
A Data Distributed, Parallel Algorithm for Ray-Traced Volume Rendering

t Kwan-Liu Mat, J a m e s S. Painter+, Charles D. Hansens, Michael F. Krogh!
tICASE, Mail Stop 132C:, NASA Langley Research Center, Hampton, Virginia 23681

$Department of Computer Science, University of Utah, Salt Lake City, IJtah 84112
§Advanced Computing Laboratory, Los Alaiiios National Laboratory, Los Alaiiios, New Mexico 87545

luiia(Qicase.edu, jaiiue(@cs.utali.edu, hansen(@acl.lanl.gov, krogli(Qacl.lanI.gov

Abstract

This paper presents a divide-and-conquer ray-traced vol-
ume rendering algorithm and a parallel image compositing
method, along with their implementation and performance
on the (:onnection Machine (:M-5, and networked worksta-
tions. This algorithm distributes both the da ta and the
computations to individual processing units to achieve fast,
high-quality rendering of high-resolution data. The volume
data, once distributed, is left intact. The processing nodes
perform local raytracing of their subvolume concurrently.
No communication between processing units is needed dur-
ing this locally ray-tracing process. A subimage is generated
by each processing unit and the final image is obtained by
cornpositing subimages in the proper order, which can be
determined a priori. Test results on the CM-5 and a group
of networked workstations demonstrate the practicality of
our rendering algorithm and conipositing method.

Key Words: Scientific Visualization, Volume Rendering, Net-
work Coiiiputing, Massively Parallel Processing.

1 Introduction
Existing volume rendering methods, though capable of mak-
ing very effective visualizations, are very computationally
intensive and therefore fail to achieve interactive rendering
rates for large da ta sets. Our work was motivated by the
following observations: First, volume da ta sets can be quite
large, often too large for a single workstation to hold in
memory a t once. Moreover, high quality volume render-
ings norinally take minutes to hours on a single processor
machine and the rendering time usually grows linearly with
the data size. To achieve interactive rendering rates, users
often must reduce the original data , which produces poor
visualization results. Second, many acceleration techniques
and data exploration techniques for volume rendering trade
nieniory for time. Third, motion is one of the most effective
visualization techniques. An animation sequence of volume
visualization normally takes hours to days to generate. Fi-
nally, we notice the availability of hundreds of high perfor-
mance workstations in our computing environment, which
are frequently sitting idle for many hours a day. This lead
us to consider ways to distribute the increasing amount of
data as well as the time-consuming rendering process to the
tremendous distributed computing resources available to us.

In this paper, we describe the resulting parallel volume
rendering algorithm and a image compositing method along
with their implementations and performance on the CM-5
and networked workstations. For a homogeneous computing
environment, a computing environment with uniformly dis-
tributed processing and memory units, this parallel volume

0-81 86-4920-8193 $3.00 1993 IEEE

rendering algorithm evenly distributes da ta to the comput-
ing resources available. Each subvolume is then ray-traced
locally and generates a partial image, without the need to
communicate with other processing units. These partial im-
ages are merged in the proper order through a new parallel
compositing algorithm to achieve the correct final image.
Our test results on both the homogeneous and heteroge-
neous computing environments are promising, and expose
different performance tuning issues for each environment.

2 Related Work

An increasing nuniber of parallel architectures and algo-
rithms for volume rendering have been developed. The ma-
jor algorithmic strategy for parallelizing volume rendering
is the divide-and-conquer paradigm. The volume rendering
problem can be subdivided either in data space or in irn-
age space. While data-space subdivision assigns the compu-
tation associated with particular subvolumes to processors,
image-space subdivision distributes the computation associ-
ated with particular portions of the image space. Data-space
subdivision is usually applied to a distributed-mernory par-
allel computing environment. On the other hand, iniage-
space subdivision is simple and efficient for shared-menlory
multiprocessing. Hybrid methods are also feasible.

Among the parallel architectures developed which are ca-
pable of performing interactive volume rendering, the Pixel-
Planes 5 system [5] is a heterogeneous multiprocessor graph-
ics system using both M I M D and SIMD parallelism. The
hardware consists of multiple i86O-based Graphics Proces-
sors, multiple SI M D pixel-processors arrays called Render-
ers, and a conventional 1280 x 1024-pixel frame buffer, inter-
connected by a five-gigabit ring network. In [22], variations
of parallel volume rendering implemented on this system are
presented. One approach similar to the idea we proposed
earlier in [ll] and now elaborate in this paper, distributes
data as well as ray casting among separate Graphics Proces-
sors and reconstructs the ray segments into coherent rays.
Incorporating dynamic load balancing, lookup tables and
progressive refinement, this approach can render shaded im-
ages from 128 x 128 x56 volume data a t 20 frames per second.
In the following sections, we survey most recent research re-
sults from other algorithmic approaches.

