
An Intelligent System Approach to Higher-
Dimensional Classification of Volume Data

Fan-Yin Tzeng, Eric B. Lum, Member, IEEE, and Kwan-Liu Ma, Senior Member, IEEE

Abstract—In volume data visualization, the classification step is used to determine voxel visibility and is usually carried out through the

interactive editing of a transfer function that defines a mapping between voxel value and color/opacity. This approach is limited by the

difficulties in working effectively in the transfer function space beyond two dimensions. We present a new approach to the volume

classification problem which couples machine learning and a painting metaphor to allow more sophisticated classification in an intuitive

manner. The user works in the volume data space by directly painting on sample slices of the volume and the painted voxels are used

in an iterative training process. The trained system can then classify the entire volume. Both classification and rendering can be

hardware accelerated, providing immediate visual feedback as painting progresses. Such an intelligent system approach enables the

user to perform classification in a much higher dimensional space without explicitly specifying the mapping for every dimension used.

Furthermore, the trained system for one data set may be reused to classify other data sets with similar characteristics.

Index Terms—User interface design, classification, transfer functions, graphics hardware, visualization, volume rendering, machine

learning.

�

1 INTRODUCTION

VOLUME rendering has become an important tool for
many visualization applications. Visualizing volume

data consists of twokey steps: classification and rendering. In
the classification step, the task is todefine amappingbetween
data values and the corresponding colors and opacities,
usually through the specification of a transfer function. The
rendering step assigns color and opacity to each voxel
according to this mapping and then projects the voxels
according to the view setting to produce an image that
appropriately displays the features of interest in the data.

While constructing a 1D (one input) or 2D (two input)
transfer function is a manageable task for average users, the
interface can be unintuitive since the user must work in the
derived transfer function space, shown in the bottom left
and bottom middle of Fig. 1.

In addition, the traditional transfer function is of limited
effectiveness in performing the actual classification. For
example, for the MRI head data set used in Fig. 1, it is
difficult to use a 1D transfer function to differentiate the
brain and the region near the skull since the scalar values of
the two materials are similar. As such, both materials must
be shown together, in which case, the outer layer might
obscure the brain material of interest when rendered in 3D.
The user could reduce the opacity of the outer layer to make
the brain more visible, but the brain would simultaneously
become more transparent and difficult to see. A transfer
function that is a compromise between the two may be
found through an iterative of process of trial and error. An
example is the upper left image in Fig. 1, which has some

material obscuring the brain as well as a slight transparency
of the brain.

Higher-dimensional classification can lead to better
results since it uses more properties for each voxel, such
as gradient information, its location, and local texture. With
previous methods, however, the user specifies the classifi-
cation in transfer function space directly, limiting the
number of data properties that can be used simultaneously.
An example of a visualization of the brain using a
2D transfer function and its interface are shown in the
center of Fig. 1. The additional gradient information used in
constructing the transfer function allows more refined
classification and works well when the user intends to
visualize the boundaries between different materials. In
many cases, classification can be improved even further by
using transfer functions that extend beyond 2D or 3D.
Finding a method for specifying these transfer functions in
an intuitive and efficient manner remains an important
challenge in making volume visualization a more attractive
tool for understanding data.

We present a new approach to the volume classification
problem, relying on an intelligent system to abstract high-
dimensional mapping functions from the user. The user’s
interaction consists of specifying regions of interest by
painting on a small number of slices from the volume data.
The user is given full control of what materials they want to
classify by applying one color of paint to parts of the
volume they are interested in and another color of paint to
regions they do not want to include. The intelligent system
employs a machine learning method using the painted
regions as training data to “learn” a classification function.
We have conducted a study of using such an approach to
higher-dimensional volume classification by experimenting
with using a variety of data properties as inputs, such as
scalar value, scalar gradient magnitude, location, and
neighboring values. We compare two different machine

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 3, MAY/JUNE 2005 273

. The authors are with the Institute for Data Analysis and Visualization
(IDAV), Department of Computer Science, University of California, Davis,
CA 95616-8562. E-mail: {tzeng, lume, ma}@cs.ucdavis.edu.

Manuscript received 2 Oct. 2004; revised 13 Dec. 2004; accepted 23 Dec.
2004; published online 10 Mar. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-0122-1004.

1077-2626/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

learning methods: neural network and support vector
machines, and demonstrate them with several data sets.
We show that high-dimensional classification functions can
better differentiate volumetric materials for visualization,
achieving sophisticated classifications that would otherwise
be impossible in traditional lower-dimensional transfer
function spaces.

We also exploit the programmability of modern graphics
hardware to accelerate all stages of the volume visualization
process, including the implementation of a hardware-
accelerated, machine-learning-driven volume renderer. As
a result, the user is able to paint on the volume,
immediately see the results of the classifier’s training, and
continue to paint to provide additional training data to steer
the machine learning model toward achieving a classifica-
tion function that meets the user’s visualization objective.
Finally, we show that a trained system is potentially
reusable. For example, in the context of medical imaging,
such a system can be trained to classify data sets from
different scans of the same patient or even different
patients. This capability is very desirable since the training
can capture an expert’s knowledge about the specific type
of data as well as the classification task.

2 RELATED WORK

There has been a great deal of research devoted to the
generation of transfer functions for volume visualization
[23]. Fujishiro et al. [7] use topological information from a
hyper-Reed graph to derive transfer functions. Bajaj et al. [1]
present techniques for capturing isosurfaces of interest. He
et al. [11] use genetic algorithms to breed trial transfer
functions. The user can either select functions from
generated images or allow the system to be fully automated.
Marks et al. [19] address the parameter selection problem in
general by rendering a multidimensional space of those
parameters. The user then navigates this space, in the
context of volume visualization, to choose appropriate
transfer functions. Jankun-Kelly and Ma [14] present
automated methods for generating transfer functions to
visualize time-varying volume data.

