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ABSTRACT
We analyze the properties of Small-World networks, where
links are much more likely to connect “neighbor nodes” than
distant nodes. In particular, our analysis provides new re-
sults for Kleinberg’s Small-World model and its extensions.
Kleinberg adds a number of directed long-range random
links to an n×n lattice network (vertices as nodes of a grid,
undirected edges between any two adjacent nodes). Links
have a non-uniform distribution that favors arcs to close
nodes over more distant ones. He shows that the following
phenomenon occurs: between any two nodes a path with ex-
pected length O(log2 n) can be found using a simple greedy
algorithm which has no global knowledge of long-range links.

We show that Kleinberg’s analysis is tight: his algorithm
achieves θ(log2 n) delivery time. Moreover, we show that
the expected diameter of the graph is θ(log n), a log n fac-
tor smaller. We also extend our results to the general k-
dimensional model. Our diameter results extend traditional
work on the diameter of random graphs which largely fo-
cuses on uniformly distributed arcs. Using a little addi-
tional knowledge of the graph, we show that we can find
shorter paths: with expected length O(log3/2 n) in the ba-

sic 2-dimensional model and O(log1+1/k n) in the general
k-dimensional model (for k ≥ 1).

Finally, we suggest a general approach to analyzing a
broader class of random graphs with non-uniform edge prob-
abilities. Thus we show expected θ(log n) diameter results
for higher dimensional grids, as well as settings with less uni-
form base structures: where links can be missing, where the
probability can vary at different nodes, or where grid-related
factors (e.g. the use of lattice distance) has a weaker role
or is dismissed, and constraints (such as the uniformness of
degree distribution) are relaxed.
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1. INTRODUCTION
Small-world networks (SWN) have been an active and

common topic in many disciplines, including the social and
natural sciences. These networks possess a striking property,
the so called small-world phenomenon, also often spoken of
as “six degrees of separation” (between any two people in
the United States). Milgram discovered this in his pioneer-
ing work in the 1960’s [21], and the more recent work by
Dodds et al. suggests its still true [10]. Since many real net-
works exhibit small-world properties, a number of network
models have been proposed as a framework to study this
phenomenon. Recently, Kleinberg [14], building on the work
of Watts and Strogatz [22], proposed a family of SWNs to
study another compelling aspect of Milgram’s original find-
ings: a greedy algorithm using only local information can
construct short paths.

As Kleinberg has commented, it is striking that short
paths not only exist but can be found with limited knowl-
edge of the global network. Algorithmic results in this area
improve our understanding of many practical network struc-
tures and bring in potential applications related to routing
problems in the Internet and peer-to-peer networks. Thus,
finding models with this feature of SWNs, with an emphasis
on algorithmic aspects, is well motivated. Kleinberg de-
veloped an interesting model of this, and it has generated
considerable followup work.

Kleinberg’s basic model uses a two-dimensional grid as a
base with long-range random links added between any two
nodes u and v with a probability proportional to d−2(u, v),
the inverse square of the lattice distance between u and v.
In the basic model, from each node there is an undirected
local link to each of its four grid neighbors and one directed
long-range random link. In this setting Kleinberg shows
that a simple greedy algorithm using only local information



finds routes between any source and destination using only
O(log2n) expected links [14].

Kleinberg leaves two important issues open in the analysis
of routing in his model. We complete the analysis in this
paper and then extend our techniques to a broader range
of settings. First we show that the O(log2n) expected time
analysis is tight (thus except for pairs which are quite close,
Kleinberg’s algorithm uses expected Θ(log2n) links).

Our second main result shows that the expected diame-
ter of this graph is Θ(log n). This extends traditional work
on the diameter of random graphs which largely focuses on
uniformly distributed arcs [7]. This diameter result shows
that an algorithm with global knowledge of the random links
can improve on Kleinberg’s decentralized algorithm by a log
factor. We then give an intermediate algorithm which uses
some additional, fairly local, information to improve the ex-
pected time to O(log3/2 n) in the basic 2-dimensional model

and O(log1+1/k n) in the k-dimensional model (for k ≥ 1).
In addition, we develop techniques for analyzing random

graphs with non-uniform arc distributions. We are able to
characterize properties which lead to small diameter graphs,
and use these to prove O(logn) expected bounds on the di-
ameter of several settings: k-dimensional versions of Klein-
berg’s model; settings where arc probabilities are propor-
tional to d−r(u, v) for 0 ≤ r < 2; also for some non-grid
settings and where nodes have differing degree or arc distri-
butions.

Since real-world networks often are better modeled by
random networks with non-uniform arc distributions, our
analysis results may help create and analyze more accurate
network models.

The structure of this paper. Section 3 presents defi-
nitions and supporting facts on Kleinberg’s Small-world set-
ting. Section 4 discusses our bound on Kleinberg’s delivery
time and introduces our alternative algorithm. Section 5 de-
scribes our diameter results for Kleinberg’s model and more
general settings. In Section 6 we summarize our results and
suggest additional open problems.

2. RELATED WORK
There has been considerable work on the small-world phe-

nomenon. See [15] for early surveys and [14] for a more
recent account on modeling small-world networks. Before
Kleinberg’s model, Watts and Strogatz [22] proposed a re-
fined model by randomly rewiring the edges of a ring lattice
each with a probability parameter p. Watts and Strogatz
observed that for small p the model reflects many practi-
cal small-world networks with small typical path length and
non-negligible clustering coefficient.

Applications have been found using Kleinberg’s small-
world model or the ideas behind it, such as decentralized
search protocols in peer-to-peer systems [20, 25], and gos-
sip protocols for spreading information in a communication
network [11]. See also [13] for a generalization that encom-
passes both lattice-based and tree-based (“taxonomic” or
“hierarchical”) small-world networks, and [1] for a practical
approach to measure the diameter of the World Wide Web
using a simulation model based on the power law distribu-
tion.

The diameter of random graphs is a classic problem [5, 6,
7, 8] but most results use uniformly distributed arcs. Bol-
lobas and Chung [6], study a graph model very similar to
Watts and Strogatz in [22] with the nodes of a cycle (or

a “ring”) randomly matched to form additional long-range
links. The closest diameter work with non-uniform arc prob-
abilities is by Benjamini and Berger who study the diameter
of 1-D long-range percolation graphs [4] and Coppersmith
et al. who extend this to k-D grids [9]. As in Kleinberg’s
model, a grid with (undirected) local links is augmented
by undirected long-range random links whose probability is
inversely related to their distance. Both papers prove di-
ameter results which show how the diameter changes as the
arc probability parameters change. Note that in contrast to
Kleinberg’s model, the added links are undirected, and the
out-degree of a node is not fixed. Thus the analysis tech-
niques here are rather different than those to analyze Klein-
berg’s and related models. Our Θ(log n) diameter bound
improves on the best prior result of O(log nlog log2n) due to
Lebhar and Schabanel’s work on finding short paths [16].

