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Abstract 

This paper presents a divide-and-conquer ray-traced vol- 
ume rendering algorithm and a parallel image compositing 
method, along with their implementation and performance 
on the (:onnection Machine (:M-5, and networked worksta- 
tions. This algorithm distributes both the da ta  and the 
computations to individual processing units to  achieve fast, 
high-quality rendering of high-resolution data. The volume 
data, once distributed, is left intact. The  processing nodes 
perform local raytracing of their subvolume concurrently. 
No communication between processing units is needed dur- 
ing this locally ray-tracing process. A subimage is generated 
by each processing unit and the final image is obtained by 
cornpositing subimages in the proper order, which can be 
determined a priori. Test results on the CM-5 and a group 
of networked workstations demonstrate the practicality of 
our rendering algorithm and conipositing method. 

Key Words: Scientific Visualization, Volume Rendering, Net- 
work Coiiiputing, Massively Parallel Processing. 

1 Introduction 
Existing volume rendering methods, though capable of mak- 
ing very effective visualizations, are very computationally 
intensive and therefore fail to  achieve interactive rendering 
rates for large da ta  sets. Our work was motivated by the 
following observations: First, volume da ta  sets can be quite 
large, often too large for a single workstation to hold in 
memory a t  once. Moreover, high quality volume render- 
ings norinally take minutes to hours on a single processor 
machine and the rendering time usually grows linearly with 
the data  size. To achieve interactive rendering rates, users 
often must reduce the original data ,  which produces poor 
visualization results. Second, many acceleration techniques 
and data  exploration techniques for volume rendering trade 
nieniory for time. Third, motion is one of the most effective 
visualization techniques. An animation sequence of volume 
visualization normally takes hours to days to  generate. Fi- 
nally, we notice the availability of hundreds of high perfor- 
mance workstations in our computing environment, which 
are frequently sitting idle for many hours a day. This lead 
us to consider ways to  distribute the increasing amount of 
data as well as the time-consuming rendering process to  the 
tremendous distributed computing resources available to us. 

In this paper, we describe the resulting parallel volume 
rendering algorithm and a image compositing method along 
with their implementations and performance on the CM-5 
and networked workstations. For a homogeneous computing 
environment, a computing environment with uniformly dis- 
tributed processing and memory units, this parallel volume 
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rendering algorithm evenly distributes da ta  to the comput- 
ing resources available. Each subvolume is then ray-traced 
locally and generates a partial image, without the need to 
communicate with other processing units. These partial im- 
ages are merged in the proper order through a new parallel 
compositing algorithm to achieve the correct final image. 
Our test results on both the homogeneous and heteroge- 
neous computing environments are promising, and expose 
different performance tuning issues for each environment. 

2 Related Work 

An increasing nuniber of parallel architectures and algo- 
rithms for volume rendering have been developed. The  ma- 
jor algorithmic strategy for parallelizing volume rendering 
is the divide-and-conquer paradigm. The volume rendering 
problem can be subdivided either in data  space or in irn- 
age space. While data-space subdivision assigns the compu- 
tation associated with particular subvolumes to  processors, 
image-space subdivision distributes the computation associ- 
ated with particular portions of the image space. Data-space 
subdivision is usually applied to a distributed-mernory par- 
allel computing environment. On the other hand, iniage- 
space subdivision is simple and efficient for shared-menlory 
multiprocessing. Hybrid methods are also feasible. 

Among the parallel architectures developed which are ca- 
pable of performing interactive volume rendering, the Pixel- 
Planes 5 system [5] is a heterogeneous multiprocessor graph- 
ics system using both M I M D  and SIMD parallelism. The 
hardware consists of multiple i86O-based Graphics Proces- 
sors, multiple SI M D pixel-processors arrays called Render- 
ers, and a conventional 1280 x 1024-pixel frame buffer, inter- 
connected by a five-gigabit ring network. In [22], variations 
of parallel volume rendering implemented on this system are 
presented. One approach similar to the idea we proposed 
earlier in [ll] and now elaborate in this paper, distributes 
data  as well as ray casting among separate Graphics Proces- 
sors and reconstructs the ray segments into coherent rays. 
Incorporating dynamic load balancing, lookup tables and 
progressive refinement, this approach can render shaded im- 
ages from 128 x 128 x56 volume data  a t  20 frames per second. 
In the following sections, we survey most recent research re- 
sults from other algorithmic approaches. 