Levoy [18] shows how to use gradient magnitude to
enhance material boundaries in volume data. König and
Gröller [17] introduce a user-interface paradigm with a set
of specification tools assisted with real-time volume
rendering to make it easier for the user to select transfer

functions. Kindlmann and Durkin [15] suggest that, by
looking at a two-dimensional scatter plot of data values and
gradient magnitudes, opacity transfer functions can be
easily defined. Such transfer functions can effectively
capture boundary features between materials of relatively
constant data value. Kniss et al. [16] extend this work by
introducing a set of direct manipulation widgets as the
interface for defining multidimensional transfer functions
for volume visualization. The concept of dual-domain (i.e.,
the volume data space and the transfer function space)
interaction they describe allows the user to specify regions
in volume space and immediately see the resulting regions
in transfer function space. This interaction helps incorporate
the user’s spatial understanding of the volume data into the
transfer function space. Huang and Ma [13] present a
technique that can suggest a 2D transfer function by using
the results of partial region growing from a point selected in
volume space. Our technique eliminates the transfer
function space entirely, replacing it with a volume space
painting interface.

We employ machine learning techniques coupled with
an interactive user interface and a hardware-accelerated
volume renderer for classification and visualization of
biomedical volume data. Artificial neural networks have
received a great deal of attention in the field of biomedical
imaging, especially to assist in image segmentation tasks
[9], [10], [22]. Support vector machines [3], [5] have been
used in the applications of pattern recognition including
object recognition [2], text categorization [26], and face
detection [21].

The work presented in this paper extends our previous
research [27] in the following ways. First, to demonstrate
that our method is flexible and can be used with machine
learning classifiers other than neural networks, we have
implemented a support vector machines (SVMs) classifier.
We have compared its performance to that of a neural
network and have found that using SVMs typically leads to
better classification results. Second, we have performed a
study of this intelligent system approach for a variety of
volume data classification tasks. Third, we have also
investigated information reuse by training a neural network
or SVMs model with one data set and applying it to a new
data set with similar characteristics. Fourth, we have
extended the description of our hardware neural network
implementation. Finally, we conclude our work with a
discussion of the pros and cons of such an intelligent system
approach and provide pointers for future work directions.
This paper thus presents a more complete treatment of the
intelligent system approach to the volume classification
problem.

3 AN INTELLIGENT SYSTEM APPROACH

In traditional volume rendering interfaces, the user requires
a certain level of understanding of the intensity distribution
of a data set to make an acceptable transfer function. When
a new data set is used, a great deal of time might be spent
experimenting with different mapping functions for that
data set.

The use of an intelligent system approach allows for the
application of high-dimensional classification functions

274 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 3, MAY/JUNE 2005

Fig. 1. Left: Volume rendering of an MRI head data set with a 1D transfer

function. Middle: Using a 2D transfer function. Right: Using a

10D classification function.

while freeing the user from operating the visualization
system in a derived transfer function domain. In our study,
we found that a painting user interface provides a simple
and intuitive means of specifying regions of interest. Fig. 2
shows the overall process of our interactive classification
and visualization method. The portion most visible to the
user is the painting-based interface used to collect sample
points of the region of interest. The user starts by painting
sample points on a slice of the volume. These painted
sample points are fed to the intelligent system, where
training begins to produce the classifier.

Training is an iterative process, with the user able to
interactively view the classification results by applying the
current AI system for classifying individual slices or the
entire volume in real-time. The user can use this feedback to
further revise the painting and add additional training data
so that the resulting system leads to a more desirable
classification.

4 A PAINTING-BASED INTELLIGENT USER

INTERFACE

The goal of our user interface is to provide a means for the
user to partition a data set into different material classes.
The user specifies membership into a material class by
painting on slicing planes using two different colors. One
color is applied to indicate example regions that are part of
the material class, while the other color is used to indicate
regions that are not part of the material class. For example,
the user might apply red paint to the brain region of a slice
of an MRI scan to indicate it is a material of interest and
blue to other regions to indicate otherwise. The user is also
provided with a set of familiar painting user-interface tools
which include brushes and erasers of varying sizes. There
are x, y, and z axis-aligned slicers for the user to view and
paint on the volume, as shown in Fig. 3.

The user does not need to paint on all slices of the volume,
but instead, must paint on some areas of several slices to
classify the entire volume. The required number of painted
voxels varies depending on the data set.When using position
information for the classification, the painted voxels should
be spread out across different slices in order to provide
general samples for training. Thus, real-time visual feedback

must be provided such that the user can look at the resulting
slices or volume to find the regions that are notwell-classified
and quickly go to the corresponding slices to paint more
sample points to improve the classification.

When painting on a slice, the corresponding painted
regions are also shown in the other two slicers, with all
painted sample points recorded in a table that is used to
train the neural network. For scalar data, the sample point
data includes the scalar value of the voxel, gradient
magnitude, the scalar values of its neighbors (up, down,
left, right, front, and back), the position of this voxel, and an
output value that indicates membership into a material
class. For color data, the sample point data includes the R,
G, B values of the voxel, values of its neighbors, and
position. Therefore, when a user chooses to visualize a color
data considering six neighbors, the dimensionality of its
classification function is 3þ 6� 3ð Þ þ 3 ¼ 24.

In Fig. 4, the progression of a session of a user employing
our technique is shown. The left image of the top row shows
a slice painted with pink representing the area the user
wants to see and blue representing the area the user does
not want to see. The middle image shows the result of the
color-coded classification by a machine learning model. As
indicated by the color bar, if a pixel’s color is closer to blue,
the pixel is less likely to be part of the material of interest. If
it is closer to pink, the pixel is more likely to be part of the
material of interest. When the user only paints on the empty
region and the brain, the classified slice shows the brain in
pink, which indicates that the voxels in this region have
very similar characteristics to the regions the user painted.
The other regions of the head are shown in red to green
since the user has not given input to classify them. The right
image is a volume rendering for this classification.

When the user obtains a result containing areas that are
not well-classified, more painting is required. The middle
row of Fig. 4 shows a painted slice, the classified slice, and
the classified volume rendering after more paint has been
applied. Most materials, except the top of the head and

TZENG ET AL.: AN INTELLIGENT SYSTEM APPROACH TO HIGHER-DIMENSIONAL CLASSIFICATION OF VOLUME DATA 275

Fig. 2. The visualization process. The painting user interface gives the
user direct access to the volume data and allows the user to indicate the
region of interest. “Samples” are the points in painted regions and are
the inputs to the machine learning technique. By applying the trained
machine learning model to a volume, the user can classify and then
render the volume. The resulting visualization is shown to the user so
that paint can be added or removed to refine the classification until a
satisfactory result is obtained.