There have also been several recent papers which analyze
greedy routing in other small-world like networks. Barriere
et al. [3] give matching upper and lower bounds for greedy
routing in a ring network augmented by random links. They
also give a nice general framework for analyzing greedy rout-
ing, and prove a polylog upper bound on greedy routing for
a broad class of what they call “Long-range contact” graphs.
Our results have some similarities, though we focus on di-
ameter issues and use mostly different techniques. Aspnes
et al. [2] and Manku and Manku et al. [18, 17] look at using
small-world type networks for routing in peer-to-peer sys-
tems. Manku et al. compares deterministic and randomized
structures, as well as considering the effect of one-lookahead.
Aspnes et al. analyze expected performance with additional
links and look at the effect of edge failures. They produce
some useful results for doing analysis though their focus is
on the one dimensional setting. Recently, Fraigniaud et al.
[12] study greedy routing and also show that with some ex-
tra knowledge about the graph it is possible to route using
O(log1+1/k n) expected steps in the general k-dimensional
model (for k ≥ 1). However, they achieve this with an
oblivious greedy algorithm, while ours requires keeping ad-
ditional state information. In addition, they show this path
length is the best possible for a range of greedy routing algo-
rithms (even ones which have complete global knowledge).
They give a general lower-bound on greedy routing which
also shows that Kleinberg’s O(log2 n) analysis is tight for
greedy routing in the basic model.

3. BASIC FACTS AND DEFINITIONS
We now present our notation and basic facts on Klein-

berg’s small world setting. Let V denote the set of all nodes,
the size of which is n2. We use K(n, p, q) to refer to the
class of all random graphs based on Kleinberg’s model: an
n×n grid, undirected local links (from a node) to all nodes
within distance p, and q long range directed links/node such
that the probability of a link from u to v is proportional to
d−2(u, v). We also use K∗(n, p, q) for a similar class, de-
fined with respect to the lattice distance with wrap-around:
d(u, v) = min{|k−i|, n−|k−i|}+min{|l−j|, n−|l−j|}. For
simplicity, we usually show our main results for K∗(n, p, q)
but most of our work can be easily extended to K(n, p, q).

Let Bl(u) denote the set of all the nodes within lattice
distance l from u; we call this a ball of radius l and center u
(actually shaped as a diamond in a two dimensional grid).
Define bl(u) as the number of nodes at distance l from u,
i.e. nodes on the ‘surface’ of Bl(u).



First, we consider some basic facts for the simple models
with p = q = 1, which, we denote by K∗ and K. For any two
nodes u and v, let p(u, v) denote the probability that there is
a random link from u to v. Since p(u, v) ∼ d−2(u, v), we have
p(u, v) = d−2(u, v)/cu, where cu is the inverse normalized
coefficient, a constant depending on n and the position of u:

cu =
∑
∀v 6=u

d−2(u, v) =

2n−2∑
j=1

bj(u)j−2.

Note that we always have p(u, v) = p(v, u) if the graph is
from K∗, and so cu is the same for all u; call this value c∗. It
is easy to see that bj(u) = θ(j), so cu can be approximated
by a harmonic sum. The following fact is trivially implied
from Kleinberg’s analysis in [14].

Fact 1. For graphs from K∗ or K, the inverse normalized
coefficient cu = θ(log n) and for any two distinct nodes u and
v, p(u, v) = Ω((n2 log n)−1). Especially, c∗ = 4 ln n+O(1)1.

3.1 Links into or out of a ball
Our analysis of the expected diameter (section 5) builds

on a standard approach. We consider the expected length
of a path from an arbitrary start s to a destination t; for
simplicity, we start with K∗(n, 1, 4) for a basic framework
then extend our analysis to K∗(n, 1, 1) and others. For
K∗(n, 1, 4), using only the long-range links consider all nodes
at distance one from s, then all new nodes these can reach
(so at distance two), and so on. If these sets grow expo-
nentially in size, we will quickly reach a large subset of the
nodes in the graph. We prove two important facts which
help to analyze the growth rate.

For a given set Q of nodes, we construct a set R, a col-
lection of nodes not in Q but reachable by a random link
from Q; we also consider a reverse scenario where R con-
tains nodes with a random link into Q. We focus on lower
bounding the ratio |R|/|Q|, which is supported by these two
elementary experiments: to see if a random link from the
center of a ball goes out of this ball and to see if there is a
random link from outside the ball which goes to its center.
Note that we have non-uniform probabilities, so the ratio
|R|/|Q| depends on the shape of Q as well as its size; we
also have directed links, so the analysis on incoming links
differs from outgoing links 2.

Fact 2. On a graph from K∗, given any positive θ < 1,
any integer 1 ≤ l ≤ nθ, for n large enough: i) the probability
that a random link from a given node u goes to a node outside
of Bl(u) is greater than 1− θ − o(1); ii) the probability that
there is a random link to u from a node outside of Bl(u) is

greater than 1− eθ+o(1)−1 (i.e. almost 1− eθ−1).

We are most interested in values of θ just above 0.5 since
then |Bl(u)| = Ω(n log n). Thus, a link going out has prob-
ability / 0.5 ( 1− θ) and in is / 0.39 ( 1− eθ−1).

Proof. For i) let E be the event that u has a random
link going to a node v /∈ Bl(u). We have

Pr[E] =
∑

v∈Bl(u)

d−2(u, v)/c∗ ≤
l∑

j=1

bj(u)(j−2)/c∗.

1Since in K∗, bj(u) = 4j if j ≤ dn/2e and 0 otherwise.
2In K∗|K, each node has exactly one outgoing random link,
but the number of incoming links varies.

Since bj(u) ≤ 4j we have

l∑
j=1

bj(u)(j−2) ≤ 4

l∑
j=1

j−1 ≤ 4 ln(3l) ≤ 4 ln(3nθ).

With c∗ = 4 ln n + O(1) we have

Pr[E] ≤ 4 ln(3nθ)

4 ln n + O(1)
≤ θ ln n + ln 3

ln n + O(1)
= θ + o(1)

Thus Pr[E] ≥ 1− θ − o(1).
For ii) let F be the event that there is a random link

coming to u from a node v outside Bl(u); thus,

Pr[F ] =
∏

v /∈Bl(u)

(1− p(v, u)) ≤
∏

v /∈Bl(u)

e−p(v,u) = e
−

∑
p(v,u)

v /∈Bl(u)

Here we use the well known fact ex ≥ 1 + x to obtain
e−p(u,v) ≥ 1− p(u, v). Since p(u, v) = p(v, u),

Pr[F ] ≤ e
−

∑
p(u,v)

v /∈Bl(u) = e−Pr[E] ≤ eθ+o(1)−1

So Pr[F ] = 1− Pr[F ] ≥ 1− eθ+o(1)−1.

In a similar manner, we have an equivalent result for K
as follows. See [19] for the proof of this.

Fact 3. On a graph from K, given any positive θ < 1 and
integer 1 ≤ l ≤ nθ, for n large enough: i) the probability that
a random link from a given node u goes to a node outside
of Bl(u) is greater than 1−θ

1+3θ
+ o(1); ii) the probability that

there is a random link to u from a node outside of Bl(u) is

greater than 1− e−(1−θ)/4+o(1).

