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Abstract

In this paper, we describe the accuracy control and performance en-
hancement of linear solvers for the Integrated Water Flow Model (IWFM).
This model is used by the State of California Department of Water Re-
sources to assess the impact of climate change on water resources and the
analysis of different conjunctive use scenarios across California. IWFM
simulates groundwater, surface water and surface-groundwater interaction
using an implicitly formulated Galerkin finite element approximation of
the groundwater head in a multi-layer aquifer system. The computational
efficiency of the simulation is governed by the efficiency of linear solvers
for sequences of large-scale sparse linearized systems of equations.

We firstly understand how multi-layer aquifer flow and stream-groundwater
interaction affects the scaling, conditioning and sparsity structure of the
linear systems. These properties guide the choice of scaling which, to-
gether with preconditioning, not only offset the ill-conditioning effects of
multi-scale flow, but significanly improve the control of the linear solver
forward error. Improved error control ensures that the accuracy of the
solver is consistent with the accuracy of the initial data.

We implemented a preconditioned Krylov subspace linear solver based
on the Generalized Minimum RESidual (GMRES) algorithm and incom-
plete LU preconditioners and demonstrate how scaling improves forward
error control in IWFM. We also performance benchmarked the new lin-
ear solver against the SOR method, a classical stationary iterative linear
solver used in IWFM, and find an overall 7.7x speedup for the largest
tested dataset. Further performance profiling shows that the new linear
solver removes a major performance bottleneck in IWFM for the other
datasets.
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1 Introduction

The Integrated Water Flow Model (IWFM) is a water resources manage-
ment and planning tool which simulates groundwater, surface water and
stream-groundwater interaction [1]. This model is being used by the State
of California Department of Water Resources in computationally demand-
ing long-time high resolution applications such as assessing the impact of
climate change on water resources and the analysis of different conjunc-
tive use scenarios across California. IWFM uses an implicitly formulated
Galerkin finite element method to simulate the nonlinear groundwater
head dynamics in multi-layer aquifers. The computational efficiency of
the simulation is governed by the efficiency of linear solvers for sequences
of sparse systems of equations, linearized by a modified Newton method
(see e.g. [2]).

Linear solver technology Advances in numerical linear algebra and
computational technology have transformed applications from computa-
tion bandwidth bound to memory bandwidth bound. As a result, com-
putationally intensive modules in legacy applications may inhibit perfor-
mance less than data movement intensive modules. Highly efficient linear
solvers now exist which weren’t available when finite element groundwater
models were first introduced. Indeed, classical iterative solvers such as the
sucessive over-relaxation (SOR) method are gradually being phased out
in preference of faster Krylov subspace methods (see e.g. [3][4][5]). We
will restrict our consideration to one such Krylov subspace method imple-
mented in the Generalized Minimum RESidual (GMRES) algorithm [6].
With the recent emergence of multi-core microprocessors, which process
instructions in parallel within a single microprocessing unit, state-of-the-
art parallel Krylov subspace methods are now being developed to minimize
data movement [7].

Multiple scales The IWFM solution exhibits inherent separation of
scale in the groundwater and surface water components. Blom, Verwer
and Trompert [8] consider the scaling issues arising between the solution
components of a model for brine transport in groundwater flow. They use
a weighted norm in the linear solver stopping criteria in order to ensure
that each solution component is solved to its corresponding data accuracy.
We profile the linear system to characterize the effect of multiple scales
on the linear solver. We find that (i) the range of absolute values of the
coefficient matrix elements is much greater in the submatrix correspond-
ing to the surface region than over the remainder of the matrix and (ii)
the sparsity pattern is less compact in the submatrix corresponding to
the surface water region. These features give rise to poorly scaled stiff
coefficient matrices with no overall block structure.

Stopping criteria The choice of stopping tolerance for the modified
Newton method requires much care to ensure solving the non-linear sys-
tem to a level of accuracy commensurate with the data accuracy. Blom et
al [8] consider the influence of the linear solver error on the convergence of
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the modified Newton method. They propose a fixed bound on the linear
solver error, referred to as the forward error which is shown to be in-
versely proportional to the maximum number of Newton iterations. The
proposed new IWFM solver intrinsically uses an estimate of the residual
error in the stopping criteria and not the forward error. This paper shows

how scaling, prior to preconditioning, is a key step towards control of the

forward error, since the stopping tolerance on the residual norm becomes a

practical proxy for the upper bound on the forward error norm. Improved

control eliminates unnecessary linear solver iterations without impairing

the convergence rate of the modified Newton method.