2.1 Moritarii
Montani e t al. [13] propose a hybrid ray-traced method
for running on distributed-memory parallel systems like a
nCUBE, in which processing nodes are organized into a sei
of clusters, each of them composed of the same number of
nodes. The image space is partitioned and a subset of pixels
is assigned to each cluster, which will compute pixel values

15

http://luiia(Qicase.edu
mailto:jaiiue(@cs.utali.edu
mailto:hansen(@acl.lanl.gov
http://krogli(Qacl.lanI.gov

independently. Data to be visualized is replicated in each
cluster, and is partitioned among the local memory of the
cluster’s nodes. A static load balancing strategy based on
the estimated work load of each processor is used to improve
efficiency, and on average a twenty percent speedup in ren-
dering time can be obtained. In addition, a mechanism for
preventing deadlock is necessary to handle the dependency
between processing nodes in the same cluster. The best ef-
ficiency reported by the authors while using a single cluster
of 128 nodes is 0.74. However, when increasing the number
of clusters, the efficiency drops significantly. For example,
using 16 clusters with 8 nodes per cluster, the efficiency re-
ported is only 0.31.

2.2 Nieh
Nieh and Levoy [14] implement ray-traced volume render-
ing on Stanford DASH Multiprocessors, a scalable shared-
memory MIMD machine. Their method employs algorith-
mic optimizations such as hierarchical opacity enumeration,
early ray termination, and adaptive image sampling [9]. The
shared-memory architecture providing a single address space
allows straightforward implementations. The parallel al-
gorithm distributes volume da ta in an interleaved fashion
among the local memories to avoid hot spotting. The ray
tracing computation is distributed among the processors by
partitioning the image plane into contiguous blocks and each
processor is statically assigned an image block. Each block
is further divided into square image tiles for load balancing
purposes. When a processor is done computing its block,
instead of waiting, it steals tiles from a neighboring pro-
cessor’s block to keep itself busy. Experiment results show
this load balancing scheme cuts the variation of execution
times across the 48 processors used by 90%. Currently, each
processor in DASH is a 33 MHz MIPS R3000. Using all
48 processors available, a 416x416-pixel image for a 2563
data set can be generated in subsections; for nonadaptive
sampling, the speedup over uniprocessor rendering is 40.

2.3 Schriider
Schroder and Stoll [18] develop a data-parallel ray-traced
volume rendering algorithm that exploits ray parallelism.
They describe the ray tracing steps as discrete line drawing.
This algorithm is both more memory efficient and less com-
munications bound than an algorithm introduced earlier by
the first author [17]. They have implemented this algorithm
on both the Connection Machine CM-2 and the Princeton
Engine, which consists of 2048 16-bit DSP processors ar-
ranged in a ring. To allow for a SIMD implementation, rays
initially enter only the front-most face of the volume and
proceed in lock step. Consequently, each sample has the
same local coordinates in a voxel. When rays exit the far
face, a toroidal shift of the data is performed and new rays
are initialized to enter the visible side face of the volume. As
a result, the rotation angle selected influences about 10% of
the runtime of the algorithm. Tests using a 1283-voxel data
set on both the CM2 from 8K to 32K processors in size
and the Princeton Engine of 1024 processors show subsec-
ond rendering time.

2.4 Vhzina
VCzina, et al. [all implement a multi-pass algorithm similar
to Schroder’s on MP-1, which is a massively data-parallel
SIMD computer with a 2D array of processing elements
(PES). Their algorithm, based on work done by Catmull and

Smith [a], and Hanrahan [7] , converts both 3 D rotation and
perspective transformations into only four 1 D shear/scale
passes, compared to Schroder’s eight-pass rotation algorithm
composed exclusively of shear operations. Volume transpo-
sition is then performed to localize da ta access. MP-1 pro-
vides a global router which allows efficient moving of data
between PES. On a I6K-PE MP-1, a 128x128-pixel volume
rendered image of a 1283-voxel data can be generated in sub-
seconds. However, it seems that if either a smaller number
of PES or larger data sets are used, the data transposition
time can degrade the performance significantly.

3 A Divide-and-Conquer Algorithm

The idea behind our algorithm is very simple: divide the
data up into smaller subvolumes distributed to multiple
computers, render them separately and locally, and combine
the resulting images in an incremental fashion. While mul-
tiple computers are available, the memory demands on each
computer are modest since each computer need only hold a
subset of the total da ta set. This approach can be used to
render high resolution da ta sets in an environment, for exan-
ple, with many midrange workstations (e.g. equipped with
16MB memory) on a local area network. Many computing
environments have an abundance of such workstations which
could be harnessed for volume rendering provided that the
memory usage on each machine is reasonable.