3.2 Extended models
As a natural generalization, we can extend all these con-

cepts and basic facts to the classes of graphs based on a
k-dimensional grid for k ≥ 1 by updating the distribution
rule of the random links: p(u, v) ∼ d−k(u, v) instead. Let
K∗(k, n, p, q) and K(k, n, p, q) denote such classes of graphs
based on this k-dimensional grid (with size n in each di-
mension) with and without wrap-around, respectively. In
K(k, n, p, q), for a node u close to the edge of the grid, a ball
centered at u may not be a ‘full’ ball but it is easy to extend
all our results with balls to cover such a case.

It is relatively easy to prove that b(j) = θ(jk−1) 3. So,
bj(u)j−k = θ(j−1), which means that we can still use har-
monic sums to bound the likes of

∑
bj(u)j−k as before.

Thus, we still have cu = θ(log n). More importantly, we
can generalize the facts on “links into or out of a ball” as
follows (for simplicity, we do not claim more exact bounds).

Fact 4. On a graph from K(k, n, p, 1) or K∗(k, n, p, 1),
for any given 4 positive θ < 0.6, there exist positive constants
ξ1 and ξ2 such that for n large enough and l ≤ nθ:
i) the probability that there is a random link from a node u
to a node outside of Bl(u) is ≥ ξ1;
ii) the probability that there is a random link (with a given
label) to u from a node outside of Bl(u) is ≥ ξ2.

3Based on counting the number of ways to choose k positive
numbers such that they sum to a given positive number (j).
4The fact holds for any 0 < θ < 1 but we use θ < .6 since
we only need θ about 0.5 in our later analysis).



It is also easy to extend this fact for arbitrary q ≥ 1.
Each node now has q independent random links where each
of them can be labeled from 1 to q. Fact 3 is then, concerned
with a link specified by a given label and an arbitrary center
node u.

3.3 Links to a spherical surface
We now study another probabilistic experiment in the

general models K(k, n, p, q) and K∗(k, n, p, q), namely, if a
random link from a given node u goes to the surface of a
given ball B, where u is outside of B. We denote the prob-
ability of this by P (u, SB), where SB is the set of nodes on
the surface of ball B. Also define distance d(u, B) between
node u and ball B as the minimum lattice distance from u
to a node on B’s surface. Our lower bound in section 4 will
be based on this experiment.

Fact 5. For any k ≥ 1, there exists a constant ĉ such that
for any ball B = Bl(v) and node u outside B on a graph from
K∗|K(k, n, p, q): P (u, SB) ≤ ĉ

m log n
, where m = d(u, B).

Also, if k ≥ 2 and l ≤ m then P (u, SB) ≤ ĉl
m2 log n

.

Note that for the first (main) part of the fact, the bound
( ĉ

m log n
) depends on the distance from u to the ball only, and

thus, is independent of the size of the ball. Intuitively, if we
think of this probability as a measure of ‘attractive force’
(to u), the force generated by SB is not stronger than the
joint force generated by m nodes at about distance m from
u. That is, a small fraction of nodes in SB , which are at the
‘pole’ closest to u, generates a dominant term for P (u, SB).

A rigorous proof for the first part is complicated, so we
leave the proof to the appendix. Meanwhile, the second
part is easy: P (u, SB) =

∑
w∈SB

p(u, w) = O( l
m2 log n

) with

p(u, w) ≤ 1
mklogn

and |SB | = b(l) = O(lk−1) ≤ l×O(mk−2).

4. DECENTRALIZED ROUTING
Kleinberg proved that the expected number of links used

to route from a source s to a destination t (Kleinberg’s de-
livery time) by the greedy algorithm is O(log2 n) for the
two-dimensional case [14]5. We will prove that indeed the
greedy algorithm takes expected Ω(log2 n) delivery time for
the general k-dimensional model and suggest other variants
with better delivery time. Let GA denote the greedy al-
gorithm. For a node v we call N(v) the next node found
by GA when we are at v (initially, v = s) and seeking a
path to the destination node t. Define random variable
δ(v) = d(v, t) − d(N(v), t), which characterizes the speed
that GA converges to t. The following lemma, which is ac-
tually a re-statement of fact 5, establishes a probabilistic
bound for this speed.

Lemma 6. For each k ≥ 1 (the dimension), there ex-
ists a constant ĉ such that, for a graph from K(k, n, p, q)
or K∗(k, n, p, q), any two nodes v and t, and any integer

1 < m < d(v, t), Pr[δ(v) = m] ≤ ĉ
mlogn

×min{1, d(v,t)−m
m

}.

The following theorem shows that for the majority of s − t
pairs, Kleinberg’s delivery time can not be o(log2n), there-
fore we have the tight bound of θ(log2n) for the greedy al-
gorithm.

5It is straightforward to generalize his proof for the general
k-dimensional model

Theorem 7. For any constant c1 > 0, there exists a con-
stant c2 > 0 such that, for any two nodes s and t on a graph
from K∗|K(k, n, 1, 1) with d(s, t) > c1n, Kleinberg’s delivery
time w. r. t. endpoints s and t is greater than c2log

2n with
probability at least 0.5, when n is large enough 6.

Proof. Consider a series of random trials, where, given
a node v, we find N(v) the node for the next trial. Define

random variable Xv = d(v,t)
d(N(v), t)

, which reflects the ratio

between the distance to t before and after such a trial. Let
{v1 = s, v2, . . . , vk} be the nodes on a run of GA after k

such steps (thus vi+1 = N(vi)).
∏k−1

i=1 Xvi reflects the ratio
between the distance at the initial and at the current state.
To make this ratio always well-defined, if N(v) = t we define
Xv = d(v, t) and if v = t we define Xv = 1.

It is clear that 1 ≤
∏k−1

i=1 Xvi ≤ d(s, t) and we need to

analyze the expected k to have
∏k−1

i=1 Xvi = d(s, t) (indicat-
ing that d(vk, t) ≤ 1, so GA is about to finish), or

∑
Zvi =

ln(d(s, t)) where Zv = lnXv. From lemma 6, we can prove
that E[Zv] < c/ log n for some constant c (proved below), if
d(v, t) ≥ ln n. To get rid of the condition, d(vi, t) > ln n, we
modify GA a bit, so whenever we get to a node v within a
distance ln n from t (i.e. d(v, t) ≤ ln n), set N(v) = t and
redefine Zv = 0 (this will not weaken our proof since when
we get there we can simply walk to t by at most dlnne local
links). Thus we always have E[Zvi ] ≤ c/lnn,∀i = 1..k.

Consider Zk = Zv1 + Zv2 + . . . + Zvk . If we reach t with
less than k steps, or say, vj = t for some j < k, then as
mentioned before, we have Zvj = Zvj+1 = . . . = Zvk−1 = 0.
We now show that

Pr[Zk < M ] ≥ 0.5 (1)

where k = b ln2n
4c

c and M = ln( d(s,t)
ln n

) ≥ ln n+ln c1−ln(ln n).
Since E[Zvi ] < c/ ln n, we have

E[Zk] ≤ k × c

ln n
≤ lnn

4
< 0.5M

for n large enough. Thus, Pr[Zk ≥ M ] < 0.5 since otherwise
E[Zk] ≥ 0.5M . Hence, Pr[Zk < M ] ≥ 0.5. From (1),
choose c2 = b 1

4c
c then at least half of the time, GA can not

finish with less than c2log
2n steps; the theorem follows.