Fig. 3. The painting-based intelligent user interface.

brain, have been removed. By continuing to paint on the top

of the head, as shown in the bottom row of Fig. 4, the brain

is the only material remaining, with all other regions

removed.

5 INTELLIGENT-SYSTEM-ASSISTED CLASSIFICATION

With our method, the user interacts with materials in a

volume directly. The underlying classification is hidden

from the user through the use of machine learning.
Any supervised machine learning technique, such as

artificial neural networks [28], support vector machines

[12], Bayesian networks [6], or hidden Markov models [20],

can fit into this framework as long as the technique is able to

perform classification after learning from the user’s high-

dimensional inputs.
When using a machine learning classifier, there are two

steps involved. First, the classifier is trained with pairs of

inputs and desired outputs. The input in our design is a set

of vectors, where each vector contains information about a

painted voxel such as the voxel value, gradient magnitude,

position, and neighboring voxel values. The desired output

is the corresponding class information, which is assigned to

one if it is part of the material class and zero if it is not.
After training, a classifier is created to determine which

regions in the volume are members of a particular material

class. For each voxel, an input vector containing the same

information used for training is then passed to the classifier

to obtain an output value between zero and one, which

indicates the likelihood that the voxel belongs to the

material class.

The size of the input vectors has a strong influence on the
time required for classification to occur. Therefore, the user
is given the option to either use all the input vectors or
subsequently remove those dimensions which do not
contribute to the classification results.

The variousmachine learning algorithms that can be used
for classification have different trade-offs in performance,
accuracy, and complexity. We employ neural networks and
support vector machines as the machine learning classifiers.
Neural networks are a well-established technique that have
been shown tobewell-suited for awidevariety of tasks,while
support vectormachines are anewermethod that has become
increasingly popular in recent years.

5.1 Artificial Neural Network

Fig. 5 shows the structure of an artificial neural network.
Each connection between neurons has a weight, with the
weights modulating the value across the connection.
Training is the process of modifying the weights until the
network implements a desired function. To train a network,
a set of training inputs and desired outputs are required. At
the beginning, the weights are set at random and are
iteratively modified to obtain a network which minimizes
the error at the output for the training data. Once training
has occurred, the network can be applied to data that was
not part of the training set.

The neural network topology we use is three-layer
perceptron and it is trained with the Feed-Forward Back-
Propagation Network (BPN) algorithm. The back-propaga-
tion algorithm, which is designed for supervised training,
was introduced by Werbos [28] and has been widely used
since the work of Rumelhart and McClelland [24].

A back-propagation neural network consists of at least
three layers: an input layer, at least one hidden layer, and
an output layer. The structure of a neural network is shown
in Fig. 5. In this example, there are m inputs in the input
layer, n hidden nodes in the hidden layer, and one output in
the output layer. Neurons are connected in a feed-forward
fashion and every neuron in the input layer is connected to
all neurons in the hidden layer. Similarly, hidden nodes are
fully connected to the nodes in the output layer.

The input vector is propagated forward through the
network, influenced by the weights of each connection

276 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 3, MAY/JUNE 2005

Fig. 4. Top: A slice painted by a user where pink represents the material
the user would like to see and blue represents undesirable materials, the
result of classification with a color bar to its right, and the rendered result
of the classified volume. Middle: The results after more painting
information has been added. From left-to-right: A painted slice, the
classified slice, and the classified volume. Most materials except the top
of the head and brain have been removed. Bottom: Additional paint is
added to remove all regions except the brain. From left-to-right: A
painted slice, the classified slice, and the classified volume.

Fig. 5. Structure of an artificial neural network with m inputs, n hidden

nodes, and one output.

between neurons from different layers. The output of the
back-propagation network is compared with the desired
output and an error value is calculated. The error is back-
propagated to the inputs and used to adjust the weights to
better match the desired output. In order for a neural
network to model nonlinear relationships between inputs
and outputs, a nonlinear transformation is required. In our
work, we use the standard sigmoid function, which can be
expressed as fðxÞ ¼ 1= 1þ e�xð Þ.

In order to perform as much training as possible while
maintaining interactivity, the incremental training process
occurs in the system idle loop. After each training iteration,
a classified slice is shown so the user can determine
whether the network performs satisfactorily in that slice
region or if more paint should be applied to supply
additional training data.

In our work, the user can see training progress in real-
time. Fig. 6 shows an example of the iterative refinement of
neural network weights over a period of three seconds in
one second increments when applied to the MRI Head data
set. The image on the left shows the result of the network
without any training, while the figure on the far right shows
the solution after three seconds of training to isolate the
brain region. If additional paint samples were added, the
training algorithm would use this data to refine the
previous network.

Classification of an entire volume can be performed in
hardware during rendering, as described in Section 6, or in
software. Applying the network in software consists of
feeding each voxel and its neighboring properties into the
network to get an uncertainty value between zero and one.
This uncertainty value can then be stored in a new classified
volume that can be rendered using traditional volume
rendering methods in either software or hardware. The
advantage of using software for classification is that it does
not require any graphics hardware, the size of the network
can be arbitrarily large, and classification is a preprocessing
step that occurs once, rather than for each frame during
rendering. The disadvantage of software is performance,
where it can take up to 9 seconds to apply the network with
11 input nodes for 11-dimensional classification, 8 hidden
nodes for classifying a 256� 256� 256 volume using a
2.8 GHz Pentium 4 computer, making it unsuitable for
applications where the user must see the result of the
trained network during training.

5.2 Support Vector Machines

In recent years, the support vector machines (SVMs)
method has become increasingly popular for efficiently
solving classification problems. SVMs is a newer classifica-
tion technique that not only separates data into different

classes, but leaves a maximal margin between those classes.
Fig. 7 illustrates the maximal margin property. In the left
image, an infinite number of lines could be used to separate
the two classes shown in red and blue. The black line shown
in the right image illustrates a separation with the
maximum margin property, with the green lines illustrating
the margins. Because of their maximum margin separation,
SVMs can obtain better generalized classification results,
which minimizes the risk of misclassification for data that is
not shown in the training set.