3.1 Ray-Traced Volume Rendering
The starting point of our algorithm is the volume ray-tracing
technique presented by Levoy [8]. An image is constructed
in i m a g e order by casting rays from the eye through the i n -
age plane and into the volume of data . One ray per pixel is
generally sufficient, provided that the image sample density
is higher than the volume data sample density. Using a dis-
crete rendering model, the data volume is sampled at evenly
spaced points along the ray, usually a t a rate of one to two
samples per voxel. At each sample point on the ray, a color
and an opacity are computed using trilinear interpolation
from the da ta values a t each of the eight nearest voxels.

The color is assigned by applying a shading function such
as the Phong lighting model. A color map is often used to
assign colors to the raw data values. The normalized gra-
dient of the data volume can be used as the surface normal
for shading calculations. The opacity is derived by using
the interpolated voxel values as indices into an opacity map.
Sampling continues until the da ta volume is exhausted or
until the accumulated opacity reaches a threshold cut-off
value. The final image value corresponding to each ray is
formed by compositing, front-to-back, the colors and opac-
ities of the sample points along the ray. The color/opacity
compositing is based on Porter and Duff’s over operator
[16]. It is easy to verify that the over is as so cia tit^^; that is,

a over (b over e) = (U over b) over C .

The associativity of the over operator allows us to break a
ray up into segments, process the sampling and compositing
of each segment independently, and combine the results from
each segment via a final compositing step. This is the basis
for our parallel volume rendering algorithm.

3.2 Data Subdivision/Load Balancing
The divide-and-conquer algorithm requires that we parti-
tion the input data into subvolumes. There are many ways

16

xight
1 k k+l n

Subvolume 2 subvolume 1

Figure 2: Volume Boundary Replication.

Figure 1: k-Dtree Subdivision of a Data Volume

to partition the data; the only requirement is that an un-
ambiguous front-to-back ordering can be determined for the
subvolumes to establish the required order for compositing
subiniages. Ideally we would like each subvolume to require
about the same amount of computation. In practice, this
is generally not something that we can always control well.
For example, if the viewpoint is known and fixed, we could
partition the volume in a nianner that minimizes the overlap
between the images resulting from the subvolumes. This will
reduce the cost of the merging since cornpositing need only
be applied where subimages overlap as shown later. For an
animation sequence, this technique can not be applied since
the viewpoint changes with each frame. We can also parti-
tion the volume based on an estimation of the distribution
of the amount of computation within the volume by pre-
processing the volume to identify high gradient regions or
empty regions. In addition, we may partition and distribute
the volume according to the performance of individual corn-
puters when using a heterogeneous computing environment.

The simplest method is probably to partition the volume
along planes parallel to the coordinate planes of the data.
Again, if the viewpoint is fixed and known when partition-
ing the data , the coordinate plane most nearly orthogonal to
the view direction can be determined and the da ta can sub-
divided into “slices” orthogonal to this plane. When ortho-
graphic projection is used, this will tend to produce subim-
ages with little overlap. If the view point is not known,
or if perspective projection is used, it is better to partition
the volume equally along all coordinate planes. This can be
accomplished using a k-D tree structure [l], with alternat-
ing binary subdivision of the coordinate planes at each level
in the tree as indicated in Figure 1 . As shown later, this
structure provides a nice mechanism for image compositing.

As shown in Figure 2, when a volume of grid points (vox-
els) is evenly subdivided into, for example, two subvolumes,
each subvolume may contain half of the total grid points.
Note that each voxel is located a t a corner of the grid. Con-
sequently, those ray samples that lie in the cut boundary
region (the dotted region) are lost. If the view vector is
parallel to the cut plane, a black strip will appear a t each
cut boundary in the composited image. In order to avoid
this problem, we need to replicate one layer of the bound-
ary grid a t each subvolume so the composited ray-casting
image does not drop out features originally in the volume.
For the case shown in Figure 2, one possible arrangement is

Figure 3: Correct Ray Sampling.

that Subvolume 1 includes layer 1 to layer k and Subvolume
2 includes layer IC to layer 71; that is, in Subvolume 2, layer
k is replicated.

3.3 Parallel Rendering

We use ray-casting based volume rendering. Each computer
can perform raytracing independently; that is, there is no
data communication required during the subvolume render-
ing. All subvolurnes are rendered using an identical view
position and only rays within the image region covering the
corresponding subvolume are cast and sampled. Since we
sample along each ray a t a predetermined interval, consis-
tent sampling locations must be ensured for all subvolumes
so we can reconstruct the original volume. As shown in Fig-
ure 3, for example, the location of the first sample &(1) on
the ray shown in Subvolume 2 should be calculated correctly
so that the distance between &(l) and S l (n) is equivalent
to the predetermined interval. Otherwise, small features in
the data might be lost or enhanced in an erroneous way.

