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Figure 1: Glove Captured Hand Poses

Abstract

Hand motion is an important component of human motion, playing
a central role in communication. However, it is difficult to capture
hand motion optically, especially in conjunction with full body mo-
tion. Due to a lack of appropriate calibration methods, data gloves
also do not provide sufficiently accurate hand motion. In this pa-
per, we present a novel glove calibration approach that can map
raw sensor readings to hand motion data with both accurate joint
rotations and fingertip positions. Our method elegantly handles the
sensor coupling problem by treating calibration as a flexible map-
ping from sensor readings to joint rotations. A sampling process
collects data tuples according to accuracy requirements, and orga-
nizes all the tuples in a training set. From these data, a specially
designed Gaussian Process Regression model is trained to infer the
calibration function, and the learned model can be used to calibrate
new sensor readings. For real-time hand motion capture, a sparse
approximation of the model is used to enhance performance. Eval-
uation experiments demonstrate that our approach provides signif-
icantly better results that have more accurate hand shapes and fin-
gertip positions, compared to other calibration methods.
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1 Introduction

Hand motion plays a key role in manipulating objects and convey-
ing information. Collecting hand motion data is crucial for research
in robotics, sign language, character animation and human com-
puter interaction. It is difficult to capture finger movement using
optical systems due to the occlusion issue, especially when whole
body motion is also required. Data gloves are an appealing alter-
native, but have seen relatively little research compared to well-
developed body motion capture. One fact that inhibits the popu-
larization of glove-based hand motion capture is the inaccurate raw
data provided by the sensors. Raw sensor readings are a vector of
signals which require a non-trivial calibration process to convert
them into an accurate hand pose.

In this paper, we present a novel and sophisticated glove calibra-
tion method that accommodates multiple undesirable sensor factors
(nonlinearity, cross-coupling and noise) and is capable of achieving
both FK hand shape accuracy and IK fingertip position accuracy for
captured hand motion.

We construct the hand model convenient and appropriate for glove
sensor layout, based on which a careful examination is performed
to check sensor linearity and coupling effects. Correspondence be-
tween sensor readings and hand joint rotations are categorized into
several types. The mapping function that maps sensor readings to
accurate rotations is the goal we need to infer. Essentially, we treat
the glove calibration as a data-driven prediction problem, where the
training data is collected from a separate sampling process.

The sampling process is further divided into FK independent sam-
pling, FK cross-couple sampling and IK sampling, according to dif-
ferent sensor-rotation correspondence types and accuracy concerns.
Key hand poses with measured joint rotations are predefined to as-
sist FK independent sampling; widgets are built to help efficiently
collect dense cross-coupled data. During IK sampling, a probabilis-
tic distribution in end effector space is constructed to automatically
calculate the most probable fingertip positions. Our constrained IK
solver solves for the ideal joint rotations that can reach the accurate
fingertip positions while maintaining plausible hand shapes.

A novel Linear Mean Composite Gaussian Process Regression
(LMC-GPR) model with high evidence and low time cost is se-
lected for glove calibration within the general GPR framework. The
latent calibration function is inferred by maximizing the marginal
likelihood, when training this LMC-GPR model on sampled data.
To make our method more affordable for real-time glove calibra-
tion, Sparse Pseudo-input Gaussian Processes(SPGPs) are applied
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to enhance the training and prediction performance. While test-
ing on CyberGloves, we do not restrict our method to specific hand
capture hardware, instead, we generalize our method to flexible cal-
ibration for different possible glove hardware.

Glove calibration research faces several challenges: sensor non-
linearity, noise, reading differences w.r.t. hand sizes, influences
from sensor stretching as well as other factors that cause reading
variance. For example, the abduction sensors between fingers are
stretched by finger flexion movements, and thus can not be ac-
curately calibrated by methods that assume sensor independence
[Kahlesz et al. 2004]. The false assumption of exact sensor lin-
earity restricts flexible sampling which either causes over-fitting or
fails to get solutions [Griffin et al. 2000; Hu et al. 2004].

Another challenge of glove calibration is the difficulty of obtaining
the ground truth of real hand joint rotations. Manual measurement
of hand poses is time-consuming and usually inaccurate. To avoid
pose measurement, [Huenerfauth and Lu 2010; Menon et al. 2003]
use limited samples, while [Chou et al. 2000; Hu et al. 2004] uti-
lizes an expensive vision tracking system. Without enough ground
truth data, there is no sound evaluation method for glove calibration
accuracy.

The number of sensors on the glove and DOFs in the hand model
make glove calibration a high dimensional problem, thus manual
adjustment of parameters for each sensor on-site is intolerable. Ac-
curacy requirements for captured hand motion depend on the appli-
cations: [Huenerfauth and Lu 2010; Kahlesz et al. 2004; Chou et al.
2000; Menon et al. 2003] emphasize plausible hand shapes; [Grif-
fin et al. 2000; Hu et al. 2004] focus on exact fingertip positions.
No current calibration method can satisfy both FK and IK accuracy
requirements simultaneously.

Due to the difficulties of glove calibration, we generalize the fun-
damental contributions of our paper as follows:

1. We performed an extensive examination of sensor properties
based on defined hand kinematic structure, and categorized
sensor-rotation correspondences into different types.

