

CLID: A general approach to validate security
policies in a dynamic network

Yanyan Yang, Charles U. Martel, S. Felix Wu

Department of Computer Science
University of California, Davis

{yangyan, martel, wu}@cs.ucdavis.edu

Abstract - Many researchers have considered security policy
management, including how to configure policies manually
and even how to automatically generate security policies
based on security requirements. Both can be error prone,
especially when properties of the network topology change,
because security requirements are usually not bound to any
particular route path. Our DETER lab emulation results
show that conflicts could be caused by these factors.
Therefore, a systematic way to validate the correctness of
the security policies is essential. This paper presents an
approach, CLID (Conflict and Looping Identification and
Detection), to verify whether a set of security policies (e.g.
IPSec/VPN tunnels) satisfy the given security requirements,
without causing any conflicts. This approach utilizes the
definition of a security policy to include network routing
data as well as traffic selector information, thus it works for
general network topologies. We also analyze and justify the
correctness of the approach. The paper concludes with our
simulation results and addresses future work.

I. INTRODUCTION
Network security is becoming indispensable, but new

vulnerabilities emerge every day. While IPSec [6][7][8] is a
useful IP layer security protocol which can provide
authentication and encryption for end-to-end traffic flow,
configuring IPSec VPN tunnels is notoriously complicated
because it has so many options (key exchange, ciphers,
authentication etc) to configure. Thus the ultimate solutions
to the security requirements are often prone to errors.

How to easily, efficiently and correctly manage security
policies (tunnels) is a popular topic in the security policy
management [9][10][11][12]. Although the original
requirements are not bound to any particular route, as
demonstrated in this paper later, the correct configuration of
IPSec VPN policies MUST consider its active interaction
with Internet routing dynamics. In other words, the security
policies together with the validation algorithm must utilize
routing information in order to resolve potential complex
policy conflicts. These may be due to routing dynamics or
even network mobility, such as the issues being investigated
in the NEMO, Network Mobility, working group [13][14]
under IETF.

In our previous papers [1][3], we focused on the correct
policy configuration under the scope of “linear routing
paths”, i.e., within a single linear path, we can guarantee that
no conflicts occur among the IPSec tunnel policies for the
routers and traffic on this linear path. For instance, in [1], we

proposed an optimal solution for handling overlapping
tunnels for a linear routing topology. This paper considers
much more general settings, and we will demonstrate later
the details and examples of general dynamic network
conflicts, and then show how to detect such conflicts.

Policy configuration mistakes can sometimes be caused
by human carelessness, while dynamic routing changes,
either expected or unexpected, can also cause problems in
delivering the packet. One minor mistake or one subtle
change (e.g. in routing) can cause insecure message
transmission or even packet looping. Furthermore, the more
complex a network topology is, the more security
requirements and corresponding security policies that need to
be enforced to satisfy the requirements. However, the
subsequent issues of security breaches could be caused by
more interactions among security policies and more
interactions between security policies and routing policies.

Figure 1 and Figure 3 illustrate these security issues,
respectively.

• Routing interference causing security violations

Figure 1 Tunnel Overlap due to routing interference

When tunnels are configured and built purely according
to the basic security requirements without considering
network topology and routing information, and when two or
more tunnels share common routers, it is easy to create
overlapping tunnels unintentionally. This can potentially
cause security conflicts that violate the original requirements.

In Figure 1, we have two security requirements that (Req1)
require traffic from source A to destination F or G to be
encrypted when routed from A to F and (Req2) traffic from
source A or B to F or G to be encrypted when routed from C
to G. Thus we build IPSec tunnels to cover these security
requirements. Traffic flow sent from A to F or G are
encrypted through tunnel 1 across routers A⇒B⇒D⇒F, and
traffic flow which reaches C while being sent from A or B to
F or G are encrypted through tunnel 2 across routers
C⇒E⇒F⇒G. The security policies are valid until a routing
change occurs. The link between A and B goes down, so now

every packet goes through the other link from A to C. Please
note that now we have two different route paths:
A⇒C⇒D⇒F and C⇒E⇒F⇒G, and they are NOT on a
single linear route path. When a traffic flow is being sent
from A to G, it used to enter tunnel 1 to reach G. Now it first
enters tunnel 1’ so will follow different routers. When it gets
to C due to the routing change, it will then enter tunnel 2.
After it gets to G, it will be decapsulated and decrypted. Now
G sees its destination as F in its outer IP header added to the
original packet by tunnel 1. So the traffic is sent to F. At F, it
will be decapsulated again. Now F sees the original packet
and sends it to G in plaintext, which violates Req2.

Figure 2 DETER lab emulation results of example 1

We have emulated this example at DETER [17] lab test
bed using OSPF as the intra-domain routing protocol and
BGP as the inter-domain protocol. The results show in Figure
2 that it would only take a few seconds for the hacker to
eavesdrop every single packet from A to G at the link from F
to G. In the figure, we show the traffic flow from F to G. It is
seen that the traffic was sent with encryption until the link
from A to B is down. Then after the routing gets updated
along the network (OSPF update), the traffic gets redirected
and thus sent in plaintext. This particular example shows that
even if the current topology is known, changes in the route
path may create security violations (e.g. a traffic flow that is
required to be encrypted along its routing path is sent in
plaintext). Note that 172.20.3.13 is one of the interfaces at
router C, while 172.20.0.1 is one of the interfaces at router A.

This particular example also shows that creating security
policies without knowledge of the network topology
(including how other tunnels are built) and routing may
generate security violations.

Therefore, we need a good way to identify potential
security violations, so we observe that the following two
conditions are necessary for problems to occur:

1) Redirection:

A packet enters one tunnel, and within this tunnel enters
a second tunnel. Thus the packet gets temporarily sent to
a new destination (i.e. with its new outer IP header
including the end of the second tunnel as its destination).

2) Decapsulation and Forwarding (DF):

A packet reaches the end of a tunnel, gets decapsulated,
and then discovers it has a new destination (in its inner
IP header). Thus the packet is forwarded to the real
destination.