Outline Section 2 describes the profile of the linear systems corre-
sponding to three model datasets, herein referred to as FMP, C2VSIM
and C2VSIM9. We briefly explain the GMRES method and provide the
algorithm for its preconditioned variant, PGMRES, in Section 3. Section
4 shows how scaling can improve the accuracy control of PGMRES. Per-
formance benchmarks of PGMRES method against the SOR method are
provided in Section 5 for the three datasets. Section 6 concludes.

2 Profile of the Linear System

At each time step in the IWFM simulation, a modified Newton method
solves the nonlinear equation F (Hk+1) = 0 arising from the IWFM fi-
nite element model in which Hk+1 is the vector of unknown multi-layer
groundwater heads, stream and lake surface elevations over a 2D bounded
domain at iteration k + 1. For ease of exposition we denote the difference
vector x = Hk+1 − Hk without an iteration index. At each iteration,
the coefficient matrix A is a Jacobian matrix with elements aij = ∂Fi

∂Hk
j

and the right-hand side vector b = F (Hk) form the linear system in the
unknown x

Ax = b, A ∈ R
N×N , x, b ∈ R

N . (1)

A is a nonsymmetric positive definite1 square matrix which is char-
acterized for three different datasets in Table 1. Each matrix is sparse
and lacks any block structure. Dimension N is the size of the matrix and
NNZ denotes the number of non-zero elements. Normality is the relative
measure ||AA∗ −A∗A||/||A||2 which is zero when A is symmetric. κ(A) is
the estimated condition number2 of A and is a measure of sensitivity of
the linear system and the convergence rate of iterative solvers. Sparsity

is the percentage of the elements in a matrix which are non-zero.
The sparsity pattern of the C2VSIM dataset is shown in Figure 1a.

The sparsity structure typifies that of an unstructured finite element
groundwater-surface water flow model and has been separated into distinc-
tive zones for illustrative purposes. The upper left-hand zone corresponds
to the stream nodes and the zones to the right and below correspond
to the stream-groundwater interaction terms with the top level aquifer.

1A matrix A is positive definite if xT Ax ≥ 0 for all real x 6= 0.
2κ(A) is estimated using the SuperLU [9] routines dgscon and dlangs.
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FMP C2VSIM C2VSIM9
Dimension 46460 4630 12988
NNZ 479246 41616 125616
Sparsity 0.0220% 0.194% 0.0744%
Normality 0.271 0.222 0.908
κ(A) 3.09E6 2.54E11 5.13E6

Table 1: Linear solver performance critical properties of the sparse square
coefficient matrices A for three different datasets. See text for an expla-
nation of these properties.

The remaining 3× 3 grid of square zones corresponds to the three aquifer
layers and their interactions with each other. For example, the middle
layer interacts with the layer above and below and thus exhibits a diag-
onal band for each together with a central band for the convection and
diffusion within the layer. The bottom and top layers only interact with
one other aquifer layer and thus only exhibit two bands.

Whilst the sparsity pattern remains relatively fixed throughout the
simulation, the absolute value of matrix elements may change significantly.
Matrix elements whose absolute values are above and below O(106) are
shown in red and blue, respectively. These values typically correspond
to the initial phase of the C2VSIM simulation during which the stream
and stream-groundwater interaction terms may be relatively large until
the model adjusts any imbalances in the initial data.

The corresponding graph of matrix element sizes (Figure 1b) is split
into the surface water and top aquifer region by the vertical red line. The
vertical axis is a power scale for the absolute matrix element sizes in each
row whose indices are shown on the horizontal scale. The non-zero matrix
elements corresponding to stream nodes are not only much sparser than
those corresponding to the aquifer nodes, but exhibit a broader range of
absolute values.

3 The GMRES Algorithm

The Generalized Minimum RESidual (GMRES) method is a Krylov sub-
space projection method for solving the linear system (1) based on taking
the pair of projection subspaces

W = Km(A, r0), and V = AW, (2)

where r0 = b − Ax0 and a Krylov subspace is defined as

Km(A, v) := span{v, Av, A2v, . . . , Am−1v}, v ∈ R
N . (3)

Any projected solution x̂ ∈ x0 + W has the form x̂ = qm−1(A)r0, where
qm(A) is a matrix polynomial of degree m, such that Ax̂ − b ⊥ V. GM-
RES uses an Arnoldi procedure to build an orthonormal matrix Vm =
[v1, v2, . . . , vm] ∈ RN×m whose column vectors span the subspace Km(A, v).
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Figure 1: (a) The sparsity pattern of the C2VSIM coefficient matrix.
(b) A log scale of the absolute value of the elements in the coefficient
matrix over a horizontal axis which has been trucated to highlight
the interface region.