Now, we show that there exists a constant c such that
E[Zv] ≤ c/ ln n if d = d(v, t) ≥ ln n. Define the function
f(i) = ln( d

d−i
); note that Zv = ln( d

d−δ(v)
). We need to show

that
∑d

i=1 f(i) Pr[δ(v) = i] ≤ c/ ln n for some constant c.
First we have

d/2∑
i=1

f(i) Pr[δ(v) = i] ≤ 1

d− 1
+

c′

ln n

d−1∑
i=d/2

1/i ≤ c′ + 1

ln n

for some constant c′. Note that we have Pr[δ(v) = i] ≤
c′

i ln n
from lemma 6 and f(i) ≤ i

(d−i)
from the common

fact that ln(1 + x) < x,∀x > −1. Similarly, we have∑d
i=d/2 f(i) Pr[δ(v) = i] ≤ c′′

ln n
for some constant c′′, us-

ing Pr[δ(v) = i] ≤ c′′(d−i)

i2 ln n
from lemma 6. Now, choose

c = c′ + c′′ + 1.

6Note that we can actually make the probability above an
arbitrarily high constant (< 1), but we use 0.5 for simplicity.



4.1 Algorithms for improved delivery time
We now consider variants of Kleinberg’s greedy algorithm

which use additional knowledge of the graph to improve ex-
pected path length. Our basic algorithm operates on graphs
from class K∗(n, 1, 1) but it can be easily extended to more
general classes. We assume that each node u knows the
long-range links of the log n neighbor nodes closest to u in
the grid. Call Wu, the set of these neighbors and their long
range contacts, the view at u. During a basic step of routing,
if u is the current message router, we go next to v, the node
in Wu closest to t (we may need to follow several local links
and, possibly one final random link to v). Once we reach v,
it becomes the current node.

In Kleinberg’s algorithm Wu includes only the nodes in-
cident to links from u (at most 5 in a two-dimensional grid)
and a routing decision is made at each node on the path.
In our algorithm, once we make a decision for a basic step
(at the initial message router) we follow the sub-path to the
next node where a decision is made. When we are at an
intermediate node in a basic step, we follow local links (up,
down, left or right) except for the final link which may be
a random long-range link). We can describe this sub-path
using only O(log log n) extra bits to specify the last node
on the sub-path reached by local links only. Alternately, we
can use 2

√
log n bits to describe the sequence of local moves

(two bits per local move).
We now adapt Kleinberg’s analysis to show that the ex-

pected number of links used in this algorithm is O(log3/2 n).
We say that node u is in phase i if 2i < d(u, t) ≤ 2i+1.
Kleinberg proved that if u is in phase i, and v is u′s long
range contact, the probability that v is in some phase j < i
is proportional to 1/ log n (for i > log log n). Let Xi be
a random variable recording the number of basic steps our
algorithm executes from nodes in phase i.

Lemma 8. For i > log log n, E[Xi] < c for a constant c.

Proof. Each basic step considers at least log n/2 new
long-range links (since at most half of the current message
holder’s set Wu overlaps all previous sets), and by Klein-
berg’s result has at least a constant probability of finding a
link to a node within distance 2i of t.

Theorem 9. Our improved algorithm visits expected
O(log3/2 n) nodes in K∗(n, 1, 1).

Proof. Using the lemma above, the expected number
of basic steps till we get within distance log n is O(log n)
(constant per phase for log n phases). Each basic step visits
at most

√
log n nodes (for a 2-D grid), so the total length is

O(log3/2 n).

More careful work (using tail inequalities) gives a slightly

stronger result: a longest path found has length O(log3/2 n)
with overwhelming probability. The underlying intuition is
to think of doing a chain of basic steps until we have about
log n which advance to a new phase.

If we use the same algorithm on classes K∗/K(n, p, q)
where p, q ≥ 1, it is relatively easy to show a better bound

of O( log3/2 n
p
√

q
). So, the bound is just O(log n) if for instance,

p = Ω(log1/2 n) and q is a constant, or p is a constant and
q = Ω(log n). It is also easy to extend our algorithm to
K∗/K(k, n, p, q). For p = 1, q = 1, we obtain the upper

bound O(log1+1/k n), which is close to the ideal O(log n)
when k is large.

A related approach is analyzed in [12] who show that the

O(log1+1/k n) bound for k-dimensions can be achieved by
an oblivious algorithm. They also show that this bound is
tight for a range of greedy algorithms (even with much more
information).

5. EXPECTED DIAMETER

5.1 Basic approach
For simplicity we will first consider Kleinberg’s basic 2-

D grid, but with four long-range links per node. We show
that the expected diameter of a graph from K∗(n, 1, 4) is
Θ(log n) and then extend our approach to other and more
general classes of graphs.

For a source s and a destination t 6= s chosen arbitrarily
from V , we will show that there is an O(log n) length path
from s to t with overwhelming probability. The basic idea is
to construct two sets of nodes S and T which are each of size
Θ(n log n) such that: all the nodes in S can be reached from
s by a directed path of length O(log n) of long-range links;
all the nodes in T have a directed path of length O(log n)
to t using long-range links. It is then simple to show that
with overwhelming probability, there is a directed arc from
a node in S to a node in T , thus there is an O(log n) length
path from s to t. The bulk of the proof is showing that
appropriate sets S and T exist with high probability.

Define χ(u) with u ∈ V as the set of nodes v such that
(u, v) is a long-range link; also χ(A) =

⋃
u∈A χ(u), for any

A ⊂ V . Our basic idea is to ‘grow two trees’ with roots from
s and t to create S and T . We construct a chain of disjoint
subsets {Sk}µ

k=0 with S0 = Br(s) where r = r0

√
log n for

some constant r0
7. Let Ck =

⋃k
i=0 Si and define Sk+1 =

χ(Sk) − Ck. Thus, Sk+1 is built by iteratively applying χ
on elements of Sk and taking only ‘fresh’ nodes, which have
not been in any preceding subsets.

Later we construct a similar subset chain {Tk}ν
k=0 to cre-

ate the t−tree. The probability of success (finding sets S, T
which connect) can be made as close to one as needed by
choosing r0 (and thus S0) sufficiently large. Thus we get
an O(log n) bound on the expected diameter of a graph in
K∗(n, 1, 4).

A worst-case analysis with a ball experiment.
We will show that the subset chain almost surely grows

exponentially in size: there is a constant γ > 1 such that
Pr[|Sk+1|/|Sk| > γ] is almost one when c log n < |Sk| <
αn log n for suitable constants c and α. Our goal is to finally
form a set Sµ such that |Sµ| ≥ αn log n and µ = O(log n).
For a fixed γ, consider the following S-construction process:
starting with S0 we successively create S1, S2, . . . until either
we get a set Sµ with |Sµ| ≥ αn log n (we succeed) or we
have some |Sk+1|/|Sk| ≤ γ and we fail. As soon as either
case happens we stop the process. Note that if we succeed
we do so in O(log n) χ(u) steps, so µ = O(log n) and Sµ

is our desired set S. The following analysis shows that our
S-construction succeeds with high probability.