Basically, the redirection happens when two tunnels (i.e.
policies) interact with each other, while DF occurs when the
real destination is discovered. When both conditions occur,
the packet may be sent in plaintext or un-authenticated.

Although redirection and DF are necessary to cause conflicts
for most cases, it is also noted that when shadowed tunnels
are present, security conflicts may occur without redirection
and DF (details can be referred in Section III.D).

• Routing interference causing packet looping

When tunnels are configured with incongruous options
(e.g. traffic selectors), the traffic flow can be routed in a way
that causes another type of problem – packet looping. Packet
looping can occur even on a single router with two different
outgoing network interfaces. For instance, we have
configured IPSec policies on a Windows 2000 box such that
one outgoing interface always forwards the packet to the
other interface after the IPSec outbound processing, and vice
versa. Therefore, even the IKE traffic can not go through
correctly.

With a few more routers and with routing dynamics, the
situation is even more complicated. Sometimes, during the
phase of IKE processing, the loop didn’t exist, but, after the
tunnels were built, some new routing dynamics might
introduce unexpected packet looping. For instance, in Figure
3, two encryption policies are created to build IPSec tunnels
to cover the security requirements, where traffic flow sent
from B to D is encrypted and traffic flow sent from C to A is
also encrypted. Tunnel 1 is configured to have traffic selector
from {B, C} to {A, D, E}, while tunnel 2 is configured to
have traffic selector from {A, B, C} to {D, E}. When a
traffic flow is sent from B to D, it first enters tunnel 1 at B.
However, when it travels to C, the routing table reroutes the
flow to E and thus it enters tunnel 2, it will be encrypted to
enter tunnel 2 and thus forwarded to E with the IP header
from C to A. E gets the packet and directly forwards it to B.
Now again B sees the packet header with the current header
from C to A, so, it will again encrypt and encapsulate the
packet and then resends it through tunnel 1. C gets the packet
with header from B to D. It will again encrypt, encapsulate
the packet and sends it to tunnel 2.

Figure 3 Packet looping due to routing interference

Therefore, in this scenario, as the tunnels are
inappropriately configured, the packet is repeatedly
encrypted and encapsulated for the two tunnels without ever
reaching its destination.

Figure 4 DETER lab emulation results of example 2

This typical example was also emulated at DETER lab
test bed. In the figure, we show the traffic flow from B to C.
It is seen that the traffic was sent with encryption with packet
length growing gradually (a new layer of packet header is
added when entering a tunnel). The results show that the data
packets get encrypted and encapsulated repeatedly and
finally exceed the Maximum Transfer Unit (MTU), which
causes the packets be dropped by the network eventually and
thus cause the data transmission fail.

Our previous work [1][3] tried to solve the problem by
automatically generating the policies based on a set of
security requirements. However, while the security
requirements are not and should not be bound to a particular
route path due to the dynamic routing aspect of current
networks, the policy generation and validation must depend
on exact route paths as well as their potential dynamics. Both
examples above show that the tunnels may satisfy the
requirements for a particular routing topology at a particular
period of time. But, a general approach, as proposed in this
paper, is necessary to guarantee the correctness of
IPSec/VPN configuration for all cases. Furthermore, in order
to consider all possible general network topologies, we re-
define the security policies (i.e. tunnels) to include routing
information. We have evaluated our proposed solution via a
simulation study with thousands of randomly generated
security requirements. Our results indicate that the
performance of the proposed scheme is quite reasonable and
without false negatives under our conflict definitions, while it
yields a small number of false positives (i.e. no conflict but
all conflict detection conditions met) in some rare cases as
described in Section III.D.

The rest of the paper is illustrated as follows. Section II
gives a brief overview of the related work, including our
previous work. Then we define the problem and introduce
our algorithm along with the justification for its correctness
in Section III. Section IV presents our simulation results and
analysis. Finally, we conclude our paper and outline future
work.

II. RELATED WORK
As we addressed in the earlier section, much research has

focused on unilateral policy management by assuming a
particular network topology and neglecting the routing
impact in the network. Thus the approaches derived from
these assumptions may miss configuration errors when the
network topology becomes more complicated and when
dynamic routing changes the topology.

A. Bundle and Direct approach
[3] and [4] introduced two approaches to automatically
generate security policies as well as to ensure the correctness
of the policy solutions. Bundle approach builds tunnels for
disjoint traffic flows, which are separated from the overall
traffic. It guarantees to satisfy the security requirements as it
builds policies for each network flow, i.e. bundle, however,
it may generate a lot of redundant tunnels for different
bundles but for the same network region. On the other hand,
Direct approach creates policies for each security
requirement and thus achieves better performance (fewer
tunnels), but again it may create redundant policies (e.g. as
some requirements may be redundant) and the generated
policies may have security conflicts and violations among
each other.

B. BANDS and Ordered-Split algorithm
Among our previous work, Ordered-Split algorithm [1]
focuses on a linear topology and finds a correct policy
solution with the minimum number of tunnels. In contrast,
BANDS [2] is an inter-domain security policy management
system, which finds out the route path first and then
computes the final policy solutions using Direct approach
for the security requirements along the path. BANDS runs
on a general network topology but doesn’t consider routing
interference that may also impact the final policy solutions.

C. Other security policy management research
[16] is an extension work of the Ordered-Split algorithm that
analyzes the traffic probability together with the original
algorithm to optimize the solution, while [15] proposes a
Zero-Conflict algorithm that yields a faster time complexity
using the concepts of requirement groups and cut points.
Other research focuses on the policy management alone.
[10] demonstrated an algorithm for distributing policies
among a number of management stations, while [9]
discussed an approach to conflict handling relying on a
priori models. These two papers focus on what needs to be
done for general policy management and policy-based
network management, yet not specific to IPSec/VPN tunnel
management as we focus here.

III. A GENERAL ALGORITHM: CLID
In this section, we first describe the problem definition

and detail a general validation algorithm (CLID) to apply to
any network topologies. Note that the tunnel definition
includes the sequence of the routers it visits, its traffic
selector and the routing information of the routers in the
tunnel. The former reflects the routing information, while the
latter specifies one of the pre-conditions for the traffic flows
to go through the tunnel. Therefore, if the routing changes,
the sequence of the routers in a tunnel may change
accordingly. CLID algorithm never assumes any particular
fixed route but only on any policy data (i.e. any route for any
tunnels) that are collected when validation is performed.