2.1 Moritarii 
Montani e t  al. [13] propose a hybrid ray-traced method 
for running on distributed-memory parallel systems like a 
nCUBE, in which processing nodes are organized into a sei 
of clusters, each of them composed of the same number of 
nodes. The  image space is partitioned and a subset of pixels 
is assigned to each cluster, which will compute pixel values 
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independently. Data to  be visualized is replicated in each 
cluster, and is partitioned among the local memory of the 
cluster’s nodes. A static load balancing strategy based on 
the estimated work load of each processor is used to improve 
efficiency, and on average a twenty percent speedup in ren- 
dering time can be obtained. In addition, a mechanism for 
preventing deadlock is necessary to handle the dependency 
between processing nodes in the same cluster. The best ef- 
ficiency reported by the authors while using a single cluster 
of 128 nodes is 0.74. However, when increasing the number 
of clusters, the efficiency drops significantly. For example, 
using 16 clusters with 8 nodes per cluster, the efficiency re- 
ported is only 0.31.  

2.2 Nieh 
Nieh and Levoy [14] implement ray-traced volume render- 
ing on Stanford DASH Multiprocessors, a scalable shared- 
memory MIMD machine. Their method employs algorith- 
mic optimizations such as hierarchical opacity enumeration, 
early ray termination, and adaptive image sampling [9]. The 
shared-memory architecture providing a single address space 
allows straightforward implementations. The parallel al- 
gorithm distributes volume da ta  in an interleaved fashion 
among the local memories to avoid hot spotting. The  ray 
tracing computation is distributed among the processors by 
partitioning the image plane into contiguous blocks and each 
processor is statically assigned an image block. Each block 
is further divided into square image tiles for load balancing 
purposes. When a processor is done computing its block, 
instead of waiting, it steals tiles from a neighboring pro- 
cessor’s block to keep itself busy. Experiment results show 
this load balancing scheme cuts the variation of execution 
times across the 48 processors used by 90%. Currently, each 
processor in DASH is a 33 MHz MIPS R3000. Using all 
48 processors available, a 416x416-pixel image for a 2563 
data  set can be generated in subsections; for nonadaptive 
sampling, the speedup over uniprocessor rendering is 40. 

2.3 Schriider 
Schroder and Stoll [18] develop a data-parallel ray-traced 
volume rendering algorithm that  exploits ray parallelism. 
They describe the ray tracing steps as discrete line drawing. 
This algorithm is both more memory efficient and less com- 
munications bound than an algorithm introduced earlier by 
the first author [17]. They have implemented this algorithm 
on both the Connection Machine CM-2 and the Princeton 
Engine, which consists of 2048 16-bit DSP processors ar- 
ranged in a ring. To allow for a SIMD implementation, rays 
initially enter only the front-most face of the volume and 
proceed in lock step. Consequently, each sample has the 
same local coordinates in a voxel. When rays exit the far 
face, a toroidal shift of the data  is performed and new rays 
are initialized to enter the visible side face of the volume. As 
a result, the rotation angle selected influences about 10% of 
the runtime of the algorithm. Tests using a 1283-voxel data  
set on both the CM2 from 8K to 32K processors in size 
and the Princeton Engine of 1024 processors show subsec- 
ond rendering time. 

2.4 Vhzina 
VCzina, et al. [all  implement a multi-pass algorithm similar 
to Schroder’s on MP-1, which is a massively data-parallel 
SIMD computer with a 2D array of processing elements 
(PES). Their algorithm, based on work done by Catmull and 

Smith [a], and Hanrahan [7 ] ,  converts both 3 D  rotation and 
perspective transformations into only four 1 D shear/scale 
passes, compared to Schroder’s eight-pass rotation algorithm 
composed exclusively of shear operations. Volume transpo- 
sition is then performed to localize da ta  access. MP-1 pro- 
vides a global router which allows efficient moving of data  
between PES. On a I6K-PE MP-1, a 128x128-pixel volume 
rendered image of a 1283-voxel data  can be generated in sub- 
seconds. However, it seems that  if either a smaller number 
of PES or larger data  sets are used, the data  transposition 
time can degrade the performance significantly. 