When the given classes cannot be linearly separated in
the original data space, SVMs map the data from the lower-
dimensional data space to a higher-dimensional feature
space where the classes can be linearly separated. This
linear classification is then performed using hyperplanes,
called “optimal separating hyperplanes,” that are placed at
equal distances between the separated classes.

The nonlinear mapping to the higher-dimensional
feature space is accomplished using kernel functions.
Several different kernel functions have been developed,
including linear, polynomial, radial basis function, and
sigmoid kernels. A radial basis function kernel is widely
used for general-purpose classification and is the one we
use in our work. It typically requires fewer hyperpara-
meters than other kernel functions, which improves
runtime performance since the complexity of applying
SVMs scales linearly with the number of hyperplanes used.

The linear classification performed by SVMs can be
defined as follows: Given a set of N-dimensional training
data, xi 2 Rn, and the corresponding class labels,
yi 2 fþ1;�1g, we can use a simple linear classifier

S ¼ fxjhw; xi þ b ¼ 0g

to separate two classes. The decision function becomes

f xnewð Þ ¼ sign hw; xnewi þ bð Þ:

Maximizing the margin between different classes is a
problem of constrained optimization and the Lagrange
method is used to solve the constrained optimization
problem. With the Lagrange method, training data xi are
used as support vectors and determine the hyperplane
when the Lagrange multiplier �i > 0. The decision function
with support vectors (sv) becomes

f xnewð Þ ¼ sign
X#sv

i¼1

�iyihxsv
i ; xnewi þ b

 !
:

TZENG ET AL.: AN INTELLIGENT SYSTEM APPROACH TO HIGHER-DIMENSIONAL CLASSIFICATION OF VOLUME DATA 277

Fig. 6. The user can immediately see the result of the iterative

refinement of the neural network. This image sequence shows the

progression of training results over a three second period. Fig. 7. This figure illustrates the maximal margin property of SVMs. If
there are two classes to be classified, most machine learning algorithms
find a separation to well classify the training data, as shown in the left
image. SVMs in the right image, provide the maximal margin property
that not only separates the training data, but has the potential to better
classify the data which are not shown in the training data set.

When a kernel function is applied, this becomes

f xnewð Þ ¼ sign
X#sv

i¼1

�iyiK xi; xnewð Þ þ b

 !
;

where, for the radial basis function kernel used in our work,

K x1; x2ð Þ ¼ expð��jjx1 � x2jj2Þ:

The error from classifying training data is used as the
stopping criteria. When the error is higher than a pre-
selected threshold, the hyperplane is refined to reduce the
error iteratively until the threshold is reached.

5.3 Comparison between NNs and SVMs

5.3.1 NNs versus SVMs in Theory

Both NNs and SVMs have the same goal of finding the
hypothesis function to separate data into different classes
that minimize errors in classification. Most machine learn-
ing methods, such as neural networks, are designed to
minimize empirical risk, that is, to reduce the probability of
misclassification within the training data. On the other
hand, support vector machines are designed to minimize
the structural risk so that the probability of misclassifying
the unseen data is minimized to better approximate the
classification function needed.

With NNs, training is done repeatedly to obtain better
and better results for classification. In most cases, the neural
network is continuously improved during the training
process. It is difficult to determine when to stop training or
when the best network is generated. SVMs handle the entire
training data set simultaneously and provide the optimal
solution when the training is complete.

A neural network trains and modifies itself by changing
the weights on the connected edges. During this updating
process, the solution can get stuck at local minima since the
training data are fed into the network one by one and a
subset of the training data can have stronger influence on
the weights than the other subsets. SVMs, on the other
hand, are guaranteed to a global minima solution for a
classification task.

5.3.2 NNs versus SVMs with Examples

Tables 1 and 2 show a comparison between using NNs and
SVMs with our method when performing the same task of
classifying the brain. For the results shown in Table 1, we
added training data through the application of paint until
the neural network provided the satisfactory classification

shown in the lower left. Table 2 shows the result of
providing training data to perform the same task, but with
the interactive feedback of the performance of a support
vector machines classifier. The result of this classification is
shown in the lower right. Notice that, in order to obtain
similar classification results, we needed to provide far more
training data for the NN compared to that for the SVMs
since SVMs provide maximal margins between classes to
better predict the unseen data. As shown in Table 1,
7,988 training sample points were required for the NN
compared to the 818 training samples for the SVMs as
shown in Table 2.

In these tables, “User’s training time” refers to the time
we spent training the program to learn the satisfying
classification. It took two to three minutes to provide
training data for the NN compared to less than 30 seconds
for the SVMs.

“Training time” is the time used by eachmachine learning
technique for training. It is difficult to compare the two
methods since the choice of training parameters can lead to
significant variations in performance. In thiswork, training is
haltedwhen the results looksatisfactory for theNNandwhen
the SVMs find the optimal solution. Under these circum-
stances, SVMs technique is noticeably faster than NN.

“Classifying the volume” shows the time needed to
classify the entire volume after training. For NN, it depends
on the network size. Therefore, the times shown for two
tables with differing numbers of training samples are very
close. For SVMs, the classifying time depends on the
number of training samples, so the two tables show times
that differ significantly.

6 HARDWARE ACCELERATION

An advantage of using a neural network classifier is that the
structure of a neural network is more easily implemented in
graphics hardware than that of support vectormachines. The
added performance of using graphics hardware allows for
classification to occur fast enough that the user can evaluate
the result of neural networks training on the entire volume
during the application of paint. With this feedback, the user
can steer the network to implement the desired classification
function. The application of the network to a volume in
software, on the other hand, limits this interactivity because
of the sheer number of voxels typically involved.

The neural-network volume renderer is implemented
using a fragment program, which permits the execution of

278 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 3, MAY/JUNE 2005

TABLE 1
Using the Training Set Obtained Based on an NN Classifier

TABLE 2
Using the Training Set Obtained Based on an SVMs Classifier

assembly language instructions that are run on a per-pixel
basis during rasterization. Rendering uses the standard
technique of drawing a stack of view-aligned polygons that
sample a 3D texture [8], with the enhancement that a
fragment program is used that implements the neural
network as these polygons are rendered. We tested our
implementation on an ATI Radeon 9700 Pro graphics card.