A. Problem definition
Given a set of security requirements and a set of tunnels
(where each tunnel is described by a sequence of routers
visited, its security function and the associated traffic
selector), determine if the set of tunnels correctly achieves
these security requirements (correctness is e.g. if a packet is
required to go from A→B encrypted, it should never be in
plain text along the way). Below we define requirements,
tunnels and conflicts.
• Security requirements

A security requirement defines how a network flow should
be protected during the transmission. In this paper, a security
requirement is defined as:

<selector> X: i → j (auth/enc) [trusted: a, b, c, …]

Where i and j are both routers. This requirement specifies for
all the traffic X (based on traffic selector 1 that can be
represented as <src, dst>) being forwarded by router i, if the
traffic will eventually be routed to router j, then regardless

1 A traffic selector can be a 5-tuple including the source IP address, source
port, destination IP address, destination port and protocol in the IP header.
For simplicity, we will only use the IP address pair as the selector.

which route path it will take from i to j, all the information
bits must be authenticated/encrypted from i to j, except at
trusted nodes a, b, c etc. The traffic selector can be either the
original source and destination of the packet, or any
intermediate ones that get prepended to the IP header due to
encapsulation. Note that src and dst can be a set of possible
sources/destinations. We include two end point routers (i and
j) in the requirement definition as there are some cases that
traffic flows are required to be encrypted between two
subnets or two intranets: router i and j are usually the edge
router of the networks. How the data are routed and handled
between these routers is transparent and dynamic to the
requirements.

For instance,

req = <{1}, {7,10}>: 1 → 7 (enc) [trusted: 3, 5]

means that for all the traffic flows that start at router 1 and go
to router 7 or 10 (i.e. the selector, which is basically the
source and destination in the IP header), if the traffic will be
routed from 1 to 7 it is required to be encrypted from 1 to 7,
except at trusted 3 and 5.

• Tunnel definition:

A tunnel is represented by a sequence of routers that it visits
along the route path.

<src, dst> [(ri, ri+1, …, rn), ENC/AUTH]

Which describes that the tunnel is built from router ri to
router rn with encryption (or authentication). Any traffic
whose source starts at src and ends at dst (the source and
destination IP addresses in the IP header) is sent through the
tunnel, where ri, ri+1, …, rn are a sequence of the routers that
the tunnel visits. Note that src and dst can be a set of possible
sources/destinations.

For instance,

tunnel = <{1}, {7, 10}>[(1, 2, 4, 7), ENC]

means that for all of the traffic flows that start at 1 and end at
7 or 10, they will be encrypted in the tunnel with IPSec SA2
from router 1 to 7. It also indicates that the route path for the
tunnel is 1 → 2 → 4 → 7.

• Security conflict definition

We define security conflicts as:

1. Requirement violations that break any of the
original security requirements, which include that
no plaintext is sent along the route path from router
i to router j (except at the trusted nodes), if the
traffic flow required to be encrypted is routed from
router i to router j, or;

2. Packet looping among tunnels, where traffic flow is
being repeatedly sent among the tunnels without
reaching its destination.

For packet looping conflicts, note that it may occur in other
ways (e.g. pure routing looping), but that is beyond the scope
of this paper.

B. Validation algorithm
B.1. Algorithm steps:

2 A Security Association (SA) is a set of security information that specifies
a particular kind of secure connection between one device and another.

Step 1. Tunnels for the same traffic selector are sorted by
the order they are enforced in a local PEP (Policy
Enforcement Point). This arranges the tunnels in the way that
the traffic would select accordingly.

Step 2. The algorithm then verifies if the tunnel set covers
the security requirements. For each requirement, if there
exists a tunnel or a chain of tunnels to cover it by providing
the specified requirement, while only doing encryption and
decryption operations at trusted nodes, it satisfies the
requirement (if no two tunnels conflict, the requirements will
be satisfied by this test).

Step 3. Then we check if for any pair of tunnel definitions
the router sequences of the two tunnels have one or more
common routers.

Step 4. If the two tunnels intersect with one or more routers
(pre-condition), we need to check further whether one
tunnel will fit the traffic selector of the other tunnel. Having
the overlap may cause a security conflict but also may not be
a problem, as illustrated in the following example.

req1 = <{1}, {7}>: 2 → 7 (enc) [trusted:∅]

req2 = <{2, 4}, {7}>: 4 → 5 (enc)[trusted: ∅]

tunnel1 = <{1}, {7}> [(2, 4, 5, 7), ENC]

tunnel2 =<{2, 4}, {7}> [(4, 6, 5), ENC]

Figure 5 No conflict with intersecting tunnels

A packet is being sent from router 1 to router 7. According
to the selectors, it will enter tunnel1 at router 2 and then
enter tunnel2 where an outer layer will be encrypted and
encapsulated. Although two tunnels intersect with two
routers: 4 and 5, the outer part of the encrypted traffic in
tunnel2 will be decrypted and decapsulated at 5. It then will
be forwarded to 7, then it remains encrypted until it is
decrypted and decapsulated at router 7. Note that if tunnel2
had source selector {3,4} instead of {2,4}, messages in
tunnel1 would not enter tunnel2 at router 4. This is
formalized in Condition I a) below.

Step 5. If pre-condition (tunnel ti and tunnel tj intersect with
one or more routers) and the following three conditions are
met, the tunnels violate the given security requirements in a
way that traffic may be sent in plaintext somewhere along the
route path. When Condition I a) below is met, we say that the
two tunnels overlap.

− Condition I:

a) tj’s start router sj is an internal router in ti (so is
neither the first nor last router of ti) and ti’s start
router si is in the source set of tj’s selector and
ti’s end router ei is in the destination set of tj’s
selector;

b) tj’s end router ej is not an internal router in ti.