3.4 Image Compositiori
The final step of our algorithm is to merge ray segments and
thus all partial images into the final total image. In order to
merge, we need to store not only the color a t each pixel but
also the accumulated opacity there. As described earlier,
the rule for merging subimages is based on the over coiii-
positing operator. When all subimages are ready, they are
cornposited in a front-to-back order. For a straightforward
one-dimensional da ta partition, this order is also straightfor-
ward. When using the k-D tree structure, this front-to-back
image compositing order can then be determined hierarchi-
cally by a recursive traversal of the k-D tree structure, visit-
ing the “front” child before the “back” child. This is similar

1 7

to well known front-to-back traversals of BSP-trees [4] and
octrees [3]. In addition, the hierarchical structure provides a
natural way to accomplish the compositing in parallel: sib-
ling nodes in the tree may be processed concurrently.

A naive approach for merging the partial images is to do
binary compositing. By pairing up computers in order of
compositing, each disjoint pair produces a new subimage.
Thus after the first stage, we are left with the task of com-
positing only 5 subimages. Then we use half the number of
the original computers, and pair them up for the next level
compositing. Continuing similarly, after log 7~ stages, the
final image is obtained. One problem for the above methods
is that during the compositing process compositing, many
computers become idle. At the top of the tree, only one
processor is active, doing the final composite for the entire
image. When running on a massively parallel computer like
CM-5 with thousands of processors, this would significantly
affect the overall performance; consequently, the composit-
ing process would become a bottleneck when interactive ren-
dering rates are desired. To avoid this problem, we have
generalized the binary compositing method so that every
processor participates in all the stages of the compositing
process. We call the new scheme binary-swap compositing.
The key idea is that , a t each compositing stage, the two
processors involved in a composite operation split the image
plane into two pieces and each processor takes responsibility
for one of the two pieces.

In the early phases of the algorithm, each processor is
responsible for a large portion of the image area, but the
image area is usually sparse since it includes contributions
only from a few processors. In later phases, as we move
up the compositing tree, the processors are responsible for
a smaller and smaller portion of the image area, but the
sparsity decreases since an increasing number of processors
have contributed image data. At the top of the tree, all
processors have complete information for a small rectangle
of the image. The final image can be constructed by tiling
these subimages onto the display.

Figure 4 illustrates the binary-swap cornpositing algo-
rithm graphically for four processors. When all four comput-
ers finish ray-tracing locally, each computer holds a partial
image, as depicted in (a). Then each partial image is subdi-
vided into two half-images by splitting along the X axis. In
our example, as shown in (b), Computer I keeps only the left
half-image and sends its right half-image to its immediate-
right sibling, which is Computer 2. Conversely, Computer
2 keeps its right half-image, and sends its left half-image to
Computer 1 . Both computers then composite the half im-
age they keep with the half image they receive. A similar
exchange and compositing of partial images is done between
Computer 3 and 4. After the first stage, each computer only
holds a partial image that is half the size of the original one.
In the next stage, Computer 1 alternates the image sub-
division direction. This time it keeps the upper half-image
and sends the lower half-image to its second-immediate-right
sibling, which is Computer 3, as shown in (c). Conversely,
Computer 3 trades its upper half-image for Computer 1’s
lower half-image for compositing. Concurrently, a similar
exchange and compositing between Computer 2 and 4 are
done. After this stage, each computer holds only one-fourth
of the original image. For this example, we are done and
each computer sends its image to the display device. The
final coniposited image is shown in (d). It has been brought
to our attention that a similar merging algorithm has been
developed independently by Mackerras [12].

In our current implementation, the number of processors

L1 R 1 L2 R 2 L3 R3 U R4
(a)

L1+L2 R I + = L3+U R3+R4

TI T2 T3 T4

BI B2 B3 E4

Tl+T3
(b)

T2+T4

Upper-Left

H2+H4

Lower-Right

Figure 4: Parallel Compositing Process,

(nproc) must be a perfect power of two. This simplifies
the calculations needed to identify the compositing partner
a t each stage of the compositing tree and ensures that all
processors are active a t every compositing phase. The al-
gorithm can be generalized to relax this restriction if the
compositing tree is kept as a full (but not necessarily com-
plete) binary tree, with some additional complexity in the
compositing partner computation and with some processors
remaining idle during the first compositing phase.

4 Implementation of the Renderer

We have implemented two versions of our distributed voi-
ume rendering algorithm: one on the CM-5 and another on
groups of networked workstations. Our implementation is
composed of three major pieces of code: a da ta distributor,
a renderer, and an image compositor. Currently, the data
distributor runs as a single “host” process that determines
the partitioning of the data set, reads the da ta set piece by
piece from disk and distributeds it to a set of “node” pro-
cesses that perform the actual rendering and compositing.
Alternatively, each node program could read their piece from
disk directly.

The renderer implements a conventional ray-traced vol-
ume rendering algorithm [8] using a Phong lighting model
[15]. Our renderer is a basic renderer and is not highly tuned
for best performance. Compared to a performance tuned
ray-traced volume rendering program we implemented pre-
viously [IO], we estimate that the current implementation
of the renderer can be further improved in speed by 10%-
15%. In fact, da ta dependent optimization methods might
affect load balancing decisions by accelerating the progress
on some processors more than others. For example, a pro-

1%

cessor tracing through empty space will probably finish be-
fore another processor working on a dense section of the
data. We are currently exploring data distribution heuris-
tics that can take the complexity of the subvolumes into
account when distributing the da ta to ensure equal load on
all processors.