3 A Divide-and-Conquer Algorithm 

The idea behind our algorithm is very simple: divide the 
data  up into smaller subvolumes distributed to multiple 
computers, render them separately and locally, and combine 
the resulting images in an incremental fashion. While mul- 
tiple computers are available, the memory demands on each 
computer are modest since each computer need only hold a 
subset of the total da ta  set. This approach can be used to  
render high resolution da ta  sets in an environment, for exan-  
ple, with many midrange workstations (e.g. equipped with 
16MB memory) on a local area network. Many computing 
environments have an abundance of such workstations which 
could be harnessed for volume rendering provided that  the 
memory usage on each machine is reasonable. 

3.1 Ray-Traced Volume Rendering 
The starting point of our algorithm is the volume ray-tracing 
technique presented by Levoy [8]. An image is constructed 
in i m a g e  order by casting rays from the eye through the i n -  
age plane and into the volume of data .  One ray per pixel is 
generally sufficient, provided that  the image sample density 
is higher than the volume data  sample density. Using a dis- 
crete rendering model, the data  volume is sampled at  evenly 
spaced points along the ray, usually a t  a rate of one to two 
samples per voxel. At each sample point on the ray, a color 
and an opacity are computed using trilinear interpolation 
from the da ta  values a t  each of the eight nearest voxels. 

The  color is assigned by applying a shading function such 
as the Phong lighting model. A color map is often used to 
assign colors to the raw data  values. The  normalized gra- 
dient of the data  volume can be used as the surface normal 
for shading calculations. The  opacity is derived by using 
the interpolated voxel values as indices into an opacity map. 
Sampling continues until the da ta  volume is exhausted or 
until the accumulated opacity reaches a threshold cut-off 
value. The final image value corresponding to each ray is 
formed by compositing, front-to-back, the colors and opac- 
ities of the sample points along the ray. The  color/opacity 
compositing is based on Porter and Duff’s over operator 
[16]. It is easy to verify that the over is as so cia tit^^; that  is, 

a over ( b  over e )  = ( U  over b )  over C .  

The associativity of the over operator allows us to break a 
ray up into segments, process the sampling and compositing 
of each segment independently, and combine the results from 
each segment via a final compositing step. This is the basis 
for our parallel volume rendering algorithm. 

3.2 Data Subdivision/Load Balancing 
The divide-and-conquer algorithm requires that  we parti- 
tion the input data  into subvolumes. There are many ways 
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Figure 2: Volume Boundary Replication. 

Figure 1: k-Dtree Subdivision of a Data Volume 

to partition the data; the only requirement is that an un- 
ambiguous front-to-back ordering can be determined for the 
subvolumes to  establish the required order for compositing 
subiniages. Ideally we would like each subvolume to require 
about the same amount of computation. In practice, this 
is generally not something that  we can always control well. 
For example, if the viewpoint is known and fixed, we could 
partition the volume in a nianner that minimizes the overlap 
between the images resulting from the subvolumes. This will 
reduce the cost of the merging since cornpositing need only 
be applied where subimages overlap as shown later. For an 
animation sequence, this technique can not be applied since 
the viewpoint changes with each frame. We can also parti- 
tion the volume based on an estimation of the distribution 
of the amount of computation within the volume by pre- 
processing the volume to  identify high gradient regions or 
empty regions. In addition, we may partition and distribute 
the volume according to the performance of individual corn- 
puters when using a heterogeneous computing environment. 

The simplest method is probably to partition the volume 
along planes parallel to  the coordinate planes of the data. 
Again, if the viewpoint is fixed and known when partition- 
ing the data ,  the coordinate plane most nearly orthogonal to 
the view direction can be determined and the da ta  can sub- 
divided into “slices” orthogonal to this plane. When ortho- 
graphic projection is used, this will tend to  produce subim- 
ages with little overlap. If the view point is not known, 
or if perspective projection is used, it is better to  partition 
the volume equally along all coordinate planes. This can be 
accomplished using a k-D tree structure [l], with alternat- 
ing binary subdivision of the coordinate planes at  each level 
in the tree as indicated in Figure 1 .  As shown later, this 
structure provides a nice mechanism for image compositing. 