− Condition II: The destination in the traffic selector of
tunnel ti includes routers other than ei;

− Condition III: Define src = ti.src ∩ tj.src and dst =
ti.dst ∩ tj.dst. If both src and dst are not empty and
there is no tunnel or a chain of tunnels that covers the
route from ei to ej, for traffic from source selector s to
destination selector d for some pair of routers s in src
and d in dst.

Consider the following example, where two tunnels are
built to meet the requirements that specify to encrypt
data from router 1 to router 7 or 9, and from router 2 or
4 to router 7 or 9. As we can see, each tunnel alone
seems satisfy its requirement.

req1 = <{1}, {7, 9}>: 2 → 7 (enc) [trusted:∅]

req2 = <{1, 2, 4},{ 7, 9}>: 4 → 9 (enc)[trusted: ∅]

tunnel1 = <{1}, {7, 9}> [(2, 4, 5, 7), ENC]

tunnel2 =<{1, 2, 4}, {7, 9}> [(4, 6, 8, 9), ENC]

Figure 6 Router intersection causing conflict

These tunnels overlap by intersecting with route 4,
where tunnel1’s encapsulated traffic is re-directed into
tunnel2. Suppose a packet is being sent from router 1 to
router 9. It will be encrypted and encapsulated into the
tunnel from router 2 to router 7. When it arrives at router
4, it will be encrypted and encapsulated again so it will
be re-directed into second tunnel from router 4 to router
9. The packet will then be sent along the router path, i.e.
router 4 → 6 → 8 → 9. Once it hits router 9, it will be
decapsulated and decrypted and now router 9 sees the IP
header with destination router 7 (for the first tunnel).
Router 9 will then send the packet to router 7. After
Router 7 decapsulates and decrypts the packet, it finds
that the packet’s destination is router 9 and then sends
the packet to router 9. This violates req2, which requires
the traffic that fits the selectors and routed from 4 to 9 be
encrypted until it visits router 9 its final time. These two
tunnels conflict as all the conditions are met:

- Condition I: a) the tunnels intersect with router 4,
the start router of tunnel2, and tunnel2’s end router 9
is not an internal router in tunnel1;

- Condition I: b) tunnel1’s start router 2 is in the
source set of tunnel2’s selector and tunnel1’s end
router 7 is in the destination set of tunnel2;

- Condition II: the destination in the traffic selector of
tunnel1 includes router 7 and 9;

- Condition III: src = {1}, dst = {7, 9}, there is no
tunnel from router 7 to router 9.

In other words, when a re-direction happens and the
packet travels back and forth from the end router of the
previous tunnel and the end router of the latter tunnel
without having security enforced, it violates the
requirement.

However, if the dynamic routing changes the tunnel1 to:

tunnel1 = <{1}, {7, 9}> [(2, 3, 5, 7), ENC]

There is no intersection between tunnel1 and tunnel2,
thus the security conflict problem will be eliminated.

In the scenario with the packet sent from router 1 to 9,
the packet will be encrypted and encapsulated to enter
tunnel1 and be routed to 2→3→5→7. And tunnel2 will
no longer be entered with the new routing.

Generally, pre-condition and condition I ensures that two
tunnels “overlap”, while condition II defines that the
traffic selector parts of the two tunnels muddle up. In
other words, these two tunnels and their traffic selectors
overlap and thus the security protection may be broken
on the later part after the last common router on the path.
Note that the conditions in CLID algorithm do not test
shadowed tunnels (please refer to Section III.D for more
details).

Step 6. If tunnels t1, t2, …, tn are such that Condition I and
the following condition are met, the tunnels cause packets
looping.
− Condition IV:

t1 and t2 overlap

t2 and t3 overlap

…

tn and t1 overlap

Where t1, t2, t3, … , tn are tunnels.

Given the following example,

tunnel1 = <{1, 2}, {3, 6}> [(1, 2, 3), ENC]

tunnel2 = <{1}, {3, 6}> [(2, 4, 1, 6), ENC]

Figure 7 Packet looping by routing interference

A packet is being sent from router 1 to router 3. First it
will be encrypted and encapsulated in Tunnel1. When it
hits router 2, it will be again encrypted and encapsulated
in Tunnel2. According to the tunnel definitions, the
packet will be routed to route 4 and then router 1. The
encrypted packet will now enter a loop and thus be
repeatedly encapsulated for the two tunnels without ever
reaching its destination.

One way to solve the packet looping problem is as a
graph problem. Tunnels are nodes in the auxiliary graph.
There is an arc from node1 (for tunnel1) to node2 (for
tunnel2) if tunnel1 and tunnel2 overlap (meet Condition I
a)). Looping exists if there is a directed cycle in the
graph.

The packet looping definition specifies the packet circles

among the tunnels back and forth. However, sometimes
a packet with source IP i can be looping back to the
tunnel that starts at i, in certain scenarios as follows.

tunnel1 = <{1, 2}, {3, 5}> [1, 2, 4, 5] ENC

tunnel2 = <{{1, 2}, {5}> [2, 3] ENC

With the two tunnel definitions above, a packet with
router 1 as source and router 5 as destination will first
enter tunnel1 at router 1 and then enter tunnel2 at router 2.
When the packet is decrypted and decapsulated at router
3, according to the current routing table and the traffic
selector in the IP header (1 as source and 5 as
destination), the packet will be re-routed back to router 1.

With the definition of tunnel1, theoretically, it might
enter tunnel1 again to cause looping. However, most of
the security routers will consider this as IP Spoofing and
thus drop this packet, when they receive a packet with
its own source IP in the header. Therefore, our
validation algorithm will not cover this.

Figure 8 Packet looping considered as IP spoofing

C. Examples
 Security requirements:

REQ#1 requires that any packet that starts at router 1 to
destination router 7 or 10 needs to have data encryption
enforced while going from 1 to 7. Router 3 is trusted.

REQ#2 requires that any packet that starts at router 1 or 2 to
destination router 7 or 10 needs to have data authentication
enforced while going from 2 to 10. Router 7 is trusted.

