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Figure 4 illustrates the compositing process described in Fig
ure 3, using the images generated with the head data set and 
eight processors. In Figure 4, each row shows the images from 
one processor, while the columns show-from left to right-the 
intermeqiate images before each composite phase. The right
most column shows the final results, still divided among the eight 
processors. The final tiled image is blown up and displayed on the 
right. Figures 5 and 6 show images of the other two data sets 
rendered in parallel using the algorithm described here. 

CM-5

We performed multiple experiments on the CM-5 using par
tition sizes of 32, 64, 128, 256, and 512 nodes. When these tests 
were run, a 1,024 partition was not available. Figure 7 shows the 
speedup results for a 512 x 512 image on each data set. Note that 
the speedup is relative to the 32-node running time. 

Because there is no communication in the rendering step, 
you might expect linear speedup when utilizing more proces
sors. As the three speedup graphs show, this is not always the 
case due to load-balance problems. The vorticity data set is rel
atively dense (that is, it contains few empty voxels) and there
fore exhibits nearly linear speedup. On the other hand, both 
the head and the vessel data sets contain many empty voxels 

Table 1. CM-5 time breakdown (in seconds), vorticity data 

set, 512 x 512 image size. 

Function 32 64 128 256 512 

dist 89.87 93.516 83.185 94.326 49.157 

rend 48.2005 24.4303 12.697 6.3434 3.1878 

comp 0.6309 0.5579 0.4091 0.3736 0.3213 

comm 0.0843 0.0231 0.0181 0.0138 0.0097 

send 0.9918 0.965 0.9645 1.0151 0.9849 
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Figure 7. CM-5 speedup for 512 x 512 image size. 

Figure 8. CM-5 runtimes by data set, 512 x 512 image size. 
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Figure 9. CM-5 runtimes by image size, vessel data. 
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that unbalance the load. These data sets therefore do not exhibit 
the best speedup. 

Figure 8 shows timing results for all data sets, using an image 
size of 512 x 512, and Figure 9 shows the results for the vessel 
data set at several image sizes. All times are given in seconds. 
The times shown in the graphs are the maximum times for all the 
nodes for the two steps of the core algorithm: rendering and 
compositing. The graphs do not include times for data distri
bution or image gathering. 

Table 1 shows a time breakdown by algorithm component
data distribution (dist), rendering (rend), compositing compu-
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tation time (comp), compositing communications ( comm), and 
image gathering (send)-on a 512 x 512 rendering of the vor
ticity data. It is easy to see that rendering time dominates the 
process. Note that this implementation does not take advan
tage of the CM-5 vector units. We expect much faster compu
tation rates for both the renderer and compositor when the 
vectorized code is complete. 

The communication time varied from about 10 percent to 
about 3 percent of the total compositing time. As the image 
size increases, both the compositing time and the communica
tion time also increase. For a fixed image size, increasing the par
tition size lowers the communication time because each node 
contains a proportionally smaller piece of the image and be
cause the total communications bandwidth of the machine 
scales with the partition size. 

The data distribution time includes the time it takes to read 
the data over Network File System (NFS) at Ethernet speeds on 
a loaded Ethernet. The image gathering time is the time it takes 
the nodes to send their composited image tiles to the host. While 
other partitions were also running, the data distribution time 
could vary dramatically due to the disk and Ethernet con
tention. Taking the vorticity data set as an example, the data dis
tribution varied from 40 to 90 seconds regardless of the partition 
size. Both the data distribution and image gathering times will 
be mitigated by use of the parallel storage and the use of the 
HiPPI frame buffer. 

Networked workstations 

For our workstation tests, we used a set of 32 high-perfor
mance workstations. The first four machines were IBM 
RS/6000-550 workstations equipped with 512 Mbytes of mem
ory. These workstations are rated at 81.8 SPECfp92. The next 
12 machines were HP9000/730 workstations, some with 32 
Mbytes and others with 64 Mbytes. These machines are rated 
at 86.7 SPECfp92. The remaining 16 machines were Sun Sparc-
10/30 workstations equipped with 32 Mbytes, which are rated at 
45 SPECfp92. 

The tests on one, two, and four workstations used only the 
IBMs because of their memory capacity. The tests with eight 
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Figure 10. PVM runtimes by data set, 512 x 512 image size. 

Table 2. PVM time breakdown (in seconds), 
vorticity data set, SU x SU image size. 

Function 1 2 4 8 16 32 

rend 350.24 180.15 79.54 45.01 20.59 12.50 

comp 0.03 0.17 0.09 0.10 0.12 0.12 

comm 0.00 0.57 0.39 2.04 3.11 1.37 

and 16 used a combination of the HPs and IBMs. We used the 
16 Suns for the 32-machine tests. We could not assure absolute 
quiescence on each machine, because they are in a shared en
vironment with a large shared Ethernet and file systems. Dur
ing the testing period, there was network traffic from network 
file system activity and across-the-net tape backups. In addi
tion, the workstations lie on different subnets, increasing com
munications times when the subnet boundary must be crossed. 
Thus, the communication performance was highly variable and 
difficult to characterize. 

Figure 10 shows timing using all three data sets and an image 
size of 512 x 512. Again, the graphs do not include data distri
bution and image gathering times. In a heterogeneous envi
ronment, it is less meaningful to use speedup graphs to study the 
performance of our algorithm and implementation, so speeclup 
graphs are not provided. 

For large images (say, 512 x 512) in the workstation envi
ronment, it is worthwhile to compress the subimages used in the 
compositing process. We incorporated a compression algorithm 
into our communications library using an algorithm described 
in Williams.13 The compression ratio was about four to one, re
sulting in about 80 percent faster communication rates for the 
32-workstation case. With fewer processors, computation tends
to dominate over communications and compression is not as
much of an advantage. The timing results shown in Figure 10 in
clude the effects of data compression.

Table 2 shows a time breakdown by algorithm component: 
rendering (rend), compositing computation time (comp), and 
compositing communications (comm). From the test results, 
we see that the rendering time still dominates when using eight 
or fewer workstations. It is also less beneficial to render smaller 
images due to the overhead costs associated with the rendering 
and compositing steps. Unlike the CM-5 results, tests on work
stations show that the communication component is the 
dominant factor in the compositing costs. On average, com
munication takes about 97 percent of the overall compositing 
time. On the CM-5, a large partition improved the overall com
munications time, partly because the network bandwidth scales 
with the partition size. This is not true for a local area network, 
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