Our fragment program requires seven texture lookups
for retrieving the center voxel values and its neighbors as
inputs for the neural network. The position of a sample in
3D volume space is simply derived from the texture
coordinates of the pixel. The weights of a neural network
are a set of floating-point numbers and are passed to the
fragment program as input parameters. The number of
input parameters is limited; thus, for larger neural net-
works, the weights would need to be passed to the fragment
program using a different mechanism. They could, for
example, be stored in textures, which would add overhead
from the redundant texture reads needed to fetch these
weights each time the network is applied.

The same nearest neighbors used for neural network
calculation are also used for estimating gradient for light-
ing. Thus, normal map textures are not required for
lighting, which permits the storage of significantly larger
volumes on the graphics card. The neural network itself can
be implemented with a series of vectorized MAD (multiply
add) instructions, with additional instructions to compute
the sigmoid excitation function. Fig. 8 illustrates this
process where the network has only four input nodes and
four hidden nodes for simplicity. The hidden nodes Hm can
be represented as

Hm ¼
X4
n¼1

In � wðn;mÞ;m 2 f1; 2; 3; 4g;

where wðn;mÞ is the weight between input node n and
hidden node m. The hidden nodes and weights are stored
in vectors

H ¼ ðH1; H2; H3; H4Þ; and
Wn ¼ ðwðn; 1Þ; wðn; 2Þ; wðn; 3Þ; wðn; 4ÞÞ;

respectively. The value of H is computed with a series of
MAD instructions, as shown in Fig. 8. After these opera-
tions, the sigmoid function is then applied to H, completing

one layer of computation. By repeating this procedure,
larger networks and additional layers can be implemented
in a fragment program.

Rendering performance is limited by the time required to
rasterize the textured polygons to the screen, which is
hampered by the necessary seven texture lookups and the
length of the fragment program. The amount of data sent to
the renderer for each frame consists only of the newest
neural network weights. The rendering of a 256� 256� 256
volume to a 512� 512 window occurs at approximately
1.5 frames per second using one slice per voxel on the
graphics card mentioned previously. Since the amount of
data that must be sent to the renderer is low, rendering can
be easily done asynchronously on a separate computer. The
rendering PC queries the PC where painting and neural
network training occurs for the most recent set of weights
(under one kilobyte of data) for each frame.

7 CASE STUDIES

We present three case studies using the painting user
interface combined with a machine learning approach. The
data sets we used to test our system include a knee, chest,
and cryosection color brain data set each resized to 2563, a
1283 MRI head data set, a 256� 256� 156 MRI brain data
set, and three 256� 256� 128 tumor data sets.

7.1 High-Dimensional Classification

For color data sets, the classification function is only used to
assign opacity since each voxel has an RGB color associated
with it. Assigning opacity by specifying a three-dimensional
transfer function for this type of data is made difficult by
the traditional 2D interface and display. Our method,
however, is able to handle color data sets in exactly the
same manner as scalar value data sets, where the user
paints on 2D slices that pass through the volume. The
information used in classification includes the RGB color
values of a voxel, the colors found in the voxel’s six
neighbors, and its position. This gives up to 24 dimensions
for our classification function.

An example of classifying the cryosection color data set
is shown in Fig. 9. The left image is one of the photographic
slices of the original data set. Each slice consists of the brain
in the middle with the surrounding white ice and the table
the brain was placed on. Some regions in each slice show
gaps in the brain which reveal deeper regions of the data set
that are not part of the current slice. To visualize the brain
properly, it is necessary to remove the ice and surrounding
regions, as well as the gaps in the brain, which often have a
very similar color as the brain itself. Takanashi et al. [25]
developed a method for specifying three-dimensional
transfer functions that consists of transforming the RGB
color values using independent component analysis into a
derived ICA space that allows a transfer function to be
specified as a series of 1D transfer functions aligned to each
of the ICA axes. Their method simplifies the task of
specifying RGB color transfer functions, but requires the
user to work in a derived data space that is further from the
original data. With our method, the brain can also be
classified from its surrounding material, but the user is able

TZENG ET AL.: AN INTELLIGENT SYSTEM APPROACH TO HIGHER-DIMENSIONAL CLASSIFICATION OF VOLUME DATA 279

Fig. 8. Illustration of the hardware implementation for the neural network.

to work directly with the data, avoiding the specification of
a three-dimensional transfer function.

The right image is the result of the classified brain
generated using the values of a voxel, six neighbors, and the
position with 20 hidden nodes. Two cutting planes are
applied to the volume so that the user can look at the inner
structure. For color data sets, the voxel’s luminance is used
to calculate the gradient for shading.

7.2 Classifying Multiple Materials

The method described so far can be used to classify a single
material in the volume. Often, it is desirable to specify more
than one class in a volume. For example, a user might want
to show more than one material at a time or a certain organ
with high opacity value and other regions with low opacity
to provide context. Our method can be easily extended to
work with multiple material classes.

To classify more than one material at a time, we use
multiple classifiers. First, we classify a material by the
method described in the previous sections. When adding
another material class, a new classifier is created and used.
For the second material, we also follow the same procedure
used for classifying the first material. Two classifiers are
generated separately by two different groups of sample
points. The results of all classifiers are used to render the
classified volume.

Training is only performed on the newest material class.
Therefore, when classifying a volume into multiple materi-
als, the training time is the same as for single material
classification. Rendering is accomplished using multiple
passes, one for each material class.

We applied this technique to the first MRI head data set,
which has brain material in the middle surrounded by
materials of similar intensity near the skull. As shown in
Fig. 10, the two slices on the left are the user’s specification
for this classification process. The user first paints on the
brain to classify it and then paints on the lower half of the
head to provide context. The right image shows the result of
the classified brain and the rest of the head without the
upper half of the skull and other materials covering the
brain. With traditional transfer functions, it is difficult to
achieve a similar classification since the brain and the
materials near the skull have similar scalar values. But,
when texture and position are taken into account, as in our
approach, the two materials can be separated. Showing only
the lower half of the skull and skin is achieved mainly by
considering the position information.