REQ#3 requires that any packet that starts at any router in
Domain A to destination router 6 or 8 or 9 needs to have
authentication enforced while going from 2 to 6. Domain A
is defined as {1, 2, 3}.

REQ#4 requires that any packet that starts at router 1 or 2 to
destination router 6 or 8 needs to have data encryption
enforced while going from 3 to 8. Router 6 is trusted.

 Tunnel definitions:

According to the security requirements defined above, a
naïve network security administrator may manually build the
following four tunnels, i.e. one tunnel for each requirement
(see Figure 9).

In the tunnel definitions above, each tunnel is a sequence of
routers that the tunnel visits, where:

a. Tunnel 1 encrypts the traffic (whose source is router 1

and destination is router 7 or 10) and travels across
router 1, 2, 4, and 7.

b. Tunnel 2 authenticates the traffic (whose source is
router 1 or 2 and destination is router 7 or 10) and
travels across router 2, 5, 7 and 10.

c. Tunnel 3 encrypts the traffic (whose source is any
router in Domain A and destination is router 6 or 8 or
9) and travels across router 2, 3 and 6.

d. Tunnel 4 encrypts the traffic (whose source is router 1
or 2 and destination is router 6 or 8) and travels across
router 3, 6 and 8.

Apparently, if we look at each tunnel individually, it satisfies
its requirement. However, when we put all the tunnels
together, we may experience some security violations as
described below. Note that below, T_intersection contains
the routers which occur in both of two tunnels.

 Example 1: for Tunnel 1 and Tunnel 2

T_intersection = {2, 7}

The start router of Tunnel 2 is an internal router of Tunnel 1
and the end router of Tunnel 2 is not an internal router of
Tunnel 1. The start router and end router of Tunnel 1 are 1
and 7. They are in source set and destination set of Tunnel
2’s traffic selector, respectively. And src = {1}, dst = {7, 10}.
There is no tunnel from router 7 to 10 for traffic <src, dst>,
where src = {1}, dst = {10}.

Suppose that a packet is being sent from router 1 to router 10.
According to the traffic selector at router 1, the packet is
encapsulated and encrypted through a tunnel from router 1 to
router 7. When it arrives at router 2, according to the traffic
selectors at router 2, it is encapsulated through an
authentication tunnel from router 2 to router 10. No matter
how the packet is being routed, it will be de-tunneled at
router 10 first and then be routed back to router 7. After the
packet gets decrypted at router 7, it is being sent from router
7 to router 10 in plaintext without authentication enforced. In
short, the packet is re-directed to the tunnel path of a
previous tunnel. Therefore this violates the original security
requirement REQ#2 that requires authentication encryption
for traffic from 2 to 10.

 Example 2: for Tunnel 1 and Tunnel 3

T_intersection = {2}

The start router and end router of Tunnel 1 are 1 and 7. Since
7 is not in destination set of Tunnel 3’s traffic selector,
respectively. 1 and Tunnel 3 do not overlap and there is no
conflict between them.

 Example 3: for Tunnel 1 and Tunnel 4

T_intersection = ∅

T_intersection is empty, therefore Tunnel 1 and Tunnel 4 do
not conflict.

 Example 4: for Tunnel 2 and Tunnel 3

Tunnels Sequence of Routers Traffic Selector
Tunnel 1 (1, 2, 4, 7)ENC src = 1, dst = {7, 10}
Tunnel 2 (2, 5, 7, 10)AUTH src = {1, 2}, dst = {7, 10}
Tunnel 3 (2, 3, 6)ENC src = Domain A, dst = {6, 8, 9}
Tunnel 4 (3, 6, 8)ENC src = {1,2}, dst = {6, 8}

REQ#1: <{1}, {7, 10}>1→7(ENC)[TRUSTED: 3]
REQ#2: <{1, 2}, {7,10}2→10(AUTH)[TRUSTED:7]
REQ#3: <DOMAIN A, {6, 8, 9}>2→6(ENC)[TRUSTED:∅]
REQ#4: <{1,2}, {6, 8}>3→8(ENC)[TRUSTED:6]

SAR#1: NON-ENC 2-7

T_intersection = {2}

The start router and end router of Tunnel 2 are 2 and 10.
They are neither in source set nor in destination set of Tunnel
3’s traffic selector, respectively. Therefore Tunnel 2 and
Tunnel 3 do not overlap/conflict.

 Example 5: for Tunnel 2 and Tunnel 4

T_intersection = ∅

T_intersection is empty, therefore Tunnel 2 and Tunnel 4 do
not conflict.

 Example 6: for Tunnel 3 and Tunnel 4

T_intersection = {3, 6}

The start router of Tunnel 4 is an internal router of Tunnel 3
and the end router of Tunnel 4 is not an internal router of
Tunnel 3. The start router and end router of Tunnel 3 are 2
and 6. They are in source set and destination set of Tunnel
4’s traffic selector, respectively. And src = {1,2}, dst = {6,
8}. There is no tunnel from router 6 to 8 for traffic <src, dst>,
where src = {1,2}, dst = {8}.

Suppose that a packet is being sent from router 2 to router 8.
According to the traffic selector at router 2, the packet is
encapsulated and encrypted through Tunnel 3 from router 2
to router 6. When it arrives at router 3, according to the
traffic selectors at router 3, it is encapsulated through Tunnel
4 from router 3 to router 8. No matter how the packet is being
routed, it will be de-tunneled at router 8 first and then be
routed back to router 6. After the packet gets decrypted at
router 6, it is being sent from router 6 to router 8 in plaintext.
Similar to Example 1, the packet is re-directed to the
previous tunnel path. Therefore this violates the original
security requirement REQ#4 that requires encryption for
traffic from router 3 to router 8.

 Overall topology

Figure 9 Possible overall topology for the example

Based on the security requirements and tunnel definitions,
one of the possible network topologies can be illustrated in
Figure 9. In this example, we see that each tunnel itself
satisfies the security requirement, however, when they are
put together in an inter-domain dynamic topology as follows,
security violations may occur as some of them may conflict
with each other.

If the tunnels are re-configured and re-built as in Figure 10,
the conflicts will be eliminated.