As shown in Figure 2, when a volume of grid points (vox- 
els) is evenly subdivided into, for example, two subvolumes, 
each subvolume may contain half of the total grid points. 
Note that each voxel is located a t  a corner of the grid. Con- 
sequently, those ray samples that  lie in the cut boundary 
region (the dotted region) are lost. If the view vector is 
parallel to the cut plane, a black strip will appear a t  each 
cut boundary in the composited image. In order to  avoid 
this problem, we need to  replicate one layer of the bound- 
ary grid a t  each subvolume so the composited ray-casting 
image does not drop out features originally in the volume. 
For the case shown in Figure 2, one possible arrangement is 

Figure 3: Correct Ray Sampling. 

that Subvolume 1 includes layer 1 to layer k and Subvolume 
2 includes layer IC to layer 71; that  is, in Subvolume 2, layer 
k is replicated. 

3.3 Parallel Rendering 

We use ray-casting based volume rendering. Each computer 
can perform raytracing independently; that is, there is no 
data  communication required during the subvolume render- 
ing. All subvolurnes are rendered using an identical view 
position and only rays within the image region covering the 
corresponding subvolume are cast and sampled. Since we 
sample along each ray a t  a predetermined interval, consis- 
tent sampling locations must be ensured for all subvolumes 
so we can reconstruct the original volume. As shown in Fig- 
ure 3, for example, the location of the first sample &(1) on 
the ray shown in Subvolume 2 should be calculated correctly 
so that the distance between &( l )  and S l ( n )  is equivalent 
to the predetermined interval. Otherwise, small features in 
the data  might be lost or enhanced in an erroneous way. 

3.4 Image Compositiori 
The final step of our algorithm is to  merge ray segments and 
thus all partial images into the final total image. In order to 
merge, we need to store not only the color a t  each pixel but 
also the accumulated opacity there. As described earlier, 
the rule for merging subimages is based on the over coiii- 
positing operator. When all subimages are ready, they are 
cornposited in a front-to-back order. For a straightforward 
one-dimensional da ta  partition, this order is also straightfor- 
ward. When using the k-D tree structure, this front-to-back 
image compositing order can then be determined hierarchi- 
cally by a recursive traversal of the k-D tree structure, visit- 
ing the “front” child before the “back” child. This is similar 
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to well known front-to-back traversals of BSP-trees [4] and 
octrees [3]. In addition, the hierarchical structure provides a 
natural way to accomplish the compositing in parallel: sib- 
ling nodes in the tree may be processed concurrently. 

A naive approach for merging the partial images is to do 
binary compositing. By pairing up computers in order of 
compositing, each disjoint pair produces a new subimage. 
Thus after the first stage, we are left with the task of com- 
positing only 5 subimages. Then we use half the number of 
the original computers, and pair them up for the next level 
compositing. Continuing similarly, after log 7~ stages, the 
final image is obtained. One problem for the above methods 
is that during the compositing process compositing, many 
computers become idle. At the top of the tree, only one 
processor is active, doing the final composite for the entire 
image. When running on a massively parallel computer like 
CM-5 with thousands of processors, this would significantly 
affect the overall performance; consequently, the composit- 
ing process would become a bottleneck when interactive ren- 
dering rates are desired. To avoid this problem, we have 
generalized the binary compositing method so that  every 
processor participates in all the stages of the compositing 
process. We call the new scheme binary-swap compositing. 
The key idea is that ,  a t  each compositing stage, the two 
processors involved in a composite operation split the image 
plane into two pieces and each processor takes responsibility 
for one of the two pieces. 

In the early phases of the algorithm, each processor is 
responsible for a large portion of the image area, but the 
image area is usually sparse since it includes contributions 
only from a few processors. In later phases, as we move 
up the compositing tree, the processors are responsible for 
a smaller and smaller portion of the image area, but the 
sparsity decreases since an increasing number of processors 
have contributed image data. At the top of the tree, all 
processors have complete information for a small rectangle 
of the image. The  final image can be constructed by tiling 
these subimages onto the display. 

