

16

14 Ideal
----0---- Vort

12 --0- Vessel
------b- Head

10
a.

(I) 8
(I)
a.

6

4

2

0
32 64 128 256 512

Number of processors

Figure 4 illustrates the compositing process described in Fig­
ure 3, using the images generated with the head data set and
eight processors. In Figure 4, each row shows the images from
one processor, while the columns show-from left to right-the
intermeqiate images before each composite phase. The right­
most column shows the final results, still divided among the eight
processors. The final tiled image is blown up and displayed on the
right. Figures 5 and 6 show images of the other two data sets
rendered in parallel using the algorithm described here.

CM-5

We performed multiple experiments on the CM-5 using par­
tition sizes of 32, 64, 128, 256, and 512 nodes. When these tests
were run, a 1,024 partition was not available. Figure 7 shows the
speedup results for a 512 x 512 image on each data set. Note that
the speedup is relative to the 32-node running time.

Because there is no communication in the rendering step,
you might expect linear speedup when utilizing more proces­
sors. As the three speedup graphs show, this is not always the
case due to load-balance problems. The vorticity data set is rel­
atively dense (that is, it contains few empty voxels) and there­
fore exhibits nearly linear speedup. On the other hand, both
the head and the vessel data sets contain many empty voxels

Table 1. CM-5 time breakdown (in seconds), vorticity data

set, 512 x 512 image size.

Function 32 64 128 256 512

dist 89.87 93.516 83.185 94.326 49.157

rend 48.2005 24.4303 12.697 6.3434 3.1878

comp 0.6309 0.5579 0.4091 0.3736 0.3213

comm 0.0843 0.0231 0.0181 0.0138 0.0097

send 0.9918 0.965 0.9645 1.0151 0.9849

July 1994

Parallel Volume Rendering Using Binary-Swap Compositing

Figure 7. CM-5 speedup for 512 x 512 image size.

Figure 8. CM-5 runtimes by data set, 512 x 512 image size.

100

 10

Ti
m
e

----0---- Vort
--o- Vessel
------b-- Head

o+-----.�---�----.-- -�

32 64 128 256
Number of processors

Figure 9. CM-5 runtimes by image size, vessel data.

100

10

0.1

----0---- 64x64
--0- 128x128
------b-- 256x256
----0---- 512x512

512

0.01 -j-----,------,-----r-----,
32 64 128 256 512

Number of processors

that unbalance the load. These data sets therefore do not exhibit
the best speedup.

Figure 8 shows timing results for all data sets, using an image
size of 512 x 512, and Figure 9 shows the results for the vessel
data set at several image sizes. All times are given in seconds.
The times shown in the graphs are the maximum times for all the
nodes for the two steps of the core algorithm: rendering and
compositing. The graphs do not include times for data distri­
bution or image gathering.

Table 1 shows a time breakdown by algorithm component­
data distribution (dist), rendering (rend), compositing compu-

65

Ti
m
e

Parallel Rendering

1000

--<>- Vort
-D- Vessel
----b--- Head

100

10

0 2 4 8 16 32

Number of processors

tation time (comp), compositing communications (comm), and
image gathering (send)-on a 512 x 512 rendering of the vor­
ticity data. It is easy to see that rendering time dominates the
process. Note that this implementation does not take advan­
tage of the CM-5 vector units. We expect much faster compu­
tation rates for both the renderer and compositor when the
vectorized code is complete.

The communication time varied from about 10 percent to
about 3 percent of the total compositing time. As the image
size increases, both the compositing time and the communica­
tion time also increase. For a fixed image size, increasing the par­
tition size lowers the communication time because each node
contains a proportionally smaller piece of the image and be­
cause the total communications bandwidth of the machine
scales with the partition size.

The data distribution time includes the time it takes to read
the data over Network File System (NFS) at Ethernet speeds on
a loaded Ethernet. The image gathering time is the time it takes
the nodes to send their composited image tiles to the host. While
other partitions were also running, the data distribution time
could vary dramatically due to the disk and Ethernet con­
tention. Taking the vorticity data set as an example, the data dis­
tribution varied from 40 to 90 seconds regardless of the partition
size. Both the data distribution and image gathering times will
be mitigated by use of the parallel storage and the use of the
HiPPI frame buffer.

Networked workstations

For our workstation tests, we used a set of 32 high-perfor­
mance workstations. The first four machines were IBM
RS/6000-550 workstations equipped with 512 Mbytes of mem­
ory. These workstations are rated at 81.8 SPECfp92. The next
12 machines were HP9000/730 workstations, some with 32
Mbytes and others with 64 Mbytes. These machines are rated
at 86.7 SPECfp92. The remaining 16 machines were Sun Sparc-
10/30 workstations equipped with 32 Mbytes, which are rated at
45 SPECfp92.

The tests on one, two, and four workstations used only the
IBMs because of their memory capacity. The tests with eight

66

Figure 10. PVM runtimes by data set, 512 x 512 image size.

Table 2. PVM time breakdown (in seconds),
vorticity data set, SU x SU image size.

Function 1 2 4 8 16 32

rend 350.24 180.15 79.54 45.01 20.59 12.50

comp 0.03 0.17 0.09 0.10 0.12 0.12

comm 0.00 0.57 0.39 2.04 3.11 1.37

and 16 used a combination of the HPs and IBMs. We used the
16 Suns for the 32-machine tests. We could not assure absolute
quiescence on each machine, because they are in a shared en­
vironment with a large shared Ethernet and file systems. Dur­
ing the testing period, there was network traffic from network
file system activity and across-the-net tape backups. In addi­
tion, the workstations lie on different subnets, increasing com­
munications times when the subnet boundary must be crossed.
Thus, the communication performance was highly variable and
difficult to characterize.

Figure 10 shows timing using all three data sets and an image
size of 512 x 512. Again, the graphs do not include data distri­
bution and image gathering times. In a heterogeneous envi­
ronment, it is less meaningful to use speedup graphs to study the
performance of our algorithm and implementation, so speeclup
graphs are not provided.

For large images (say, 512 x 512) in the workstation envi­
ronment, it is worthwhile to compress the subimages used in the
compositing process. We incorporated a compression algorithm
into our communications library using an algorithm described
in Williams.13 The compression ratio was about four to one, re­
sulting in about 80 percent faster communication rates for the
32-workstation case. With fewer processors, computation tends
to dominate over communications and compression is not as
much of an advantage. The timing results shown in Figure 10 in­
clude the effects of data compression.

Table 2 shows a time breakdown by algorithm component:
rendering (rend), compositing computation time (comp), and
compositing communications (comm). From the test results,
we see that the rendering time still dominates when using eight
or fewer workstations. It is also less beneficial to render smaller
images due to the overhead costs associated with the rendering
and compositing steps. Unlike the CM-5 results, tests on work­
stations show that the communication component is the
dominant factor in the compositing costs. On average, com­
munication takes about 97 percent of the overall compositing
time. On the CM-5, a large partition improved the overall com­
munications time, partly because the network bandwidth scales
with the partition size. This is not true for a local area network,

IEEE Computer Graphics and Applications

Ti
m

e