Tunnels Sequence of Routers Traffic Selector
Tunnel 1 (1, 2, 4, 7)ENC src = 1, dst = {7,10}
Tunnel 2 (2, 5, 7)AUTH src = {1, 2}, dst = {7,10}
Tunnle 2’ {7,10}AUTH src = {1, 2}, dst = {7,10}
Tunnel 3 (2, 3, 6)ENC src = Domain A, dst = {6,8,9}
Tunnel 4 (3, 6)ENC src = {1,2}, dst = {6,8}
Tunnel 4’ (6, 8)ENC src = {1,2}, dst = {6,8}

Figure 10 New tunnels without conflicts

For traffic that goes through the original tunnel 2, it now
enters the new tunnels (tunnel 2 and tunnel 2’) instead. For
traffic that goes through the original tunnel 4, it now enters
the new tunnels (tunnel 4 and tunnel 4’) instead. No re-
directions and DF will occur to cause security conflicts.

D. Algorithm Justification
1. Requirement satisfaction:

It is very straightforward that given a security requirement, if
there exists a tunnel or a chain of tunnels with the defined
security operation (e.g. encryption or authentication) and the
corresponding traffic selector, the requirement is satisfied
with the tunnel or the chain of tunnels as long as no tunnel
overlap occurs;

2. Tunnel Validation:

1) As noted in (i), since each requirement is covered by a
tunnel or a chain of tunnels, a problem may occur when a
packet is redirected from its original tunnel or the chain of
the tunnels. Basically, this may happen when two tunnels
overlap.

As IPSec tunnels are usually created in tunnel mode to hide
the original packet information and thus to provide better
security, typically, a new IP header is inserted in front of the
original IP header of the packet by encapsulation. Once the
encapsulated packet arrives at other routers, depending on the
traffic selectors and routing tables on the routers, this outer IP
header could redirect the encapsulated packet into a new and
yet unexpected tunnel. Therefore, Condition I tests that it is
possible for the packet to be redirected to a different tunnel if
the original tunnel overlaps with this new tunnel.

Figure 11 Tunnels that intersect

2) Condition I specifies that the endpoints of one tunnel tj
(e.g. T1 in Figure 12) has to fit in the traffic selector of the
other tunnel ti (e.g. T2), so the traffic tunneled in tj will be re-
directed into tj, as traffic that goes into ti goes into tj. Thus the
route paths of the two tunnels overlap at these routers. If two
tunnels don’t overlap, they don’t interfere with each other, so
no conflicts. This condition also tests if tj ends inside ti,
which does not cause any violation.

Figure 12 T2 fits T1’s selectors

3) Condition II implies that traffic that ends at routers other
than ei may also enter ti. This may cause potential violations
as this type of traffic will need to continue after
decapsulation at ei. And it also indicates that there is at least
one requirement Req for traffic from ti.src to routers other
than ei otherwise it wouldn't be in the traffic selector when
the tunnel is created.

As shown in Figure 13, packets that go into T2 will go into T1
(explained above in b), so they will arrive at R’’ first, be
decapsulated and decrypted there and then be forwarded back
to R’ because the outer header contains it as the destination.
When they get decapsulated and decrypted at R’, the real
destination of the packets are discovered and the packets are
again forwarded to R’’ as the next hop, but in plain-text this
time if no tunnel covers it, which violates the original
security requirement.

Figure 13 Security violation from R’ to R’’

4) Condition III ensures that, since we have Req above and
there exists an overlap between ti and tj, for those traffic (src
= ti.src ∩ tj.src, dst = ti.dst ∩ tj.dst, both src and dst are not
empty), once it gets out of tunnel ti, it is still required in Req
to be covered from ei to ej. If there is a tunnel or chain of
tunnels for such traffic, no violation occurs.

5) In order to detect packet looping between tunnels, the
algorithm simulates the packet traveling by building a graph,
where a node is a tunnel and an arc is for a pair of tunnels
among which one fits the other’s traffic selector. It is easy to
see that looping happens when there is a directed cycle in the
graph, i.e. the packet travels by starting at one tunnel and
coming back again at this tunnel and so on.

3. Conditions’ analysis for conflict detection

In this section, we illustrate how conditions detect violations.

Figure 14 An example for conditions’ analysis

In this example, we have three tunnels built for requirements
and assume they meet all the requirements:

T1: <{1}, {7,9}>[(1,2,3,7),ENC]

T2: <{1,2}, {7,8,9}>[(2,4,7,8),ENC]

T3: <{2,3}, {8,9}>[(3,7,8,9),ENC]

T1 vs. T2: Condition I and II met; Condition III is met
because src={1}, dst={7,9}, ei=7, ej=8, no tunnel from 7 to 8
for traffic <{1},{9}>. So packet from 1 to 9 in plaintext from

7 to 8, which violates the requirement that T2 is built for to
cover anything sent from {1,2} to {7,8,9} and routed from 2
to 8. Suppose we add one tunnel T4: <(1),{9}>[(7,8), ENC].
Then T1 and T2 are conflict free.

Now we move on to T2 and T3. Condition I and II met;
Condition III is met because src={2}, dst={8,9}, ei=8, ej=9,
no tunnel from 8 to 9 for traffic <{2},{9}>. So packet 2 ⇒ 9
in plaintext from 8 to 9, which violates the requirement that
T3 is built for to cover anything sent from {2,3} to {8,9} and
routed from 3 to 9. Now suppose we add another tunnel T5:
<(2),{9}>[(8,9), ENC]. Then T2 and T3 are conflict free.

T1 vs. T3: Condition I is not met, so no violations

Now we complicate the scenario by altering T3 to make T1
fit its selector:

T3: <{1,2,3}, {7,8,9}>[(3,7,8,9),ENC]

Changing the selector means that traffic from {1,2,3} to
{7,8,9} must be encrypted when routed from 3 to 9, which
implies as a new requirement Rnew.

T1 vs. T3: Condition I is met now, as well as Condition II.
Condition III is met because src={1}, dst={9}, but we only
have T4 to cover from 7 to 8, no tunnel from 8 to 9. So
packet sent from 1 to 9 is in clear text when routed from 8 to
9, violating Rnew.