Next, we tested the classification of multiple materials

with a knee data set containing several bones. Since the

bones are composed of the same materials, it is difficult to

separate them using only properties from the material itself

such as data value and gradient magnitude. Position

information plays an important role in this classification

task. With our system, a user is able to put different pieces

of bones into different classes. Fig. 11 shows the knee data

set and the classification result of different pieces of bones.

In the left image, a volume rendering result using

1D transfer function is shown. The right image is created

with our system where the three bones are separated and

rendered with different colors.
Fig. 12 is the result of classifying multiple materials from

a chest data set. In this case, the bones and lungs have been

classified. The lung has similar data value to other tissue

and has been separated using gradient and position

information.

7.3 Information Reuse

Using the painting metaphor with immediate visual feed-

back, the process of training a classifier is straightforward,

but it can take a few minutes to complete a classification.

280 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 3, MAY/JUNE 2005

Fig. 9. The left image is a slice of the original cryosection data set and

the right image is the classified result of the brain with a region cut away

to reveal the inner structure.

Fig. 10. The result of the classification of multiple materials. The slices

shown on the left are the user’s specification for classifying the brain and

the bottom of the head. The right image is the rendering result of this

classification.

Fig. 11. The left image is a rendered result of the knee data set with a
1D TF where all the bones have the same data properties. The right
image shows the classification result of three different pieces of bones
using our system, which takes into account position information for
classification.

Therefore, it can be advantageous to save these intelligent

classifiers for reuse on data sets with similar characteristics.

The capability of sharing and reusing a trained system can

be very powerful, especially for a comparative study such

as monitoring a patient’s condition over time. In addition,

one might want to save the classifier created by a person

with a high level of expertise so that the knowledge may be

shared and reused.
When reusing a trained classifier, it is necessary that the

two data sets share similar characteristics. For example, if

data value is used for classification, the same range of data

values in two data sets should represent the same material.

If position is taken into account, the materials in the

different data sets should be at similar locations.
To reuse a classifier, we save the neural network or

support vector machines configuration after training. The

amount of data to be saved is small, under 30 kilobytes.

Fig. 13 shows the results of reusing a classifier on two

anatomical MRI scans of the same person taken several

days apart. Fig. 13a shows the first data set rendered with a

1D transfer function. In Fig. 13b, the same data set is shown

using an SVMs classifier to extract the brain. In Fig. 13c, the

SVMs classifier is reused on the second data set generated

eight days later. The reused classifier performs reasonably

well, with some misclassification in the frontal lobe. The

user, however, can still use this classifier as a starting point
for refinement by supplying additional training data.

In medical practice or research, doctors often have to
look at a large number of data sets in a short period of time
for similar types of diagnoses or studies. The reuse of our
high-dimensional classifier can help increase their perfor-
mance in a significant way since classifying each data set
from scratch would be very time consuming. With our
method, all the data sets could first be automatically
classified using a trained system and the results are then
examined by the doctor to determine if any revision is
needed. Fig. 14 shows the results of reusing a classifier for
identifying tumors in different MRI brain data sets. Fig. 14a
shows a volume rendered image of a tumor data set using a
1D transfer function. Next, a neural network classifier was
created for this data set to isolate the tumor. The inputs
used are the voxel’s scalar value, gradient magnitude, and
its six neighbors to define the dense and high scalar value
regions. Fig. 14b shows the result of the neural network
classifier capturing a tumor at the lower right of the brain.
The result contains the tumor, some blood vessels, and
small pieces of the skull.

The trained classifier was then applied to a different
brain data set. The tumor in this data set has similar
properties and is captured by the classifier, as shown in
Fig. 14c. Notice that this tumor is not at the same location as
the tumor in the first data set. We also applied the same
classifier to a scan of a healthy brain; as expected, there is
nothing captured except small pieces of the skull and some
blood vessels, as shown in Fig. 14d.

We have demonstrated information reuse is feasible, but
there are limitations. For example,whenposition information
is used for classification, in many cases, better results can
be obtained since location is an important attribute in
differentiating materials with similar properties. However,
position information is often specific to a given data set
and can be undesirable when classifier reusability is
intended. Position information was not used for the
results in Fig. 14 since tumor position is not a learnable
attribute, but rather, is something that changes between
data sets. As a result, the classified results show some
undesired materials, such as blood vessels and small pieces
of skull. By taking into account location, a better classifier

TZENG ET AL.: AN INTELLIGENT SYSTEM APPROACH TO HIGHER-DIMENSIONAL CLASSIFICATION OF VOLUME DATA 281

Fig. 12. The result of classifying the bone and lung from the chest

data set.

Fig. 13. (a) A volume rendering result of a MRI brain data set with a 1D transfer function. (b) Classification result using an SVMs classifier to classify

the same brain data set. (c) Result of applying the previous classifier to a different scan the same person taken several days apart.

could be constructed for isolating a tumor in a data set, but
the reusability of the classifier would be low. We believe
that the practical value of classifier reusability in the context
of comparative study justifies this trade-off.

8 DISCUSSION AND FUTURE WORK

The use of higher-dimensional inputs often allows for
classification to occur with improved accuracy since
additional attributes can be taken into account when
making classification decisions. Some care must be taken
when considering these inputs since using unnecessary
attributes can have detrimental effects on the resulting
classifier. First, the use of unnecessary inputs increases the
complexity of the resulting classifier, which reduces
runtime performance for both training and classification.
Although a machine learning classifier can learn to ignore
these inputs, learning this behavior can often require more
training data than would normally be necessary. In our
implementation, the user can specify which inputs are used
by a classifier at runtime based on their intuition as to
which inputs should be beneficial in classification. It would
be desirable to have an automatic mechanism for removing
unnecessary inputs from a classifier.

When a voxel’s neighboring values are used as inputs into
themachine learning classifier, including thevoxel’s gradient
magnitude as input provides seemingly redundant informa-
tion. Specifically, since a voxel’s gradient magnitude can be
computed from its neighbors using central differencing, a
classifier should be able to “learn” this relationship during
training. Including redundant but relevant input attributes
has been shown to improve learning performance [4], so we
include gradient magnitude since it is an important
property in classification. In our experience, incorporating
the gradient information directly can reduce the amount
of training time and data required to achieve a given
classification result.