For shading the volume, surface normals are approxi-
mated as local gradients using central differencing. We trade
memory for time by precomputing and storing the three
components of the gradient a t each voxel. As an example,
for a data set of size 2 5 6 x 2 5 6 ~ 2 5 6 , more than 200 megabyte
are required to store both the data and the precomputed gra-
dients. This memory requirement prevents us from sequen-
tially rendering this da ta set on most of our workstations.

4.1 CM-5 and CMMD 3.0

The CM-5 is a massively parallel supercomputer which sup-
ports both the SIMD and M I M D programming models [19].
The CM-5 in the Advanced Computing Laboratory a t Los
Alanios National Laboratory has 1024 nodes, each of which
is a Sparc microprocessor with 32 MB of local RAM and
four 64-bit wide vector units. With four vector units up
to 128 operations can be performed by a single instruction.
This yields a theoretical speed of 128 GFlops for a 1024-node
CM-5. The nodes can be divided into partitions whose size
must be a power of two. A user’s program is constrained to
operating within a partition. Our CM-5 implementation of
the parallel volume renderer takes advantages of the MIMD
prograniming features of the CM-5. MIMD programs use
CMMD, a message passing library for communications and
synchronization, which supports either a hostless model or
a host/node Inodel [20].

We chose the host/node programming model of CMMD
because we wanted the option of using X-windows to dis-
play directly from the CM-5. The host program determines
which data-space partitioning to use, based on the number
of nodes in the CM-5 partition, and sends this information
to the nodes. The host then optionally reads in the volume
to be rendered and broadcasts it to the nodes. Alternatively,
the data can be read directly from the Datavault or Scal-
able Disk Array into the nodes local memory. The host then
broadcasts the opacity/colormap and the transformation in-
formation to the nodes. Finally, the host performs an 1/0
servicing loop which receives the rendered portions of the
image from the nodes.

The node program begins by receiving its data-space par-
titioning information and then its portion of the data from
the host. It then updates the transfer function and the trans-
form matrices. Following this step, the nodes all execute
their own copy of the renderer. They synchronize after the
rendering and before entering the cornpositing phase. Once
the compositing is finished, each node has a portion of the
image that they then send back to the host for display.

4.2 Networked Workstations and PVM 2.4.2

IJnlike a massively parallel supercomputer dedicating uni-
form and intensive computing power, a network computing
environment provides nondedicated and scattered cornput-
ing cycles. Thus, using a set of high performance work-
stations connected by an Ethernet, our goal is to set up a
volume rendering facility for handling large data sets and
batch animation jobs. That is, we hope that by using many
workstations concurrently, the rendering time wiU decrease
linearly and we will be able to render data sets that are too

large to render on a single machine. Note that real-time
rendering is generally not achievable in such environment.

We use PVM (Parallel Virtual Machine) [6], a paral-
lel program development environment, to implement the
data communications in our algorithm. PVM allows us to
portably implement our algorithm for use on a variety of
workstation platforms. To run a program under PVM, the
user first executes a daemon process on the local host ma-
chine, which in turn initiates daemon processes on all other
remote machines used. Then the user’s application program
(the node program), which should reside on each machine
used, can be invoked on each remote machine by a local
host program via the daemon processes. Communication
and synchronization between these user processes are con-
trolled by the daemon processes, which guarantee reliable
delivery.

A host/node model has also been used. As a result, the
way it has been implemented is very similar to that of (;M-
5’s. In fact, the only distinct difference between the work-
station’s and CM-5’s implenientation (source program) is
the communication calls. For most of the basic communica-
tion functions. PVM 2.4.2 and (:MMD 3.0 have one-to-one
equivalence.

5 Tests

We used three different da ta sets for our tests. The vortzcity
data set is a 2 5 6 x 2 5 6 ~ 2 5 6 voxel CFD data set, computed on
a CM-200, showing the onset of turbulence. The head data
set is the now classic U N C Chapel Hill CT head a t a size of
1 2 8 ~ 1 2 8 x 1 2 8 . The vesseldata set is a 2 5 6 x 2 5 6 ~ 1 2 8 voxel
Magnetic Resonance Angiography (MRA) da ta set showing
the vascular structure within the brain of a patient. Plate
1 illustrates the coxnpositing process described in Figure 4,
using the images generated with this vessel da ta set. Sim-
ilarly, each column shows the images from one processor,
while the rows are the phases of the compositing algorithm.
The final image is displayed a t the bottom.