T1 vs. T2: No violations as no change to them.

T2 vs. T3: Condition I and II met; Condition III is met
because src={1,2}, dst={7,8,9}, ei=8, ej=9, we have tunnel
from 8 to 9 for traffic <{2},{9}>, but not for traffic
<{1,2},{7,9}>. So packet send from 1 to 9 is in clear text
when routed from 8 to 9.

Suppose we then make T5: <{1,2},{7,9}>[(8,9), ENC] to fail
Condition III. We now re-check T1 vs. T3, T2 vs. T3 and T2
vs. T3. No violations as:

Packet 1⇒9: enters T1, T2, T3, back to 7, enters T4 at 7, and
enters T5 at 8;

Packet 2⇒9: enters T2, T3, back to 8, enters T5 at 8;

4. Shadowed tunnels

Consider the following example that has two tunnels built for
two requirements in a linear topology where router 1 – 4 are
connected in a sequence:

R1: <{1}, (3,4}>: 1→ 3 (enc)

R2: <{1}, {4}>: 2->4 (enc)

T1: <{1}, {3, 4}> [(1,2,3), ENC]

T2: <{1}, {4}> [(2,3,4), ENC]
For traffic sent from 1 to 4, as it will enter T1 first where it
gets encapsulated to have 3 as destination, it will not enter
T2. When it gets to 3 and decapsulated, it will be forwarded
to 4 in plaintext, which violates R2. In this particular
scenario, because tunnel T2 is shadowed by T1, the conflict
still occurs even without packet redirection.

Therefore, we define Tunnel ti and tj as shadowed tunnels, if
they meet the following condition:

1). srci ∩ srcj ≠ ∅

2). dstj ∩ dstj ≠ ∅

3). si ∉srcj or ei ∉dstj

4). sj ∈ srci and ej ∉ dsti

5). sj is in tunnel ti

where si is the start router of tunnel ti and ei is the end router
of tunnel ti. However, a shadowed tunnel may or may not
cause conflicts, e.g. a slight change to R1 and T1 above will
still give shadowed tunnels but no conflict:

R1: <{1}, (3,4}>: 1→ 5 (enc)

T1: <{1}, {3, 4}> [(1,2,5), ENC]

The CLID algorithm can include additional algorithm steps
to find potential shadowed tunnels so whoever runs the
algorithm will know where to split the tunnel if conflicts do
occur.

5. False positives

It is also noted that when all the conditions are met, CLID
may cause false positive as no actual violation occurs.
Considering the example above with T1, T2 and T3, assume
T2 is to cover the following traffic routed from router 2 to 4.

T2: <{1,2}, {7,8,9}>[(2,4), ENC]

Because traffic routed from 1 or 2 to 9 does not visit 4 again
after de-tunneled from T1, although T1 and T2 meet all the
conditions, they would not cause any conflict, as the traffic
reaches both router 4 (with T2) and router 7 (with T1) with
encryption enforced.

IV. SIMULATION AND ANALYSIS
In practice, IPSec/VPN policies are deployed from small

branch offices to large enterprise buildings to provide
interoperable and cryptographically based security for end-
to-end traffic flow. This occurs not only in inter-domain
environments across the Internet but also in intra-domain
environments which can be across the different departments
within an organization, as the corporate authentication and
confidentiality policies may differ among the departments.
Typically, in a university or a large corporation, it may have
a tunnel topology similar to the following figure, where
tunnels are overlapping and routing may also interfere.

Figure 15 An intra-domain topology example

In the current industrial implementation, a router may be
integrated with gateway or firewall as one security device
(like security products from Cisco, Juniper or WatchGuard)
and IPSec/VPN tunnels are usually built between these
security devices. When there are multiple security devices
present, a centralized security management system becomes a
necessary feature for the advanced security appliances,
because it has the capabilities to communicate and interact
with each of the security devices within the domain (or even
to the other domains). This makes it possible for the
centralized management system to collect all the network
data, including security requirements, tunnels and routing
data. Therefore, the CLID approach can easily be

incorporated with a centralized management system to gather
information that it needs and then automatically identify and
detect security conflicts.

Therefore, we simulate the CLID algorithm using C
programming language in Linux. The CLID validation
program reads in the requirements and policies, checks for
pre-conditions and conditions for conflicts and looping and
outputs the validation results. Note that as this is a brute force
implementation to check tunnels, it is a preliminary
simulation. We ran the simulation test against our earlier
example shown in Figure 9 and Figure 10, and then we tested
the performance of the simulated algorithm.

A. Basic simulation test
From the simulation, we observed that the CLID algorithm
can not only identify and detect security conflicts, but also
point out where in the network the conflicts could occur. For
example, we passed in to the CLID validation program the
requirement data as well as the tunnel definitions that defined
in earlier examples, it will output if there is any conflict that
may occur and also where the plaintext traffic or un-
authenticated traffic would appear. For packet looping that
occurs among the tunnels, the CLID validation program will
also identify and detect what tunnels will cause the looping
with a sequence of the routers involved.

Figure 16 The simulation output for the earlier example

B. Performance simulation test

Figure 17 Performance test for CLID algorithm

To monitor the performance of CLID algorithm, we

randomly generated security requirements and policies with
the test sizes varying from hundreds to thousands. From the
results on the basic simulation, we observe that although it is
a preliminary brute force simulation, it takes less than one
minute to scan through all the requirements and policies to
complete the validation process: check if each requirement is
satisfied and then test the conditions for conflicts and
looping. Each of the tests prints a result of log for details of
the conflicts and looping. Only for the tests that have more
than a few thousand requirements and policies, does the CPU
time that CLID spends grow sharply.

Usually, for a small or medium-size organization, the
number of security requirements and policies should be in
reasonable size. While for a large enterprise, which may
build branch offices all around the world, the number of
requirements and policies might be hundreds or thousands or
even more. The simulation tests demonstrate that it would
cost a fairly small amount of time for a centralized policy
management system to complete the validation using CLID
algorithm.