Figure 4 illustrates the binary-swap cornpositing algo- 
rithm graphically for four processors. When all four comput- 
ers finish ray-tracing locally, each computer holds a partial 
image, as depicted in (a). Then each partial image is subdi- 
vided into two half-images by splitting along the X axis. In 
our example, as shown in (b), Computer I keeps only the left 
half-image and sends its right half-image to its immediate- 
right sibling, which is Computer 2. Conversely, Computer 
2 keeps its right half-image, and sends its left half-image to  
Computer 1 .  Both computers then composite the half im- 
age they keep with the half image they receive. A similar 
exchange and compositing of partial images is done between 
Computer 3 and 4. After the first stage, each computer only 
holds a partial image that is half the size of the original one. 
In the next stage, Computer 1 alternates the image sub- 
division direction. This time it keeps the upper half-image 
and sends the lower half-image to its second-immediate-right 
sibling, which is Computer 3,  as shown in (c). Conversely, 
Computer 3 trades its upper half-image for Computer 1’s 
lower half-image for compositing. Concurrently, a similar 
exchange and compositing between Computer 2 and 4 are 
done. After this stage, each computer holds only one-fourth 
of the original image. For this example, we are done and 
each computer sends its image to the display device. The  
final coniposited image is shown in (d). It has been brought 
to our attention that  a similar merging algorithm has been 
developed independently by Mackerras [12]. 

In our current implementation, the number of processors 

L1 R 1  L2 R 2  L3 R3  U R4 
(a) 

L1+L2 R I + =  L3+U R3+R4 

TI T2 T3 T4 

BI B2 B3 E4 

Tl+T3 
(b) 

T2+T4 

Upper-Left 

H2+H4 

Lower-Right 

Figure 4: Parallel Compositing Process, 

(nproc) must be a perfect power of two. This simplifies 
the calculations needed to  identify the compositing partner 
a t  each stage of the compositing tree and ensures that  all 
processors are active a t  every compositing phase. The  al- 
gorithm can be generalized to relax this restriction if the 
compositing tree is kept as a full (but not necessarily com- 
plete) binary tree, with some additional complexity in the 
compositing partner computation and with some processors 
remaining idle during the first compositing phase. 

4 Implementation of the Renderer 

We have implemented two versions of our distributed voi- 
ume rendering algorithm: one on the CM-5 and another on 
groups of networked workstations. Our implementation is 
composed of three major pieces of code: a da ta  distributor, 
a renderer, and an image compositor. Currently, the data  
distributor runs as a single “host” process that  determines 
the partitioning of the data  set, reads the da ta  set piece by 
piece from disk and distributeds it to a set of “node” pro- 
cesses that  perform the actual rendering and compositing. 
Alternatively, each node program could read their piece from 
disk directly. 

The renderer implements a conventional ray-traced vol- 
ume rendering algorithm [8] using a Phong lighting model 
[15]. Our renderer is a basic renderer and is not highly tuned 
for best performance. Compared to a performance tuned 
ray-traced volume rendering program we implemented pre- 
viously [IO], we estimate that  the current implementation 
of the renderer can be further improved in speed by 10%- 
15%. In fact, da ta  dependent optimization methods might 
affect load balancing decisions by accelerating the progress 
on some processors more than others. For example, a pro- 
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cessor tracing through empty space will probably finish be- 
fore another processor working on a dense section of the 
data. We are currently exploring data  distribution heuris- 
tics that can take the complexity of the subvolumes into 
account when distributing the da ta  to ensure equal load on 
all processors. 

For shading the volume, surface normals are approxi- 
mated as local gradients using central differencing. We trade 
memory for time by precomputing and storing the three 
components of the gradient a t  each voxel. As an example, 
for a data  set of size 2 5 6 x 2 5 6 ~ 2 5 6 ,  more than 200 megabyte 
are required to  store both the data  and the precomputed gra- 
dients. This memory requirement prevents us from sequen- 
tially rendering this da ta  set on most of our workstations. 

4.1 CM-5 and CMMD 3.0 

The CM-5 is a massively parallel supercomputer which sup- 
ports both the SIMD and M I M D  programming models [19]. 
The CM-5 in the Advanced Computing Laboratory a t  Los 
Alanios National Laboratory has 1024 nodes, each of which 
is a Sparc microprocessor with 32 MB of local RAM and 
four 64-bit wide vector units. With four vector units up 
to 128 operations can be performed by a single instruction. 
This yields a theoretical speed of 128 GFlops for a 1024-node 
CM-5. The  nodes can be divided into partitions whose size 
must be a power of two. A user’s program is constrained to  
operating within a partition. Our CM-5 implementation of 
the parallel volume renderer takes advantages of the MIMD 
prograniming features of the CM-5. MIMD programs use 
CMMD, a message passing library for communications and 
synchronization, which supports either a hostless model or 
a host/node Inodel [20]. 

