θ(log2(x)) 
Let f = log2(x2 +1) and  g= log2(x) 
Notice that log2(x2 +1) is strictly less than log2(2x2) for any positive value of x. log2(2x2) = log2(2) + 
log2(x2) = 1 + 2log2(x). This value is definitely less than 3log2(x). So, let C=3 and k=1 and we have that 
log(2x2)= O(g), therefore it must also be the case that f = O(g) as well. Also, since x is inherently less 
than or equal  (x2 + 1) simply let C=1 and k=1 and we have that g = O(f). Since f=O(g) and g=O(f), it is 
also true that f = θ(g). 



 
e) Show that log10(x) is θ(log2(x)) 
It is known fact of logs that a log of one base can be converted to the log of another base, therefore, 
since the parameters of the log are equal, simply let C1=1/log2(10) and C2=1/log10(2). These values of 
C1 and C2 will, in fact, make the to logs equal, therefore it must be that they are theta of each other as 
well. 
 
Problem Eight (2.3.8) 
There is a more efficient algorithm (in terms of the number of multiplications and additions used) for 
evaluating polynomials than the conventional algorithm described in the previous exercise. It is called 
Horner’s method. This pseudocode shows how to use this method to find the value of anxn + an-1xn-1 
+ … + a1x + a0 at x = c. 
 procedure Horner(c, a0, a1, a2, … an: real numbers) 
 y := an 
 for j := 1 to n 
  y := y * c + an-j 
 {y = ancn + an-1cn-1 + … + a1c + a0} 
 
a) Evaluate 3x2 + x + 1 at x=2 by working through every step in the algorithm. 
On the initial call to the algorithm: 
n = 2  c=2  a0 = 1  a1 = 1  a2 = 3  y = a2 = 3 
first iteration (j=1)  second iteration (j=2)   FINAL ANSWER 
y = y*c + an-1    y = y*c + an-2    y = 15 
y = 3*2 + a1   y = 7*2 + a0 

y = 3*2 + 1   y = 7*2 + 1 
y = 7    y = 15 
 
check: 3(22) + 2 + 1 = (3*4) + 2 + 1 = 12 + 2 + 1 = 15 
 
b) Exactly how many multiplications and additions are used by this algorithm to evaluate a polynomial 
of degree n at x=c  (Do not count additions u ed to inc ement the loop variable). ? s r
- The loop iterates n times 
- In one iteration of the loop: 
 1 multiplication is done 
 1 addition is done 
- The total number of multiplications and additions done is n*(1+1) = 2n operations total (n additions 
and n multiplications). 
 
Problem Nine (2.3.10) 
How much time does an algorithm take to solve a problem of size n if this algorithm uses 2n2 + 2n bit 
operations, each requiring 10-9 seconds, with these values of n? 
a) 10  1.224 x 10-6 seconds 
b) 20  ≈1.05 x 10-3 seconds 
c) 50  ≈1.13 x 106 seconds (roughly 13 days non-stop) 



d) 100  ≈1.27 x 1021 seconds (roughly 4 x 1013 years, non-stop) 
 
Problem Ten (2.3.12) 
Determine the least number of comparisons, or best-case performance, 
a) required to find the maximum of a sequence of n integers, using the following algorithm: 
 procedure max(a, a2, … , an: integers) 
 max := a1 
 for j:=2 to n 
  if max < aj then max := aj 
Since the algorithm simply runs through the list of numbers completely, it will always do exactly n-1 
useful comparisons, therefore the best case performance is Ω(n) where n is the size of the list. 
b) used to locate an element in a list of n terms with a linear search. 
In the best case, the item we are looking for is the very first element in the list and we find it 
immediately. This means the best case running time of the algorithm is Ω(1). 
 
c) used to locate an element in a list of n terms using a binary search. 
Note that for binary search elements are assumed to be ordered in some way. Roughly speaking, a 
binary search divides the list in half every time the item is not found and discards the half known to not 
contain the element. For example, if the elements are sorted in ascending order and we are looking for 
element ‘5’, if we pick an element, and it turns out to be ‘9’, we know anything that comes after this 
element cannot be 5 (since 5 <9); so we ignore that half of the list. Since we are dividing the list in half 
each time, the number of needed steps will be Ω(log2(n)) where n is the size of the list. 