The main concern is how many fresh nodes we get from
χ(Sk) to include in Sk+1. We fix an order to scan Sk and
for each u ∈ Sk, a node v ∈ χ(u) is fresh if it has not been
included in a subset G, which contains the current tree (the
union of the current Sk+1 and all the preceding Si, i ≤ k).

7Thus, there are θ(log n) nodes in S0 all reachable from s
by O(

√
log n) local links.



To analyze this we make the following crucial observation.
We consider this experiment E(u, G): we generate a random
link 8 from u and consider if u /∈ G; let X(u, G) denote the
indicator random variable of this happening. We do this ex-
periment 4 times for each u ∈ Sk and |Sk+1| will be the sum
of these 4|Sk| random variables X(u, G); note that these
variables are not identical since G keeps growing larger. Let
Gk denote the whole process. Note that Pr[X(u, G) = 1]
depends on both the size and shape of G. Thus we ask: if
we move the elements in G around, how would we minimize
Pr[X(u, G) = 1]? The nature of the inverse second power
distribution makes it clear: this can be done by moving ele-
ments of G closer to u; in fact, Pr[X(u, G) = 1] is minimized
(for a fixed size for G) when G is like a ball with u as its
center.

Thus we can lower bound |Sk+1|/|Sk| using the follow-
ing worst-case setting for selecting a link from u. Let C =
Θ(n log n) be the maximum size set Cj we can ever have
in our S-construction process. Let H be a ball with cen-
ter s and size C (or the next larger size to make a full
ball). Since H is chosen such that |H| ≥ |Ck+1| (i.e. always
≥ |G|) and has the worst possible shape, Pr[X(u, G) = 1] ≥
Pr[X(s, H) = 1] for any pair u, G used in our S-construction
process. Since by fact 2, E[X(s, H)] > β for any fixed
β < 0.5 when n is large enough, we conclude:

Fact 10. For any fixed β < 0.5, E[X(u, G)] > β for each
u, G pair in our S-construction.

We now show that each new set is successfully constructed
with high probability:

Lemma 11. For any η > 0, and γ ∈ (1, 2) we can choose
a constant ĉ such that, for k ≥ 0, if |Sk| ≥ ĉ ln n and
|Ck+1| = O(n log n) then Pr[|Sk+1|/|Sk| > γ] = 1− O(n−η)
for n large enough.

Proof. Let m = |Sk|, so |Sk+1| is the sum of 4m X(u, G)
indicator R.V’s. By fact 10, we treat this as the sum of 4m
independent Bernoulli random variables each with expecta-
tion ≥ β. Applying Chernoff’s inequality, for 0 < δ < 1,

Pr[|Sk+1| ≤ (4mβ)(1− δ)] ≤ e−2mβδ2
≤ n−2ĉβδ2

≤ n−η

for a proper choice of ĉ. Thus, Pr[|Sk+1|/|Sk| > γ] = 1 −
O(n−η) for γ = 4β(1− δ).

Indeed we can always choose δ > 0 small enough so that
γ = 4β(1 − δ) can be arbitrarily close to 4β, and thus, ar-
bitrarily close to 2 as β = 0.5 − o(1). Once a value from
(1, 2) is chosen for γ (and so 0 < δ < 1 and 0 < β < 0.5
are chosen accordingly), given any η > 0, we can choose ĉ
such that when m ≥ ĉ log n we have Pr[|Sk+1|/|Sk| > γ] =
1−O(n−η).

In fact, by some simple computation, we can see that ĉ >
η/(1− γ

2
)2 is a sufficient condition to find such ĉ. So, if we

have η = 6 (9), γ = 1.8 (by β = 0.48 and δ = 0.0625 for
example) then we can choose ĉ = 601.

Thus, given fixed constants η and γ we can choose ĉ
as above, so if |S0| ≥ ĉ log n, we can expect the cardi-
nality series {|Si|} to grow exponentially before reaching

8Using inverse second power distribution
9Later, in our final step, we use this value to prove the two
trees, s-tree and t-tree, connect with overwhelming proba-
bility

or exceeding the threshold αnlogn during the first g + 1
terms, where g = dlogγ(αn/ĉ)e = θ(log n). By iterating
lemma 11 appropriately (in each step of growing Si+1 from
Si when |Si| < αnlogn), we can show that almost surely
|Sµ| ≥ αnlogn for some µ ≤ g = θ(log n). Note that Sµ

contains only ‘fresh’ nodes such that we have not yet con-
sidered their random links. We now prove that we almost
surely get a large s-tree within O(log n) steps.

Lemma 12. For any given node s ∈ V , any θ > 0 and
any α > 0, by constructing s’s subset chain as above, we will
obtain subset Sµ where any node in Sµ can be reached from
s by an O(log n) path and Pr[|Sµ| ≥ αnlogn] = 1−O(n−θ).

Proof. Consider a successful S-construction where we
have a succession of steps where |Sk+1|/|Sk| > γ until we
reach size αn log n. From lemma 11 we can pick η > θ so
that Pr[|Sk+1|/|Sk| > γ] > 1−O(n−η) for each step.

The probability that the S-construction process succeeds
is greater than the probability we get g consecutive success-
ful growth steps with g = dlogγ(αn/ĉ)e = θ(log n) Thus
Pr[S-construction process succeeds] ≥

(
1 − c1n

−η
)g ≥ 1 −

gc1n
−η for some constant c1 > 0 (using a basic calculus fact:

(1 + x)n ≥ 1 + nx for any x > −1 and n ≥ 1). Since θ < η
and , g = O(log n), it is easy to see that gc1n

−η = O(n−θ)
and hence, we create the desired final set with probability
≥ 1−O(n−θ).

Another ball experiment to analyze ‘t-tree’.
We now consider a tree of nodes with paths to t. We now

use a function χ̂ which, given an input node u, outputs the
nodes with a random link to u. As before, we construct
a subset chain {Tk}ν

0 by having Tk+1 = χ̂(Tk) − Ĉk where

Ĉk =
⋃k

i=0 Ti. Thus, we include into Tk+1 all the fresh
nodes which have a random link to any node in Tk. We
can use much the same approach as before, but with some
modifications and additional details. We still use a state-
variable G to denote the set of all nodes in the tree we have
reached so far: G = Ĉk if we have just finished the first k
subsets, otherwise G is the union of Ĉk and the developing
Tk+1. Let G = V −G, the set of nodes not in the tree yet.
Also, for each random link from each node u ∈ V we assign
a label i = 1..4.