Denoting em as the last column m-vector in the identity matrix Im and a
m × m upper Hessenberg matrix Hm given by the projection V T

m AVm =
Hm, the Arnoldi procedure reduces A into a (m+1)×m upper triangular
matrix Ĥm := [HT

m, hm+1,mem]T

AVm = Vm+1Ĥm, (4)

or, equivalently written in vector form, hij = vT
i Avj , i := 1 → j + 1, j :=

1 → m. When v = r0/β, β := ||r0||, Vm and the last m columns of
Vm+1 form an orthonormal basis to W and V respectively. An iterative
solution to the linear system (1) can be uniquely written in the form
xm = x0 +Vmym, where the m-vector y is the solution to the least squares
problem

arg min
y

||rm|| = arg min
y

||βe1 − Ĥmy||, (5)

which minimizes the residual. Thus GMRES finds the best xm which
minimizes the residual rm by reducing A to Ĥm using the orthonomal
bases Vm and Vm+1. We refer the reader to [2][10][11] for a more detailed
explanation of the GMRES method. GMRES(m) is a memory efficient
and more stable variant of GMRES, which resets the algorithm after m
iterations by setting x0 = xm so that the memory requirements are O(N).
m is typically set to between 10 and 20.
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3.1 Preconditioned GMRES

The convergence rate and computational cost of solving the precondi-
tioned linear system M−1Ax = M−1b depends on the choice of the pre-
conditioner M . The choice of M is typically inferred from experience
which tells us that the form of M should (i) ensure that κ(M−1A) < κ(A)
and (ii) be computationally inexpensive to solve My = Ax for y given a
vector Ax.

For GMRES, an ideal choice is typically one in which M−1A is close
to normal and whose eigenvalues are tightly clustered around some point
away from the origin. For example, A can be decomposed into unit lower
and strictly upper triangular matrix, respectively denoted L and U so that
A = LU . Replacing non-zero elements of L and U outside the sparsity
pattern of A with zero elements gives the incomplete matrices L̂ and Û .
The incomplete LU decomposition preconditioner (ILU) described in [11]
is then formed by setting M = L̂Û .

The Preconditioned Generalized Minimum RESidual (PGMRES) method
is a (left) preconditioned Krylov subspace projection method based on
taking the pair of projection subspaces

W = Km(M−1A, r0), and V = AW, (6)

whose bases are denoted, as before, as Vm and Vm+1 and where r0 =
M−1(b−Ax0). For completeness the PGMRES(m) algorithm is provided
below.

Input: M, A, b, x0, m, τ
Output: xk, rk, k
Initialization: r0 = M−1(b − Ax0), β = ||r0||, v0 = r0/β;
for k := 0 → m do

solve Mw = Avk;
for i := 1 → k do

hik = vT
i w;

w = w − hikwi;
end

hk+1,k = ||w|| and vk+1 = w/hk+1,k;
end

Find ym so that γm+1,m := ||βe1 − Ĥmym|| = arg miny ||βe1 − Ĥmy||;
xm = x0 + Vmym;
if γm+1,m ≤ τ then

Stop;
else

Goto start with x0 = xm;
end

On each iteration k of the PGMRES(m) algorithm, the linear system
Mw = Avk, where vk ∈ Vk, is solved for the vector w. When M is an ILU
factorization, w is determined by a forward and backward substitution

L̂z = Avk and Ûw = z, (7)

where L̂ and Û are respectively a unit lower and strictly upper triangular
matrix with 2Lfil + 1 entries per row. The level of fill-in, Lfil, is typically
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chosen to be between 5 and 10. The PGMRES algorithm terminates when
the estimated residual norm γm+1,m := ||βe1−Ĥmym|| satisfies a stopping
criteria γm+1,m ≤ τ .

4 Scaling and Stopping Criteria

For diagnostic purposes, each tolerance τ can be associated with a corre-
sponding estimate of the upper bound on the relative forward error norm
||δ||/||x|| = ||x̂ − x||/||x|| ≤ Ferr [10][12]. Whilst the acceptable upper
bound on the relative forward error norm is determined from the data
accuracy, the corresponding tolerance can not easily be implied from the
data accuracy. Misspecification of the tolerance can result in either over-
solution of the linear system or unacceptably high forward error with
respect to the data accuracy, especially when the coefficient matrix is
poorly conditioned and scaled.