5.1 CM-5

We performed multiple experiments on the CM-5 using par-
tition sizes of 32, 64, 128, 256 and 512. When these tests
were run, a 1024 partition was not available. All times are
given in seconds. For the vorticity da ta set, we show com-
plete timing results in Table 1 and the speedup graph in
Figure 5. The times shown are the broadcast time (data)
and the maximurn times for all the nodes for the two steps
of the core algorithm: the rendering step (rend) and the
compositing step (comp), followed by the actual communi-
cation component (comm) in the compositing step and lastly
the image gathering time (send). Note that the speedup was
measured for the core algorithm and it is a function of the 32
node running time. Due to limited space, for the head and
vessel data sets, we show only the corresponding speedup
graphs in Figure 6 and 7, respectively.

Looking at Table 1, it is easy to see that rendering time
dominates the process. It should be noted that this im-
plementation does not take advantage of the CM-5 vector
units. We expect much faster computation rates in the ren-
derer when the vectorized code is completed. As there is
no communication in the rendering step, one might expect
linear speedup when utilizing more processors. As can be
seen from the three speedup graphs, this is not always the
case due to the load balance problems. The vorticitydata
set is relatively dense (i.e. it contains few empty voxels) and

19

F rend
coltlp
C O l l l l t l

C O l l l P

c01t1111

COlllP
C O l l l l l l

coltlp
C O l l l l l l

32
89.87

0.8038
0.0137
0.0013
0.0161
3.1446
0.0473
0.0030
0.0608
12.334
0.1807
0.0210
0.2406
48.200
0.7152
0.0843
0.9918

64
93.516
0.3995
0.0125
0.0008
0.0168
1.5974
0.0406
0.0026
0.0615
6.3133
0.1466
0.0075
0.2417
24.430
0.5810
0.0231
0.96500

0.2072 0.1116
0.0101 0.0101
0.0006 0.0005
0.0187 0.0218
0.8247 0.4086
0.0300 0.0279
0.0018 0.0012
0.0657 0.0687
3.2305 1.6158
0.1108 0.1001
0.0052 0.0037
0.2615 0.2470
12.697 6.3434
0.4272 0.3874
0.0181 0.0138
0.9645 1.0151

0.0094
0.0003
0.0280

0.0235
0.001 1
0.0734

0.0836
0.0027
0.2537

0.3310
0.0097
0.9849

Table 1: CM-5 Results on the Vorticity Data Set

therefore exhibits nearly linear speedup. On the other hand,
both the head and the vessel data sets contain many empty
voxels which unbalance the load and therefore do not ex-
hibit the best speedup. Figure 5 demonstrates that for the
vortzcity data set, our implementation achieves very good
speedup for all image sizes except 6 4 x 6 4 . The rendering
of the 6 4 x 6 4 image exhibits less speedup than larger image
sizes due to overhead costs associated with the rendering
and compositing steps. In particular, the compositing step
showed a speedup of only 1.46 when going from 32 nodes
to 512 nodes. For all image resolutions above 6 4 x 6 4 , the
overall speedup was nearly the same.

The broadcast time includes the time it takes to read the
data over NFS a t Ethernet speeds on a loaded Ethernet.
The broadcast time for the 512-node case is substantially
less than for the smaller partitions because while the timings
were being gathered for partitions smaller than 512 nodes,
the other partitions were also running other jobs causing
both disk and Ethernet contention. The image gathering
time (send) is the time it takes for the nodes to send their
cornposited image tiles to the host. As can be seen, the
image gathering time is only slightly slower for larger parti-
tions which have more image-tiles. Both of these times will
be mitigated by use of the parallel storage and the use of
the HIPPI frame buffer.

5.2 Networked Workstations

For our workstation tests, we used a set of 32 high per-
formance workstations. The first four machines were I B M
RS/6000-550 workstations equipped with 512 M B of mem-
ory. These workstations are rated at 81.8 SPECfp92. The
next 12 machines were HP9000/730 workstations, some with
32 M B and others with 64 MB. These machines are rated
at 86.7 SPECfp92. The remaining 16 machines were Sun
Sparc-10/30 workstations equipped with 32 MB, which are
rated at 45 SPECfp92. The tests on one, two and four work-
stations used only the IBM’s. The tests with eight and 16
used a combination of the HP’s and IBM’s. The 16 Sun’s
were used for the tests on 32. It was not possible to as-
sure absolute quiescence on each machine because they are
in a shared environment with a heavily used Ethernet and
large files systems. During the period of testing there was
a network traffic from NSF activity and across-the-net tape

backups. The four IBM’s were all on the same subnet, while
the remaining nodes lie on different subnets. Thus, we ex-
pect the communication performance for the one, two and
four machines to be better than for the eight or more.

In a heterogeneous environment, it is less meaningful to
use speedup graphs to study the performance of our algo-
rithm and implementation. Thus in Figure 8, 9 and 10, for
the rendering step and the cornpositing step, varying the
number of workstations and the image size, we display the
maximuni times from the tests on the vorticity, head and
vessel data sets, respectively. Note that we use a log scale
along the y axis. The solid lines show the time for both
steps and the dotted lines show the time for the rendering
step only.