In our implementation, the volume rendered results can
be slightly different when using hardware and software
neural networks. Our hardware neural network renderer
performs classification in the fragment program using
interpolated data as input. Thus, classification occurs after
filtering (postclassification). For our software implementa-
tion, each voxel in the volume is sent to a neural network to

obtain a classified volume that is then rendered in hardware

using linear interpolation. Thus, classification occurs before

interpolation (preclassification). Unlike traditional transfer

function methods, however, in the preclassified case,

interpolation is performed on a scalar valued classified

uncertainty volume and not on an RGBA color volume.
Our method is entirely based on the assumption that the

user has an understanding of the data they wish to visualize

and can look at a slice and identify how they would like

regions on that slice to be classified. In some cases, it might

be unclear to the user how some regions should be

classified. In the future, it would be beneficial to have a

mechanism for the user to communicate their uncertainty

over how different regions in a volume should be classified.
With a traditional transfer function user interface, the

resulting transfer function can often provide some insight

into the data properties of features in a volume. The resulting

classification functions generated with our method could

similarly provide meaningful information to scientists

about the higher-dimensional nature of the materials they

are studying. One of the difficulties of machine learning

classifiers and neural networks, in particular, is that the

structure and values of the resulting classifiers do not

provide direct user understandable information about the

nature of the resulting classification function. Some

research has been performed in visualizing neural net-

works to try to gain understanding of their underlying

classification. We believe that similar analysis of the

classification functions used in our work could prove

helpful to scientists.
Additional future work includes determining how our

painting interface could be combined with the traditional

transfer function paradigm. The technique described in our

paper could be adapted to generate traditional 1D or

2D transfer functions by using artificial intelligent systems

with one or two inputs. However, much of the power of our

method comes from higher-dimensional classification func-

tions that would otherwise be lost. Thus, the challenge in

this type of integration would be to maintain the high-

quality classification that comes from higher-dimensional

classification with some of the interface characteristics of

traditional transfer function interface.

282 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 3, MAY/JUNE 2005

Fig. 14. (a) The data set used for training a neural network classifier. (b) The result of classifying a tumor from the data set. (c) The trained classifier

was applied to a different brain data set and captures a tumor at different location. (d) The same classifier was then applied to a data set of a normal

brain. No anomaly is shown after the classification.

9 CONCLUSION

An effective visualization is able to communicate informa-

tion about those specific spatial structures that are of

interest to the viewer without the distraction of materials

that are not of interest. Since the types of structures of

interest vary widely depending on the user of a system,

user interfaces for classification must be powerful enough

to provide high-quality classification, yet intuitive enough

to be accessible to a wide range of scientists.
We have described a new type of volume visualization

user interface that allows the user to specify which regions

in a volume they would like to visualize by simply painting

on a few slices from that volume. Abstracted from the user

is a higher-dimensional classification function implemented

using artificial intelligence systems that makes effective use

of a voxel’s value, gradient magnitude, individual nearest

neighbors, and spatial position. Thus, the new user interface

is not only more intuitive than specifying a one-dimensional

transfer function curve, it is also more powerful because it

uses far more information for classification. In addition, a

classification function can also be reused to perform similar

classification tasks on different data sets.
The rendering of the classified volume can be imple-

mented in graphics hardware, providing maximum inter-

activity, which is critical for giving users the ability to

control which aspects of the volume they visualize. We

believe more intuitive interfaces, like the one we describe,

will make volume visualization more accessible to a wider

range of scientists.

ACKNOWLEDGMENTS

This work has been sponsored in part by the US National

Science Foundation under contracts ACI 9983641 (PECASE

award), ACI 0325934 (ITR), ACI 0222991, and CMS-9980063

and the US Department of Energy under Memorandum

Agreements No. DE-FC02-01ER41202 (SciDAC) and No.

B523578 (ASCI VIEWS). The cryosection data set was

provided by Dr. Arthur Toga of the UCLA Brain Research

Institute. The “Bruce Gooch’s Brain” data sets were

provided by Bruce Gooch at Northwestern University.

The authors would also like to thank the members of the

University of California Davis visualization and graphics

group for the valuable discussion and providing some of

the test data sets.

REFERENCES

[1] C.L. Bajaj, V. Pascucci, and D.R. Shikore, “The Contour Spec-
trum,” Proc. IEEE Visualization ’97 Conf., pp. 167-175, 1997.

[2] V. Blanz, B. Schölkopf, H. Bülthoff, C. Burges, V. Vapnik, and T.
Vetter, “Comparison of View-Based Object Recognition Algo-
rithms Using Realistic 3DModels,” Proc. Int’l Conf. Artificial Neural
Networks, pp. 251-256, 1996.

[3] B.E. Boser, I. Guyon, and V. Vapnik, “A Training Algorithm for
Optimal Margin Classifiers,” Proc. Fifth Ann. Workshop Computa-
tional Learning Theory, pp. 144-152, 1992.

[4] K.J. Cherkauer and J.W. Shavlik, “Rapid Quality Estimation of
Neural Network Input Representations,” Advances in Neural
Information Processing Systems, vol. 8, pp. 45-51, MIT Press, 1996.

[5] C. Cortes and V. Vapnik, “Support Vector Network,” Machine
Learning, vol. 20, no. 3, pp. 273-297, 1995.

[6] N. Friedman and D. Geiger, and M. Goldszmidt, “Bayesian
Network Classifiers,” Machine Learning, vol. 29, nos. 2-3, pp. 131-
163, 1997.

[7] I. Fujishiro, T. Azuma, and Y. Takeshima, “Automating Transfer
Function Design for Comprehensible Volume Rendering Based on
3D Field Topology Analysis,” Proc. IEEE Visualization ’99 Conf.,
pp. 467-470, 1999.

[8] A. VanGelder and U. Hoffman, “Direct Volume Rendering with
Shading via Three-Dimensional Textures,” Proc. ACM Symp.
Volume Visualization ’96 Conf. Proc., pp. 23-30, 1996.

[9] E. Gelenbe, Y. Feng, K. Ranga, and R. Krishnan, “Neural
Networks for Volumetric MR Imaging of the Brain,” Proc. Int’l
Workshop Neural Networks for Identification, Control, Robotics, and
Signal/Image Processing, pp. 194-202, 1996.