We chose the host/node programming model of CMMD 
because we wanted the option of using X-windows to dis- 
play directly from the CM-5. The  host program determines 
which data-space partitioning to use, based on the number 
of nodes in the CM-5 partition, and sends this information 
to the nodes. The  host then optionally reads in the volume 
to be rendered and broadcasts it to  the nodes. Alternatively, 
the data  can be read directly from the Datavault or Scal- 
able Disk Array into the nodes local memory. The  host then 
broadcasts the opacity/colormap and the transformation in- 
formation to  the nodes. Finally, the host performs an 1/0 
servicing loop which receives the rendered portions of the 
image from the nodes. 

The node program begins by receiving its data-space par- 
titioning information and then its portion of the data  from 
the host. It then updates the transfer function and the trans- 
form matrices. Following this step, the nodes all execute 
their own copy of the renderer. They synchronize after the 
rendering and before entering the cornpositing phase. Once 
the compositing is finished, each node has a portion of the 
image that they then send back to the host for display. 

4.2 Networked Workstations and PVM 2.4.2 

IJnlike a massively parallel supercomputer dedicating uni- 
form and intensive computing power, a network computing 
environment provides nondedicated and scattered cornput- 
ing cycles. Thus, using a set of high performance work- 
stations connected by an Ethernet, our goal is to  set up a 
volume rendering facility for handling large data  sets and 
batch animation jobs. That  is, we hope that by using many 
workstations concurrently, the rendering time wiU decrease 
linearly and we will be able to  render data  sets that  are too 

large to render on a single machine. Note that  real-time 
rendering is generally not achievable in such environment. 

We use PVM (Parallel Virtual Machine) [6], a paral- 
lel program development environment, to implement the 
data  communications in our algorithm. PVM allows us to 
portably implement our algorithm for use on a variety of 
workstation platforms. To run a program under PVM, the 
user first executes a daemon process on the local host ma- 
chine, which in turn initiates daemon processes on all other 
remote machines used. Then the user’s application program 
(the node program), which should reside on each machine 
used, can be invoked on each remote machine by a local 
host program via the daemon processes. Communication 
and synchronization between these user processes are con- 
trolled by the daemon processes, which guarantee reliable 
delivery. 

A host/node model has also been used. As a result, the 
way it has been implemented is very similar to that of (;M- 
5’s. In fact, the only distinct difference between the work- 
station’s and CM-5’s implenientation (source program) is 
the communication calls. For most of the basic communica- 
tion functions. PVM 2.4.2 and (:MMD 3.0 have one-to-one 
equivalence. 

5 Tests 

We used three different da ta  sets for our tests. The  vortzcity 
data  set is a 2 5 6 x 2 5 6 ~ 2 5 6  voxel CFD data  set, computed on 
a CM-200, showing the onset of turbulence. The  head data  
set is the now classic U N C  Chapel Hill CT head a t  a size of 
1 2 8 ~ 1 2 8 x 1 2 8 .  The  vesseldata set is a 2 5 6 x 2 5 6 ~ 1 2 8  voxel 
Magnetic Resonance Angiography (MRA) da ta  set showing 
the vascular structure within the brain of a patient. Plate 
1 illustrates the coxnpositing process described in Figure 4, 
using the images generated with this vessel da ta  set. Sim- 
ilarly, each column shows the images from one processor, 
while the rows are the phases of the compositing algorithm. 
The final image is displayed a t  the bottom. 

5.1 CM-5 

We performed multiple experiments on the CM-5 using par- 
tition sizes of 32, 64, 128, 256 and 512. When these tests 
were run, a 1024 partition was not available. All times are 
given in seconds. For the vorticity da ta  set, we show com- 
plete timing results in Table 1 and the speedup graph in 
Figure 5. The  times shown are the broadcast time (data) 
and the maximurn times for all the nodes for the two steps 
of the core algorithm: the rendering step (rend) and the 
compositing step (comp), followed by the actual communi- 
cation component (comm) in the compositing step and lastly 
the image gathering time (send). Note that  the speedup was 
measured for the core algorithm and it is a function of the 32 
node running time. Due to limited space, for the head and 
vessel data  sets, we show only the corresponding speedup 
graphs in Figure 6 and 7, respectively. 