To reduce the difference between the estimated upper bound on the
relative forward error norm and the residual norm, we introduce a diagonal
scaling matrix D so that the preconditioned linear system becomes

M−1D−1Ax = M−1D−1b, (8)

with an associated residual r̂ = M−1D−1(b − Ax̂). The estimated upper
bound on the relative forward error norm is given in terms of this residual

||δ||

||x||
≤ Ferr := κ(M−1D−1A)

||r̂||

||M−1D−1b||
. (9)

The condition number κ(M−1D−1A−1) characterizes the difference be-
tween the relative forward error norm and the ratio of the residual norm
to the right-hand side vector norm ||M−1D−1b||. The condition number
can not in general be efficiently estimated during simulation due to the
size and dynamic nature of the linear systems and thus prohibits the eval-
uation of Ferr in, say, the stopping criteria. By choosing D as the sum
of row elements3

D = diag(|Ae|1, |Ae|2, . . . , |Ae|N ), (10)

we both normalize A and minimize the condition number of D−1A [12]
thereby significantly sharpening the difference between the estimated up-
per bound on the relative forward error norm and the residual norm.
When the true residual norm is bounded above by the GMRES estimate
of the residual norm (which upon convergence is always bounded above by
the stopping tolerance τ) this scaling provides a much closer correspon-
dence between the stopping tolerance and the estimated upper bound on
the relative forward error norm. Scaling is thus a key step towards control

of the forward error, since the stopping tolerance on the estimated resid-

ual norm becomes a practical proxy for the upper bound on the relative

forward error norm.

3This choice of scaling is referred to as row equilibration. e denotes the unit vector of
length N .
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To illustrate this property, we have modified the C2VSIM linear system
by replacing the right hand side with b = Ae, corresponding to the unit
vector solution e. For a given stopping tolerance τ , Table 2 shows the exact
relative forward error norm ||δ||/||x|| and the estimated upper bound on
the relative forward error norm Ferr for linear systems, both with and
without row scaling. Ferr is computed from (9) using the SuperLU [9]
routines dgscon and dlangs to estimate ||A−1DM || and ||M−1D−1A||
respectively.

With scaling, the upper bound on the relative forward error norm
estimate is approximately the same magnitude as the stopping tolerance,
although it is O(102) higher than the exact relative forward error norm.
Without scaling, the estimate of the upper bound on the relative forward
error norm is O(104) larger than the stopping tolerance and O(106) larger
than the exact relative forward error norm.

With row scaling Without row scaling
log(τ) ||δ||/||x|| Ferr ||δ||/||x|| Ferr
-7 2.04E-9 3.32E-7 2.42E-9 3.05E-3
-8 2.04E-9 3.32E-7 2.42E-9 3.05E-3
-9 1.39E-10 1.01E-8 1.24E-10 1.69E-4
-10 7.50E-12 2.62E-10 9.64E-12 1.00E-5
-11 3.44E-13 2.57E-11 2.58E-13 4.73E-7
-12 8.99E-15 8.80E-13 2.09E-14 7.81E-8
-13 8.99E-15 8.80E-13 2.09E-14 7.81E-8
-14 5.55E-15 3.58E-13 7.88E-15 5.15E-8
-15 3.33E-15 7.46E-14 5.33E-15 8.38E-9

Table 2: For a given stopping tolerance τ , this Table compares the
exact forward error norm and estimated upper bound on the relative
forward error norm from separately solving each of the linear systems
M−1D−1Ax = M−1D−1b (with row scaling) and M−1Ax = M−1b (with-
out row scaling), where b = Ae, using PGMRES applied to the C2VSIM
dataset.

5 Performance Benchmarking

Our Fortran implementation of PGMRES(m) is adapted from the publi-
cally available sparse matrix package SPARSKIT [11]. All numerical experi-
ments are performed using a Linux based Intel Fortran compiler V11.0 on
a 2.00GHz Intel(R) Core(TM) 2 Duo CPU (T6400) with 2MB cache. The
relaxation parameter for the SOR method is set to ω = 1.1, the restart
threshold of GMRES is m = 20 and the ILUT (ILU with threshold [11])
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preconditioner has a drop tolerance4 of 0.1 and maximum fill-in5 of p = 5.
We find by numerical experiment that this choice of PGMRES parame-
ters gives optimal convergence rates for each of the datasets. The optimal
choice of ω varies between 1.1 and 1.3 for each dataset. Variation of ω
within this range is found to have only marginal impact on convergence
rates.