[10] L.O. Hall, A.M. Bensaid, L.P. Clarke, R.P. Velthuizen, M.S.
Silbiger, and J.C. Bezdek, “A Comparison of Neural Network
and Fuzzy Clustering Techniques in Segmenting Magnetic
Resonance Images of the Brain,” IEEE Trans. Neural Networks,
vol. 3, no. 5, pp. 672-682, 1992.

[11] T. He, L. Hong, A. Kaufman, and H. Pfister, “Generation of
Transfer Functions with Stochastic Search Techniques,” Proc. IEEE
Visualization ’96 Conf., pp. 227-234, 1996.

[12] M.A. Hearst, “Trends and Controversies: Support Vector Ma-
chines,” IEEE Intelligent Systems, vol. 13, no. 4, pp. 18-28, 1998.

[13] R. Huang and K.-L. Ma, “RGVis: Region Growing Based
Techniques for Volume Visualization,” Proc. Pacific Graphics ’03
Conf., pp. 355-363, 2003.

[14] T.J. Jankun-Kelly and K.-L. Ma, “A Study of Transfer Function
Generation for Time-Varying Volume Data,” Proc. Joint IEEE
TCVG and Eurographics Workshop, pp. 51-68, 2001.

[15] G. Kindlmann and J.W. Durkin, “Semi-Automatic Generation of
Transfer Functions for Direct Volume Rendering,” Proc. ’98 IEEE
Symp. Volume Visualization, pp. 79-86, 1998.

[16] J. Kniss, G. Kindlmann, and C. Hansen, “Interactive Volume
Rendering Using Multi-Dimensional Transfer Functions and
Direct Manipulation Widgets,” Proc. IEEE Visualization ’01 Conf.,
pp. 255-262, 2001.

[17] A. König and E. Gröller, “Mastering Transfer Function Specifica-
tion by Using VolumePro Technology,” Proc. Spring Conf.
Computer Graphics, vol. 17, pp. 279-286, 2001.

[18] M. Levoy, “Display of Surfaces from Volume Data,” IEEE
Computer Graphics and Applications, vol. 8, no. 3, pp. 29-37, 1988.

[19] J. Marks, B. Andalman, P. Beardsley, W. Freeman, S. Gibson, J.
Hodgins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J.
Seims, and S. Shieber, “Design Galleries: A General Approach to
Setting Parameters for Computer Graphics and Animation,” Proc.
SIGGRAPH ’97, pp. 389-400, 1997.

[20] A. McCallum, D. Freitag, and F. Pereira, “Maximum Entropy
Markov Models for Information Extraction and Segmentation,”
Proc. 17th Int’l Conf. Machine Learning, pp. 591-598, 2000.

[21] E. Osuna, R. Freund, and F. Girosi, “Training Support Vector
Machines: An Application to Face Detection,” Proc. ’97 Conf.
Computer Vision and Pattern Recognition, pp. 130-137, 1997.

[22] L.I. Perlovsky, Neural Networks and Intellect: Using Model-Based
Concepts. Oxford Univ. Press, 2000.

[23] H. Pfister, B. Lorensen, C. Bajaj, G. Kindlmann, W. Schroeder, L.S.
Avila, K. Martin, R. Machiraju, and J. Lee, “The Transfer Function
Bake-Off,” IEEE Computer Graphics and Applications, vol. 21, no. 3,
pp. 16-22, May/June 2001.

[24] D. Rumelhart and J. McClelland, Parallel and Distributed Processing:
Explorations in the Microstructure of Cognition. The MIT Press, 1986.

[25] I. Takanashi, E.B. Lum, K.-L. Ma, and S. Muraki, “ISpace:
Interactive Volume Data Classification Techniques Using Inde-
pendent Component Analysis,” Proc. Pacific Graphics ’02 Conf.,
pp. 366-374, 2002.

[26] J. Thorsten, “Text Categorization with Support Vector Machines:
Learning with Many Relevant Features,” Proc. 10th European Conf.
Machine Learning, pp. 137-142, 1998.

[27] F.-Y. Tzeng, E.B. Lum, and K.-L. Ma, “A Novel Interface for
Higher-Dimensional Classification of Volume Data,” Proc. IEEE
Visualization ’03 Conf., pp. 505-512, 2003.

[28] P. Werbos, “Beyond Regression: New Tools for Prediction and
Analysis in the Behavioral Sciences,” PhD thesis, Dept. of Applied
Math., Harvard Univ., 1974.

TZENG ET AL.: AN INTELLIGENT SYSTEM APPROACH TO HIGHER-DIMENSIONAL CLASSIFICATION OF VOLUME DATA 283

Fan-Yin Tzeng received the bachelor’s degree
in computer and information science in 2001
from the National Chiao-Tung University in
Taiwan. She is a PhD candidate in computer
science at the University of California, Davis.
Her research interests primarily involve scien-
tific data visualization, centering on volume
visualization and intelligent systems-based user
interfaces.

Eric B. Lum received the PhD degree in
computer science from the University of Califor-
nia (UC), Davis in 2004 and the BS and MS
degrees in electrical engineering from the Uni-
versity of California Los Angeles in 1997 and
1999, respectively. He is a postdoctoral re-
searcher in computer science at the University
of California, Davis. His research interests
involve the development of rendering and user
interaction methods that facilitate the expressive

visual representation of scientific data. He is a member of the IEEE and
the IEEE Computer Society.

Kwan-Liu Ma received the PhD degree in
computer science from the University of Utah
in 1993. He is a professor of computer science
at the University of California (UC), Davis. His
research spans the fields of visualization,
computer graphics, and high-performance com-
puting. During 1993-1999, he was with ICASE/
NASA LaRC as a research scientist. In 1999, he
joined UC Davis. In the following year, he
received the presidential Early Career Award

for Scientists and Engineers (PECASE). Presently, he is directing
research projects on parallel visualization, volume modeling and
visualization, artistically inspired illustrations, visual interface designs,
and information visualization. He is the editor of the VisFiles Column of
ACM SIGGRAPH’s Computer Graphics Quarterly. He is a senior
member of the IEEE and the IEEE Computer Society. Information
about Professor Ma’s publications and research projects can be found
at: http://www.cs.ucdavis.edu/~ma.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

284 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 3, MAY/JUNE 2005