Looking at  Table 1, it is easy to  see that  rendering time 
dominates the process. It should be noted that  this im- 
plementation does not take advantage of the CM-5 vector 
units. We expect much faster computation rates in the ren- 
derer when the vectorized code is completed. As there is 
no communication in the rendering step, one might expect 
linear speedup when utilizing more processors. As can be 
seen from the three speedup graphs, this is not always the 
case due to  the load balance problems. The vorticitydata 
set is relatively dense (i.e. it contains few empty voxels) and 
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0.1466 
0.0075 
0.2417 
24.430 
0.5810 
0.0231 
0.96500 

0.2072 0.1116 
0.0101 0.0101 
0.0006 0.0005 
0.0187 0.0218 
0.8247 0.4086 
0.0300 0.0279 
0.0018 0.0012 
0.0657 0.0687 
3.2305 1.6158 
0.1108 0.1001 
0.0052 0.0037 
0.2615 0.2470 
12.697 6.3434 
0.4272 0.3874 
0.0181 0.0138 
0.9645 1.0151 

0.0094 
0.0003 
0.0280 

0.0235 
0.001 1 
0.0734 

0.0836 
0.0027 
0.2537 

0.3310 
0.0097 
0.9849 

Table 1: CM-5 Results on the Vorticity Data Set 

therefore exhibits nearly linear speedup. On the other hand, 
both the head and the vessel data  sets contain many empty 
voxels which unbalance the load and therefore do not ex- 
hibit the best speedup. Figure 5 demonstrates that  for the 
vortzcity data  set, our implementation achieves very good 
speedup for all image sizes except 6 4 x 6 4 .  The rendering 
of the 6 4 x 6 4  image exhibits less speedup than larger image 
sizes due to overhead costs associated with the rendering 
and compositing steps. In particular, the compositing step 
showed a speedup of only 1.46 when going from 32 nodes 
to 512 nodes. For all image resolutions above 6 4 x 6 4 ,  the 
overall speedup was nearly the same. 

The broadcast time includes the time it takes to read the 
data  over NFS a t  Ethernet speeds on a loaded Ethernet. 
The broadcast time for the 512-node case is substantially 
less than for the smaller partitions because while the timings 
were being gathered for partitions smaller than 512 nodes, 
the other partitions were also running other jobs causing 
both disk and Ethernet contention. The image gathering 
time (send) is the time it takes for the nodes to send their 
cornposited image tiles to the host. As can be seen, the 
image gathering time is only slightly slower for larger parti- 
tions which have more image-tiles. Both of these times will 
be mitigated by use of the parallel storage and the use of 
the HIPPI frame buffer. 

5.2 Networked Workstations 

For our workstation tests, we used a set of 32 high per- 
formance workstations. The first four machines were I B M  
RS/6000-550 workstations equipped with 512 M B  of mem- 
ory. These workstations are rated at 81.8 SPECfp92. The  
next 12 machines were HP9000/730 workstations, some with 
32  M B  and others with 64 MB. These machines are rated 
at  86.7 SPECfp92. The  remaining 16 machines were Sun 
Sparc-10/30 workstations equipped with 32 MB,  which are 
rated at  45 SPECfp92. The  tests on one, two and four work- 
stations used only the IBM’s. The  tests with eight and 16 
used a combination of the HP’s and IBM’s. The  16 Sun’s 
were used for the tests on 32. It was not possible to as- 
sure absolute quiescence on each machine because they are 
in a shared environment with a heavily used Ethernet and 
large files systems. During the period of testing there was 
a network traffic from NSF activity and across-the-net tape 

backups. The four IBM’s were all on the same subnet, while 
the remaining nodes lie on different subnets. Thus, we ex- 
pect the communication performance for the one, two and 
four machines to be better than for the eight or more. 

In a heterogeneous environment, it is less meaningful to 
use speedup graphs to study the performance of our algo- 
rithm and implementation. Thus in Figure 8, 9 and 10, for 
the rendering step and the cornpositing step, varying the 
number of workstations and the image size, we display the 
maximuni times from the tests on the vorticity, head and 
vessel data  sets, respectively. Note that  we use a log scale 
along the y axis. The  solid lines show the time for both 
steps and the dotted lines show the time for the rendering 
step only. 