The number of iterations and elapsed wall clock times for SOR and
PGMRES(m) applied to each dataset are shown in Table 3 for a range
of stopping tolerances τ . Finally, Table 5 shows the overall performance
improvement in the IWFM simulation using the PGMRES(m) solver in
place of the SOR solver and the proportion of overall computation spent
in the preconditioner and solvers for each of the datasets. The C2VSIM
and C2VSIM9 simulations are run over 82 years at monthly increments
(984 time steps) and the FMP simulation is run over 2 years at weekly
increments (104 time steps).

FMP C2VSIM C2VSIM9
log(τ) SOR PGMRES SOR PGMRES SOR PGMRES
-7 1319 50 922 16 4973 13
-8 1514 55 1070 17 5770 14
-9 1710 61 1218 18 6568 15
-10 1905 68 1366 20 7365 16
-11 2100 74 1514 21 8163 24
-12 2296 79 1662 24 8960 24
-13 2492 86 1810 26 9736 25
-14 2701 93 1959 27 10452 26
-15 2893 97 2078 28 10727 27

FMP C2VSIM C2VSIM9
log(τ) SOR PGMRES SOR PGMRES SOR PGMRES
-7 4.29 0.364 0.280 0.00842 4.72 0.0304
-8 4.88 0.385 0.322 0.00868 5.47 0.0343
-9 5.53 0.452 0.371 0.00960 6.23 0.0346
-10 6.16 0.465 0.414 0.0108 7.06 0.0365
-11 6.86 0.497 0.460 0.0106 7.75 0.0502
-12 7.41 0.523 0.506 0.0119 8.51 0.0502
-13 8.04 0.569 0.551 0.0125 9.30 0.0524
-14 8.81 0.641 0.592 0.0124 10.0 0.0522
-15 9.38 0.634 0.628 0.0132 10.2 0.0539

Table 3: A comparison of the (top) number of iterations and (bottom)
elapsed wall clock time (seconds) of SOR and PGMRES(m) applied to
each dataset as the stopping tolerance τ is decremented. All timings are
reported to three significant figures.

6 Conclusion

In this paper, we describe the accuracy control and performance enhance-
ment of linear solvers for the Integrated Water Flow Model (IWFM).

4An element is replaced by zero if it is less than the drop tolerance multiplied by the
original norm of the row containing the element.

5Only the p largest elements in each upper and lower factor matrix are retained, the
remainer are replaced by zero.
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FMP C2VSIM C2VSIM9
IWFM (SOR) 20.4 (84.0%) 15.59 (79.0%) 121 (82.0%)

IWFM (PGMRES) 2.63 (45.1%) 7.12 (9.12%) 16.0 (9.65%)
Speedup 7.74x (14.4x) 2.2x (19.0x) 7.56x (64.3x)

Table 4: This Table shows the time in minutes and proportion of IWFM
simulation time (in parenthesis) spent in the solvers for each of the
datasets. The bottom row shows the speedup in IWFM simulation time
and total solver time (in parenthesis) if the SOR solver is replaced by
PGMRES. The C2VSIM and C2VSIM9 simulations use 984 time steps
and the FMP simulation uses 104 time steps. All timings are reported to
three significant figures.

IWFM simulates groundwater, surface water and surface-groundwater in-
teraction using an implicitly formulated Galerkin finite element approxi-
mation of the groundwater head in a multi-layer aquifer system. In Section
2, we profiled the linear system arising from three datasets and described
how multi-layer aquifer flow and stream-groundwater interaction affects
the scaling and sparsity structure of the coefficient matrices in the linear
systems.

The primary contribution of this paper is to show in Section 4 how
scaling, in addition to preconditioning, not only offsets the ill-conditioning
effects of multi-scale flow but improves the control of the linear solver
forward error. Improved error control ensures that the accuracy of the
solver is consistent with the accuracy of the initial data.

We implemented a preconditioned Krylov subspace linear solver based
on the Generalized Minimum RESidual (GMRES) algorithm and incom-
plete LU preconditioners, described in Section 3, and demonstrated in
Section 4 how scaling improves forward error control in IWFM. Section
5 presents performance benchmarks of the new linear solver against the
SOR method, a classical stationary iterative linear solver used in IWFM,
demonstrating an overall 7.7x speedup in IWFM for the largest tested
dataset. Further performance profiling shows that the new linear solver
removes a major performance bottleneck in IWFM for the other datasets.
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