We now look closer at process Ĝk, the growing step of
Tk+1 from Tk, which is more complicated than the coun-
terpart in the s-tree. Let Ê(u, i, G) denote an experiment
which has each node w ∈ G look at its random link labeled
i, and if this link hits u we add w to G (for simplicity we

may also use Êu instead). Process Ĝk simply repeats the

Ê(u, i, G) experiment 10 for each node u ∈ Tk and for each
i = 1..4. As with the s−tree, we now consider an artifi-
cial experiment which should be ‘outperformed’ by the real
Ĝk but is easier to analyze. Let H be a ball centered at u
with size at least Ĉ, the maximum size we allow a set to
get in our T -construction process. Let X̂(u, H) be a ran-
dom variable which is one if at least one random link from
a node in V − H hits u, otherwise it is zero. In our T -
construction process, let X̂(u, i, G) be an indicator random
variable recording whether some node in Ḡ has a link with
label i to u. We now argue that Pr[X̂(u, i, G) = 1] > .39
(the bound on a link into a ball in Fact 2).

10Note that G is changing as we discover new fresh nodes
and we can fix the order to scan Tk initially.



We compare the real and artificial processes above. Look-
ing closely at each real experiment Êu, observe that it is
slightly preconditioned by the results of the previous ones.
A random link from a node w ∈ G must not go to a node
in Ĉk−1, because if w ‘hits’ a node v ∈ Ĉk−1, then w would
have been included in G earlier during Êv. In fact, this
precondition makes this random link from w more likely to
hit u. Thus in the artificial process, each link is less likely
to hit u than in the real process (as before, a ball is the
worst shape for G, and we start with |H| at least the max-

imum size for G). Thus, Pr[X̂(u, i, G) = 1] > Pr[a node
outside H has a link to u] > .39. We can then use an ar-
gument analogous to lemma 11: the size of a new set Tk+1

is lower bounded by a sum of indicator variables, and we
lower bound the probability each of these variables is one.
Thus we can pick a value of γ̂ > 1 such that for any η̂ > 0,
Pr[|Tk+1|/|Tk| > γ̂] > 1−O(n−η̂) (again assuming we start
with a large enough initial set T0 of size θ(log n)). Once we
have this, the same argument as in lemma 12 shows that the
entire T -construction process succeeds with high probabil-
ity.

Fact 13. For any given node t ∈ V , any θ > 0 and any
α > 0, if we construct t’s subset chains as above, we will
obtain a subset Tν such that t can be reached from each node
in Tν by a path of length O(log n) and Pr[|Tν | > αn log n] =
1−O(n−θ).

The tight bound. Using fact 13, it is not hard to see
that there almost surely exists two such subsets Sµ and Tν

with our desired properties. We now show they either in-
tersect or Sµ is one-link separate from Tν , i.e. there exists
u ∈ Sµ such that χ(u) ∩ Tν 6= ∅. This means, there al-
most surely exists an O(log n) path from s to t. Moreover,
by choosing appropriate constants θ, γ and α, we can make
this probability arbitrarily close to one and as a result, we
have the following theorem.

Theorem 14. The expected diameter of the graphs in
K∗(n, 1, 4) is θ(log n)

Proof. We will show that for any pair of nodes s,t there
is an s− t path of length O(log n) with probability at least
1 − O(n−6), since there are fewer than n4 pairs of vertices
in the grid and each has a path of length at most 2n, this
shows the expected diameter is O(log n). Since the graph is
constant degree it must have diameter Ω(log n) so the result
follows. We now show that the two trees almost surely both
exist and are within one-link of each other.

Suppose that we construct set Sµ and then construct set
Tν . If at any time in the t-tree construction process we in-
clude a node in any of our Si sets we have the desired short
path and are done. To analyze the probability both con-
struction processes succeed, note that it is not straightfor-
ward to use the prior two lemmas with θ = 6 and conclude
this probability is ≥ (1−O(n−6))2, since when we are con-
structing Tν , we have already been conditioned by the exis-
tence of s’s subset chain. To fix this, let the state-variable
subset G, which includes all the nodes already in the t-tree,
be larger, containing all the nodes in the completed s−tree
and the developing t−tree. Since the number of nodes in
the s−tree is O(nlogn), we still have |G| = O(nlogn), so
all the results for t’s subset chain still apply. Thus Pr[both
succeed] ≥ (1 − O(n−6))2, which is also 1 − O(n−6) again
using (1 + x)a ≥ 1 + ax when x > −1, a ≥ 1.

Given an arbitrary node u ∈ Sµ, let p denote the prob-
ability that u ‘misses’ Tν , i.e. none of the 4 random links
from u goes to any node in Tν . From fact 1, the probabil-
ity of a random link from u to any other node is at least
ε = Cu(2n)−2 = Ω(n−2log−1n), therefore p ≤ (1 − ε|Tν |)4,
but |Tν | ≥ αnlogn, so there exists a constant c1 such that

p ≤ (1 − αc1n
−1)4 ≤ e−4αc1n−1

. Now the probability that
all the nodes in Sµ ‘miss’ Tν is at most

(e−4αc1n−1
)αnlogn ≤ e−4α2c1logn = n−4α2c

where c = c1loge. Thus, if we let E be the event that the
two trees intersect or are separated by one link, Pr[E] ≥
1− n−4α2c and when we choose α large enough:

Pr[E] ≥ 1−O(n−6)

With a bit more care, we also show that the expected
diameter is smaller than 3 log n ( see [19] for details). Based
on the approach we have used above to analyze the expected
diameter of graphs with 4 random links out from each node,
we now study variations which also have expected diameter
θ(log n).

The diameter of K∗(n, 1, 1). We now show that we
only need each node to have at least one out-going random
link. The key idea is to modify the subset chain construc-
tion so that for a chosen node u, χ(u) still has at least 4
outputs. These “super nodes” are formed by combining ad-
jacent nodes (and their random links).

Corollary 15. The expected diameter of the graphs in
K∗(n, 1, 1)is θ(log n)

Proof sketch. Given a graph G ∈ K∗(n, 1, 1) we can
partition it into 2 by 2 blocks and contract each node into
a supernode to obtain G′ (so there is an edge (i, j) in G′ iff
there is an edge (u, v) in G where u was contracted to i and
v to j where grid edges map to grid edges and long-range
edges to long-range edges). Note that G′ is almost a graph
from problem K∗(n/2, 1, 4) but the probabilities for long-
range edges are slightly different (due to rounding effects).
However, it is easy to see that facts 1 and 2 still apply to
this setting, so the diameter proof applies to G′ and the
diameter of G differs from G′ by a constant factor.

5.2 Extensions
The work presented in subsection 5.1 can be used as a

framework to analyze the diameter problem on many other
lattice-based settings, where additional random links are
independently added from each node. Grouping adjacent
nodes to form ‘super nodes’ (with enough out-going random
links) has added some flexibility to our approach. For con-
structing subset chains, when we need to make a node u a
super node, we can collect the random links of many of u’s
neighbors and make a virtual re-assignment of these links to
u, i.e. χ(u) contains the nodes incident to these links. In
other words, we only need to maintain the principle of al-
ways having enough out-going random links from any small
neighborhood with a determined size in order to form a su-
per node. In fact, we can relax many conditions in Klein-
berg’s original model yet we can still analyze the new graphs
using our approach. Hence, we can include more practical
graphs: distribution of links are less uniform, some nodes



may have many long-range contacts some may have none,
and local links may be broken or missing.