In a shared computing environment, the cornrnunication
costs are highly variable due to the use of the local Ethernet
shared with hundreds of other machines. There are many
factors that we have no control over that are influential to
our algorithm. For example, an overloaded network and
other users’ processes competing with our rendering process
for CPU and memory usage could greatly degrade the per-
formance of our algorithm. Improved performance could be
achieved by carefully distributing the load to each computer
according to da ta content, and the computer’s performance
as well as its average usage by other users. Moreover, com-
munications costs are expected to drop with higher speed
interconnection networks (e.g. FDDI) and on clusters iso-
lated from the larger local area network.

Unlike the CM-5’s results, tests on workstations show that
the communication component is the dominant factor in the
compositing costs. This can be seen by comparing the solid
lines with the dotted lines in the graphs. On the average,
communication takes about 97% of the overall compositing
time. However, while using eight or fewer workstations, the
rendering time still dominates the compositing time in most
cases. Again, the significant performance degradation for
rendering smaller images is due to the overhead costs as-
sociated with the rendering and compositing steps. These
graphs exclude the data distribution and image gather times.
These times varied greatly, due to the variable load on the
shared Ethernet. The data distribution times varied from 17
seconds to 150 seconds while the image gather times varied
from an average of .06 seconds for a 6 4 x 6 4 image to a high
of 8 seconds for a 512x512 image. Preliminary results with
PVM 3.1 indicate much lower communications costs.

6 Conclusions

We have presented a parallel volume ray-tracing algorithm
for a massively parallel computer or a set of interconnected
workstations. The algorithm divides both the computation
and memory load across all processors and can therefore be
used to render da ta sets that are too large to fit into the
memory system of a single uniprocessor A parallel (binary-
swap) compositing method was developed to combine the
independently rendered results from each processor. The
bznary-swap compositing method has merits which make it
particularly suitable for massively parallel processing. First,
while the parallel compositing proceeds, the decreasing i n -
age size for sending and cornpositing makes the overall con-
positing process very efficient. Next, this method always
keeps all processors busy doing useful work. Finally, it is
simple to implement with the use of the k-D tree structure
described earlier.

The algorithm has been implemented on both the (:M-5
and a network of scientific workstations. The (:M-5 imple-

20

0 3264 128 256 512
Number of Processors

Figure 5: CM-5 Speedup for the Vorticity Data Set.

0 3264 128 256 512
Number of Processors

Figure 6: CM-5 Speedup for the Head Data Set.

0 3264 128 256 512
Number of Processors

Figure 7: CM-5 Speedup for the Vessel Data Set.

Time
(sec)

100

10

1

render+composite -
render only

0

0.1 0 3 4 8 12 16 20 24 28 32

Number of Processors
Figure 8: PVM Results on the Vorticity Data Set.

Time

(sec>

I I I I I I I I I
render+composite -

render only * * * *

10

1

'.e.

0.1 I I I I I I I

0 4 8 12 16 20 24 28 32
Number of Processors

Figure 9: PVM Results on the Head Data Set.

100

1

0.1 ' I I I I I I I

0 4 8 12 16 20 24 28 32
Number of Processors

Figure 10: PVM Results on the Vessel Data Set.

21

mentation showed good speedup characteristics out to the
largest available partition size of 512 nodes. Only a small
fraction of the total rendering time was spent in communi-
cations, indicating the success of the parallel compositing
method. Several directions appear ripe for further work.
The host data distribution, image gather, and display times
are bottlenecks on the current CM-5 implementation. These
bottlenecks can be alleviated by exploiting the parallel 1/0
capabilities of the CM-5. Rendering and compositing times
on the CM-5 can also be reduced significantly by taking ad-
vantage of the vector units available a t each processing node.
We are hopeful that real time rendering rates will be achiev-
able for medium to high resolution with these improvements.

Performance of the distributed workstation implementa-
tion could be further improved by better load balancing. In
a heterogeneous environment with shared workstations, lin-
ear speedup is difficult. A simple approach is to do static
load balancing. The data subdivision can be done unevenly,
taking into account the predicted capacity on each machine
to try to balance the load. Alternatively, the data can be
subdivided into a larger number of equal sized subvolumes
and the more capable machines can be assigned more than
one subvolume. The later approach has the advantage that
it can be generalized to a dynamic load balancing approach:
divide the data into many subvolumes and assign them to
processors in a demand driven fashion. The finer subdi-
vision of the data volumes would improve load balancing
during rendering a t the cost of some additional compositing
time due to more levels in the compositing tree.