V. CONCLUSIONS AND FUTURE WORK
With the wide deployment of IPSec/VPN tunnels that are

to provide security to end-to-end traffic flows, security policy
management becomes necessary yet error prone due to
mistakes during manual configuration or due to the
interactions among policies or due to the routing interference.
Basically, there are two necessary conditions for potential
conflicts to occur:

− Packet redirection to a new tunnel from the current tunnel.
− Packet decapsulation and forwarding that happens when a

packet leaves a tunnel and gets forwarded to its real
destination after the packet is decapsulated and discovered
it.

Therefore, in this paper, we introduce our definitions for
security requirements and tunnels. And then we describe the
formal conditions with regards to the tunnel definitions to
discover potential conflicts. With these conditions, we
present a general approach (CLID) that can be applied to any
network topologies to identify and detect the security
conflicts (including requirement violations and packet
looping) among the security policies. The CLID algorithm is
shown to correctly detect conflicts and looping. It works on a
general topology, although the definition of a tunnel specifies
a route that the tunneled packet currently follows and the
route may change at any time due to dynamic routing aspect
in any topology. We also implemented the algorithm that
takes a set of security requirements and a set of policies and
output the validation results. The simulation demonstrates the
ease of use of the validation algorithm and also that its
scalability is quite feasible to be adopted for a centralized
policy management system in practice.

We have done a set of very small scale experiments
running at DETER testbed to demonstrate the potential
problems among the policies and some of the results have
been included in the introduction of the paper. The
experiments can be further extended in order to get more
realistic network topology scenarios to make larger scale
experiments.

The CLID algorithm takes the requirements and policies
as input and detects conflicts among them. Though not a real-
time solution, it can be re-run with any new data collected

over a dynamic network. This solution provides a way to get
any updated and new requirements and policies from the
network for CLID algorithm to deal with the dynamics of the
network. To seek a more active way to deal with this can be
extended as the future work of the CLID.

Furthermore, the CLID algorithm is designed to find
security conflicts, however, after discovering the security
issues, how to correct the policies and solve the conflicts is
still open. CLID does not make the corrections to eliminate
the potential security violations. Future research should focus
on given the problems that CLID detects how to
automatically generate a solution for the problems that CLID
detects. Also a completeness proof of the CLID algorithm
would be an extension to the existing work.

References

[1] Yanyan Yang, C. Martel, S. F. Wu, " On Building the Minimum
Number of Tunnels - An Ordered-Split approach to manage
IPSec/VPN policies", 9th IEEE/IFIP Network Operations and
Management Symposium (NOMS 2004), Seoul, Korea, April 2004.

[2] Yanyan Yang, Z. Fu, S. F. Wu, "BANDS: An Inter-Domain Internet
Security Policy Management System for IPSec/VPN", 8th IFIP/IEEE
International Symposium on Integrated Network Management (IM
2003), Colorado Springs, Colorado, March 2003.

[3] Z. Fu and S. F. Wu, “Automatic Generation of IPSEC/VPN Policies
in an Intra-Domain Environment”, 12th International Workshop on
Distributed Systems: Operations & Management (DSOM 2001),
October 15-17, 2001, Nancy, France.

[4] Z. Fu, “Automatic Generation of Security Policies”, Technical Report,
http://shang.csc.ncsu.edu/secpolicy.pdf.

[5] Z. Fu, S. F. Wu, H. Huang, K. Loh, F. Gong, “IPSec/VPN Security
Policy: Correctness, Conflict Detection and Resolution”, IEEE Policy
2001 Workshop, Jan. 2001..

[6] M. Blaze, A. Keromytis, A. Keromytis, L. Sanchez, “IP Security
Policy Requirements”, draft-ietf-ipsp-requirements-02.txt, Internet
Draft, IPSP Working Group, August 2002.

[7] S. Kent, “IP Encapsulating Security Payload (ESP)”, draft-ietf-ipsec-
esp-v3-06.txt, Internet Draft, IPsec Working Group, July 2003.

[8] S. Kent, “IP Authentication Header”, draft-ietf-ipsec-rfc2402bis-
04.txt, Internet Draft, IPsec Working Group, July 2003.

[9] Nigel Sheridan-Smith, Tim O Neill, John Leaney, Mark Hunter,
"Enhancements to Policy Distribution for Control Flow, Looping and
Transactions", 16th IFIP/IEEE Distributed Systems: Operations and
Management, Spain, October, 2005.

[10] Bernhard Kempter, Vitalian Danciu, "Generic policy conflict handling
using a priori models", 16th IFIP/IEEE Distributed Systems:
Operations and Management, Spain, October, 2005.

[11] Wayne Jansen, Tom Karygiannis, Michaela Iorga, Serban Gravila,
and Vlad Korolev, “Security Policy Management for Handheld
Devices”, The 2003 International Conference on Security and
Management (SAM'03), June 2003.

[12] Hu V., D. Frincke, D. Ferraiolo, “The Policy Machine for Security
Policy Management”, International Conference on Computational
Science (2) 2001.

[13] Devarapalli V., et al, "NEMO Basic Support Protocol", Internet
Draft: draft-wakikawa-nemo-basic-02.txt, Work In Progress,
December 2003.

[14] Threat Analysis on NEtwork MObility (NEMO) by Souhwan Jung,
Fan Zhao,S. Felix Wu,HyunGon Kim, ICICS'2004.

[15] Tzong-Jye Liu, Yuan-Siao Liu, Kuong-Ho Chen1, and Chyi-Ren
Dow, "ZERO-Conflict: A Grouping-based Approach for Automatic
Generation of IPSec/VPN Security Policies", 17th IFIP/IEEE
International Workshop on Distributed Systems: Operations and
Management Large Scale Management (DSOM 2006), to appear.

[16] C. L. Chang, Y. P. Chiu and C. L. Lei, "Automatic Generation of
Conflict-Free IPSec Policies", 25th IFIP WG 6.1 International
Conference on Formal Techniques for Networked and Distributed
Systems (FORTE), Taiwan, October 2005.

[17] Deterlab - Network Security Testbed based on Emulab,
http://www.deterlab.net.