The issue of missing local links may affect the view of a
grid, however, for now we still assume that the locations
of all the vertices form a geographic grid; thus we can still
use lattice distance to determine link probabilities. We now
suggest the following conditions for a lattice-based setting,
wherein our current approach could be applicable though,
these conditions alone will not always be sufficient. To adapt
this approach to such a new setting, the key is to suitably
formulate underlying properties, analogies of facts 2 and oth-
ers, with respect to the new scenario.

I. The setting is rich enough in local links so that we can
construct starting subsets with size Ω(log n)).

II. There exists a mechanism for producing super nodes
so that we can get enough long-range random links per super
node. We suggest the following proposition, called “Suffi-
ciency of random links everywhere”, but other similar ones
can be used instead: for any constant C > 1, there exists
a constant L such that, for n large enough, for any node u,
there almost surely exists a set of nodes with at least C out-
going random links and reachable from u by no more than L
grid links 11.

III. An analogue to fact 2: there exist positive constants
ξ1 and ξ2 such that for any positive θ < 0.6, for n large
enough, for any node u with an out-going random link, the
probability that this random link goes to a node outside of
Bl(u), where l = nθ, is greater than ξ1. Also, the probability
that there is a random link to u from a node outside of Bl(u)
is greater than ξ2.

These conditions can be stated either as facts to be proved
in a new setting or as assumptions. In order to have the two
trees grow exponentially before they connect (after O(log n)
steps of growing), we need to find proper C (and hence,
L) for II such that Cξ1 > 1 and Cξ2 > 1 when θ > 0.5.
We now present a few special cases and illustrate the use
of these conditions. A more general approach will be men-
tioned next.

The diameter of K(n, p, q) where p, q ≥ 1. It is easy
to see that condition I and II are automatically met since
the local links are ‘full’ and condition III is met using fact 3
(‘links out of a ball’ for K, the non-wraparound grid model).
Similarly as in section 5.1 we use fact 3 with θ = 0.5 + o(1)

and hence obtain ξ1 = 0.2 + o(1) and ξ2 = 1 − e0.125+0(1)

(roughly, 0.117 + o(1)). Thus, we need to specify constant
C so that Cξ1 > 1 and Cξ2 > 1, which help to establish the
exponential growth of the two trees. Therefore any C ≥ 9
will work and if we choose L = 2 we can take C = 9..13
(since |B2(.)| = 1 + 4 + 8 = 13). Thus, when we want to
make a node u a super node we need to ‘collect’ the random
long-range contacts of u’s neighbors within distance 2 and
assign them to χ(u) (similarly for χ̂(u)). If u is too close to
the edges of the grid, we can simply drop it as the fraction of
such u is negligible (note that we do not need to care about
this case with u = s or t, since we only need a big enough
initial S0 or T0, which is always trivial in this setting). Then
we can continue similarly as before to show that the diameter
of K(n, p, q), for p, q ≥ 1, is θ(logn).

11A similar condition is also needed with respect to the des-
tination node, and for simplicity, constants C and L can be
chosen to be the same in both cases. These conditions also
reflect a sufficient ratio of random links per node.

Higher dimensions: we now consider the diameter of
K(k, n, p, q) where k, p, q ≥ 1. Our prior results leave us
with a simple task. It is again clear that conditions I and
II are met. Fact 4 meets condition III, albeit we can not
give exact values for the constant parameters as above. The
model’s connectedness and sufficiency of random links (ev-
erywhere) makes it as easy as above to find C and L such
that Cξ1 > 1 and Cξ2 > 1 for any given positive constants
ξ1 and ξ2. Our approach is then applicable as before which
results in the following theorem, solving the general diame-
ter problem in Kleinberg’s model.

Theorem 16. For any k, p, q ≥ 1, the expected diameter
of the graphs from K(k, n, p, q) is θ(log n).

Other probability distributions: 0 ≤ r < 2. For a
2-D grid, when 0 ≤ r < 2 there is less of a bias in favor of
links to closer nodes. Thus the worst case probability of a
link existing is larger, so the Fact 1 lower bound on p(u, v)
still holds, and it is also easy to redo Fact 2 for this setting
(intuitively, a link is more likely to leave or enter a ball when
the distribution is more uniform). Thus our diameter proof
easily applies in this setting as well, so the diameter is still
Θ(log n).

The case of lacking local links. We mention the classes
K(k, n, 0, q) andK∗(k, n, 0, q) with q > 0, a special case when
we do not assume the existence of local links. Note that this
does not rule out the possibility of two adjacent nodes be-
ing connected by a random link. We show that (see [19]),
if q is a constant then no matter how large q is, a graph in
K∗(n, 0, q) is not strongly connected with probability tend-
ing to one when n goes to infinity. Moreover, the graph is
even not semi-connected if we consider all the directed links
as undirected links.

On a more abstract model. We have defined and an-
alyzed a wider class of small-world graphs, which include
the ones considered in this paper and others which are sig-
nificantly different, e.g. the ones mentioned in [13]. These
graphs are small-worlds with respect to graph diameter as
well as Kleinberg’s delivery time. Our main ideas are to
abstract the key features of the K(k, n, p, q) setting which
support the exponential growth property as in lemma 11.
We start with an abstract model where a graph has fixed
edges and for each vertex we choose independently one or
more random outgoing edges based on a probability distri-
bution.

6. CONCLUSION AND OPEN PROBLEMS
We have extended the analysis of Kleinberg’s small-world

model. We proved a tight θ(log2n) bound for Kleinberg’s
routing scheme and θ(log n) for the expected diameter in
this model. We also demonstrate an improved routing algo-
rithm, using additional, fairly local, information. Finally, we
suggest and demonstrate a more general approach to analyze
other extensions of Kleinberg’s small-world model. We have
created (but do not present here) an abstract framework to
define and analyze a class of small-world graphs, using only
a few abstract features of Kleinberg’s grid setting.

However, there are still many interesting problems. Prior
results are mainly concerned with uniform-degree graphs but
we also want to extend our framework to better handle non-
uniform degrees such as power-law graphs (e.g. the Internet
topology). Another possible extension is to relax some of



our framework criteria, e.g. “sufficiency of random links ev-
erywhere” can be relaxed to sufficiency of random links with
a high probability. Greedy routing seems an obvious choice
for the settings we have considered, however, backtracking
or look-ahead would be useful in some other contexts with
more network information available. For example, for net-
works with non-uniform degrees, a routing decision could be
a function of two variables: the distance from the considered
node to the destination and the prospect of reaching from
this node’s neighborhood to an outside node. Finally, we
wish to extend our diameter result to Kleinberg’s network
using the inverse rth power distribution for r > 2, especially
when r is close to 2.
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APPENDIX
Proof of fact 5.