In a shared computing environment, the cornrnunication 
costs are highly variable due to  the use of the local Ethernet 
shared with hundreds of other machines. There are many 
factors that  we have no control over that  are influential to 
our algorithm. For example, an overloaded network and 
other users’ processes competing with our rendering process 
for CPU and memory usage could greatly degrade the per- 
formance of our algorithm. Improved performance could be 
achieved by carefully distributing the load to each computer 
according to da ta  content, and the computer’s performance 
as well as its average usage by other users. Moreover, com- 
munications costs are expected to drop with higher speed 
interconnection networks (e.g. FDDI) and on clusters iso- 
lated from the larger local area network. 

Unlike the CM-5’s results, tests on workstations show that 
the communication component is the dominant factor in the 
compositing costs. This can be seen by comparing the solid 
lines with the dotted lines in the graphs. On the average, 
communication takes about 97% of the overall compositing 
time. However, while using eight or fewer workstations, the 
rendering time still dominates the compositing time in most 
cases. Again, the significant performance degradation for 
rendering smaller images is due to the overhead costs as- 
sociated with the rendering and compositing steps. These 
graphs exclude the data  distribution and image gather times. 
These times varied greatly, due to the variable load on the 
shared Ethernet. The  data  distribution times varied from 17 
seconds to 150 seconds while the image gather times varied 
from an average of .06 seconds for a 6 4 x 6 4  image to a high 
of 8 seconds for a 512x512 image. Preliminary results with 
PVM 3.1 indicate much lower communications costs. 

6 Conclusions 

We have presented a parallel volume ray-tracing algorithm 
for a massively parallel computer or a set of interconnected 
workstations. The  algorithm divides both the computation 
and memory load across all processors and can therefore be 
used to  render da ta  sets that  are too large to fit into the 
memory system of a single uniprocessor A parallel (binary- 
swap) compositing method was developed to combine the 
independently rendered results from each processor. The 
bznary-swap compositing method has merits which make it 
particularly suitable for massively parallel processing. First, 
while the parallel compositing proceeds, the decreasing i n -  
age size for sending and cornpositing makes the overall con-  
positing process very efficient. Next, this method always 
keeps all processors busy doing useful work. Finally, it is 
simple to implement with the use of the k-D tree structure 
described earlier. 

The algorithm has been implemented on both the (:M-5 
and a network of scientific workstations. The (:M-5 imple- 
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Figure 5: CM-5 Speedup for the Vorticity Data Set. 
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Figure 6: CM-5 Speedup for the Head Data Set. 
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Figure 7: CM-5 Speedup for the Vessel Data Set. 
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Figure 8: PVM Results on the Vorticity Data Set. 
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Figure 9: PVM Results on the Head Data Set. 
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Figure 10: PVM Results on the Vessel Data Set. 
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mentation showed good speedup characteristics out to the 
largest available partition size of 512 nodes. Only a small 
fraction of the total rendering time was spent in communi- 
cations, indicating the success of the parallel compositing 
method. Several directions appear ripe for further work. 
The host data  distribution, image gather, and display times 
are bottlenecks on the current CM-5 implementation. These 
bottlenecks can be alleviated by exploiting the parallel 1/0 
capabilities of the CM-5. Rendering and compositing times 
on the CM-5 can also be reduced significantly by taking ad- 
vantage of the vector units available a t  each processing node. 
We are hopeful that  real time rendering rates will be achiev- 
able for medium to high resolution with these improvements. 

Performance of the distributed workstation implementa- 
tion could be further improved by better load balancing. In 
a heterogeneous environment with shared workstations, lin- 
ear speedup is difficult. A simple approach is to do static 
load balancing. The  data  subdivision can be done unevenly, 
taking into account the predicted capacity on each machine 
to try to balance the load. Alternatively, the data  can be 
subdivided into a larger number of equal sized subvolumes 
and the more capable machines can be assigned more than 
one subvolume. The  later approach has the advantage that 
it can be generalized to a dynamic load balancing approach: 
divide the data  into many subvolumes and assign them to 
processors in a demand driven fashion. The  finer subdi- 
vision of the data  volumes would improve load balancing 
during rendering a t  the cost of some additional compositing 
time due to more levels in the compositing tree. 
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