Ackiiowledgrrieiit s

The MRA vessel data set was provided by the MIRL a t the
IJniversity of Utah. The vorticity da ta set was provided
by Shi-Yi Chen of T-Div a t Los Alamos National Labora-
tory. David Rich, of the ACL, and Burl Hall, of Think-
ing Machines, helped tremendously with the CM-5 timings.
The Alpha-l and CSS groups at the University of Utah pro-
vided the workstations for our performance tests. Thanks
go to Elena Driskill for comments on a draft of this paper.
This work has been supported in part by NSF/AC:ERC: and
NASA/ICASE.

References

[l] BENTLEY, J . Multidimensional Binary Search Trees
Used for Associative Searching. Coniniun. A C M 18, 8
(September 1975), 509-517.

[2] CATMULL, E., AND SMITH, A. R. 3-D Transformations
of Images in Scanline Order. Computer Graphics 14, 3
(1980), 279-285.

[3] DOCTOR, L., AND TORBORG, J . Display Techniques
for Octree-Encoded Objects. I E E E Coniput. Graphzcs
and Appl . 1 (July 1981), 29-38.

[4] FUCHS, H. , ABRAM, G. , AND GRANT, E. D. Near Real-
Time Shade Display of Rigid Objects. In Proceedangs
of S I G G R A P H '83 (1983), pp. 65-72,

[5] FUCHS, H. , POULTON, J . , EYLES, J . , GREER, T.,
GOLDFEATHER, J . , ELLSWORTH, D., MOLNAR, S.,
TURK, G . , TEBBS, B., AND ISRAEL, L. Pixel-Planes 5:
A Heterogeneous Multiprocessor Graphics System Us-
ing Processor-Enhanced Memories. Coniputer Graphics
23, 3 (July 1989), 111-120.

[6] GEIST, G. , AND SUNDERAM, V. Network-based Con-
current Computing on the PVM System. Concurrency:
Practice and Experience 4 , 4 (June 1992), 293-312.

[7] HANRAHAN, P. Three-Pass Affine Transforms for Vol-
ume Rendering. Computer Graphics 24, 5 (1990). Spe-
cial issue on San Diego workshop on Volume Rendering.

Display of Surfaces from Volume Data.
I E E E Coniyutcr Graphics and Applications (May
1988), 29-37.

[9] LEVOY, M . Efficient Ray Tracing of Volume Data.
A G M Traiisactions on Graphics 9, 3 (July 1990), 245-
261.

[lo] MA, K. -L. , COHEN, M., AND PAINTER, J . Volume
Seeds: A Volume Exploration Technique. T h e Jour-
nal of Visualization and Coniputer Anin ia t ion 2 (1991),

[ll] MA, K.-L., AND PAINTER, J . S. Parallel Volume Vi-
sualization on Workstations. Coniputers and Graphics
17, 1 (1993).

[la] MACKERRAS, P. A Fast Parallel Marching Cubes I n -
plementation on the Fujitsu AP1000. Tech. Rep. TR-
C:S-92-10, Department of Computer Science, Australian
National University, 1992.

[I31 MONTANI, C., PEREGO, R., AND SCOPIGNO, R. Paral-
lel Volume Visualization on a Hypercube Architecture.
In 1992 Workshop on Volunie Visualization (1992),
pp. 9-16. Boston, October 19-20.

[14] NIEH, J., AND LEVOY, M. Volume Rendering on Scal-
able Shared-Memory MIMD Architectures. In 1992
Workshop on VOlUnit . Visualization (1992), pp. 17-24.
Boston, October 19-20.

[15] PHONG, B. Illumination for Computer-Generated Pic-
tures. Coniniun. ACM 18, 6 (June 1975), 311-317.

[l G] PORTER, T., AND DUFF, T . (::ompositing Digital hi-

ages. In Proceedings of S I G G R A P H '84 (July 1984),

[17] SCHRODER, P., AND SALEM, J . B. Fast Rotation of
Volume Data on Data Parallel Architectures. In Pro-
ceedings of Visualization'SI (October 1991), pp. 50-57.

[18] SCHRODER, P., AND STOLL, G . Data Parallel Volume
Rendering as Line Drawing. In 1992 Workshop on vol-
u m e Visualization (1992), pp. 25-31. Boston, October

[8] LEVOY, h4.

135-140.

pp. 253-259.

19-20.

[19] THINKING MACHINES CORPORATION. T h e Connection
Machine CM-5 Technical Sunimary , 1991.

[20] THINKING MACHINES CORPORATION. C M M D Rejer-
ence Manual; Preliminary Docunieritatiora f o r Version
3.0 Beta , February 1993.

[21] V ~ Z I N A , G. , FLETCHER, P. A., AND ROBERTSON,
P . K . Volume Rendering on the MasPar MP-1. In
1992 Workshop o n volunie Visualization (1992), pp. 3-
8. Boston, October 19-20.

[22] Yoo, T., NEUMANN, U . , FUCHS, H . , PIZER, S., CCJL-
LIP, T . , RHOADES, J . , AND WHITAKER, R. Direct Vi-
sualization of Volume Data. I E E E Computer Graphics
and Applications (July 1992), 63-71.

22