To evaluate “the attractive force” generated by SB , we
partition it into simpler subsets, which are hyper-intervals
defined by linear systems. The number of these subsets
can be easily upper bounded by a constant depending on k
only, hence we just need to show an O( 1

mlogn
) contribution

from each subset. For instance, consider a two-dimensional
space with u as the origin. SB actually has a diamond
shape and these subsets are linear segments (intervals) on
this diamond perimeter, separated by the 4 vertices and the
axis. In a general k-dimensional space, each subset of nodes
(x1, x2, . . . , xk) can be defined as:

s1x1+s2x2+. . .+skxk = a, si ∈ {−1, 1}, xi ∈ [ai, bi], i = 1..k

where a, ai, bi, si are integer constants depending on l, m and
k such that a > 0, ai × bi ≥ 0. To bound the “attractive
force” of each subset as such, we again partition the subset
into u-centric spherical surfaces where all nodes generate the
same force and the number of nodes (integer coordinates)
can be counted easily.

We now give a proof for fact 5 for K(k, n, p, q) but it is
easy to extend our proof forK∗(k, n, p, q). Our proof is based
on claims 17 and 18 below. Once these claims are verified,
fact 5 immediately follows. Let node v and integer l > 0
be the center and radius of ball B. Let m = d(u, B) and
d = d(u, v); clearly d = m + l. Let Z+ = {i ∈ Z : i ≥ 0}.
Assume that the nodes on the grid are the integer points
(wrapped by a hypercube with size n) in the space Rk. For
simplicity, we also assume the origin of Rk is at u (i.e. u has
all coordinates zero) and v(d1, d2, . . . , dk) is in the ‘positive



angle’ relative to u, i.e. v ∈ Z+k
. Also call N(L) the number

of integer nodes within an object L.

Claim 17. Consider a linear hyper-multilateral (LHM)
object L which is defined by a linear system of the following
form

s1x1 + s2x2 + . . . + skxk = a (2)

si ∈ {−1, 1}, xi ∈ [ai, bi], i = 1..k

a > 0, ai × bi ≥ 0

where a, ai, bi, si are constant integers. For u = (0, 0, . . . , 0),
if |x1|+ |x2|+ . . .+ |xk| ≥ m then P (u,L) ≤ c

mlogn
for some

constant c depending on k only.

Claim 18. SB can be decomposed into at most C LHM
objects (determined by an instance of (2) above), where C is
a constant dependent on k only.

For k = 1, a ball is an interval, so a LHM is simply an
endpoint of an interval. Similarly, a LHM is an edge of a
diamond when k = 2, a face of a cube when k = 3, and so
on. With claims 17 and 18, fact 5 follows immediately. We
now prove claim 17, which is also supported by the following
simple fact, directly implied from section 3.2.

Fact 19. (i) There exist positive constants c1 and c2 such
that for a k-D grid of size n, c1 ≤ bj(u)/jk−1 ≤ c2,∀u ∈
V,∀j = 1..n.

(ii) for K∗(k, n, p, q) or K(k, n, p, q), the inverse normal-
ized coefficient cu = θ(logn) and for any two distinct nodes
u and v, p(u, v) = Ω((nklogn)−1).

See [19] for the proof of fact 19.

Proof of claim 17. Using equation (2), we have either
both ai and bi positive or negative. For simplicity, assume
0 ≤ ai < bi for the rest of the proof; it is easy to extend
our proof for the other cases. By a proper permutation
of indexes we can make the characteristic equation become
x1 + . . .+xj −xj+1− . . .−xk = a for some integer j in 1..k.
Obviously this preserves P (u,L). Also note that x1 + x2 +
· · ·+ xk ≥ m since xi ≥ ai ≥ 0,∀i.

We now consider the special case of j = k, i.e. x1 + . . . +
xk = a. Thus, all points in L are at distance a from u.
From fact 19(i), N(L) ≤ ba(u) ≤ c1a

k−1 for some constant
c1. Therefore, from fact 19(ii) above, P (u,L) ≤ c1a

k−1 ×
c2

aklogn
≤ c

mlogn
for some constants c2 and c = c1c2 (note

that a > m).
Now consider the case of j < k. Set x = x1 + . . . + xj and

y = xj+1 + . . .+xk we then have x−y = a. Clearly, for each
value ξ = x + y, there is an unique pair of x, y. Let Lξ =
L∩Bξ(u), i.e. the subset of nodes in L with x + y = ξ. Let
Z1 be the Zj space of x1, . . . , xj and Z2 be the Zk−j space
of xj+1, . . . , xk. We now project Lξ onto Z1 to obtain an
image I1, which has characteristic equation x1 + . . . xj = x,
and onto Z2 to obtain an image I2, which has characteristic
equation xj+1 + . . . xk = y. Again by fact 19(i), we have
N(I1) = O(xj−1) and N(I2) = O(yk−j−1). Thus, clearly
N(Lξ) = N(I1)×N(I2) ≤ c3x

j−1yk−j−1 ≤ c3ξ
k−2 for some

constant c3.
Therefore, from fact 19(ii), P (u,Lξ) ≤ c3ξ

k−2 × c4
ξklogn

≤
c3c4

ξ2logn
for some constant c4. Now, summing P(u,Lξ) over all

possible values of ξ ≥ m, we have P (u,L) <
∑∞

ξ=m
c3c4

ξ2logn
.

Note that
∑∞

i=m 1/i2 ≤ 1/m2 +
∑∞

i=m
1

i(i+1)
≤ 1/m2 +

∑∞
i=m( 1

i
− 1

i+1
) ≤ 1/m2 + 1/m; thus P (u,L) ≤ c

mlogn
for

c = 2c3c4.

Proof of claim 18. We need to show that SB can be
decomposed into at most C LHM objects (determined by
an instance of (2) above), where C is a constant dependent
on k only. Clearly, a node W (x1, x2, . . . , xk) ∈ Zk belongs
to SB , the surface of Bl(u), if and only if |x1 − d1| + |x2 −
d2|+ . . .+ |xk−dk| = l. Note that |x1|+ . . .+ |xk| is at least
m = d(u, B).

Thus, SB is composed of 2k faces, each of which is on a
hyper-plane determined by an equation of the form ±x1 ±
x2 ± . . . ± xk = a, where integer constant a may vary for
different hyper planes. (There are 2k combinations of these
+/− so we have 2k such hyper planes.) More specifically,
such a face can be determined by a linear system similar to
(2) but without aibi ≥ 0, where a, ai, bi are integer constants
completely determined by d1, . . . , dk, n and l (for instance is
it not hard to see that a = l+s1d1 +s2d2 + . . .+skdk). Call
such a linear system a LES.

We can think of SB as being decomposed into ‘pieces’. Let
us further decompose this as follows. For each axis-hyper
plane xi = 0, we divide the pieces, being ‘cut through’ by
this hyper plane, each into two ‘smaller pieces’: one ‘above’
and one ‘below’ this hyper plane. For example, if a piece has
LES with ai < 0 < bi for some i = 1..k, we then split this
object into two, each of which is described by the same LES
with additional xi ∈ [0, bi] for the ‘the above’ and xi ∈ [ai, 0]
for the ‘the below’. We repeat this process until all pieces
are inside a ‘right angle’: none of them are ’cut through’ by
any axis-hyper plane. Now each obtained object is described
by an instance of (2) and the number of them is less than
2k × 2k = 22k.