2. We present an independent sampling process, separate from
the calibration to collect training data meeting varied accu-
racy concerns, where predefined key poses, widgets and an
IK probabilistic model are used to accelerate the sampling.

3. We introduce a novel LMC-GPR model designed specifically
for glove data that can achieve both FK and IK accuracy.

4. We generalize our calibration method so that it can be adapted
to other hand motion capture hardware.

2 Related Work

Previous glove calibration work can be divided into FK calibration
and IK calibration, where the former aims to achieve accurate joint
rotation angles and believable hand shapes, and the latter calibrates
the glove sensor readings to achieve accurate fingertip positions.

The default calibration application [Yazadi 2009] shipped with Cy-
berGlove uses a simple linear method to fit a calibration line to 2
sampled hand poses for each sensor. However, the sampled “flat”
and “okay” poses do not involve enough reading changes to cali-
brate all sensors. Thus another manual parameter tuning process is
required to improve calibration accuracy (36 parameters for 18 sen-
sors). CyberGlove calibration only happens in joint rotation thus
it can only achieve FK accuracy. [Huenerfauth and Lu 2010] also
uses a FK linear method to make their glove calibration more ac-
cessible to deaf subjects. Glove calibration in [Chou et al. 2000;
Menon et al. 2003] uses linear regression and thus is less subject

to noise in the sampled hand poses. The problems with most of
the FK calibration methods are: 1. No concern for the IK fingertip
accuracy. 2. All sensors are assumed to be independent of each
other and calibrated separately, which falsely lowers the calibration
problem from HD space to 1-D space. 3. Due to the difficulty of
hand pose measurement, usually sample quantity is insufficient.

The official CyberGlove documentation [Yazadi 2009] provides
sensor resolution, linearity and noise descriptions, which explains
the possible inaccuracies caused by linear calibration. Evaluation
work in [Kessler et al. 1995] reports that sensor readings are com-
plicated: readings vary based on sensor resolution, hand size, pres-
sure on the sensors, human variations and noise in the system.
Their experiments verified that stretching of neighboring sensors
can cause errors of more than 20◦ for abduction rotation angles.
Previous work by [Kahlesz et al. 2004; Steffen et al. 2011] also
reports severe coupling problems in their experiments. Their cali-
bration methods synthesize training data using parabolic functions,
to avoid too much sampling work. In [Kahlesz et al. 2004] and [Jin
et al. 2010], calibration for cross-coupling effect is treated as an in-
terpolation problem with no consideration for the possible noise in
the samples. Calibration research [Chou et al. 2000] also addresses
the multiple correspondences between sensors and joint rotations.
They use an external vision system to extract relevant features, and
calibrate sensor readings by a multiple linear regression method.
Fundamentally, these cross-coupling calibration methods only ad-
just joint rotations to achieve better hand shape, but offer no guar-
antee of IK fingertip accuracy.

Glove calibration for tele-operation of a robot hand [Griffin et al.
2000; Hu et al. 2004] uses the pseudo inverse of Jacobian as the IK
solver to achieve accurate fingertip positions for object manipula-
tion. [Griffin et al. 2000] approximates the ideal fingertip positions
without manual measurement, while a vision system is applied in
[Hu et al. 2004] to track the real fingertip positions for calibration.
Both work assume exact sensor linearity and independence: each
sensor’s linear calibration function is embedded into the Jacobian
matrix, which causes frequent generation of trivial solutions. Both
methods use an unconstrained IK solver, thus there is no guaran-
tee of plausible hand shapes. Motion smoothness is not considered
either.

Acquiring hand motion has been discussed in [Zhao et al. 2012],
which does not utilize gloves, but combines two optical systems
for the capture. In [Ye and Liu 2012], wrist movements and the
motion of handled objects are optically captured to reconstruct the
real hand motion. [Kang et al. 2012] reconstructs high quality hand
motion by using a reduced marker set for the hand motion capture.
The recent hand motion research [Jörg et al. 2012] synthesizes re-
alistic finger motion for gesturing characters from a pre-captured
hand motion database.

3 Glove Hardware and Kinematic Hand
Model

3.1 Glove and Sensors

The glove hardware used in this paper is the CyberGlove II, an 18-
sensor glove where sensors are located over or near the joints to
measure the hand poses. The detailed sensor layout is shown in
Figure 2. For the sensor and rotation naming, T, I,M,R, P,W
before the underscore indicate thumb, index, middle, ring, pinky
and wrist respectively; the joint name is after the underscore.

Ideally sensors should provide readings only due to changes in the
joint angle it is designed to measure, not other movements. Based
on this independence assumption, calibration for each sensor can



Figure 2: Sensor Layout and Kinematic Hand Model. All 18 sensors are listed and
kinematic joint rotations are marked.

be conducted in 1-D space. Unfortunately in practice, neighboring
sensors stretch each other and create the cross-coupling effect. The
coupling problem, according to [Huenerfauth and Lu 2010; Kahlesz
et al. 2004; Chou et al. 2000; Jin et al. 2010], is not peculiar to
CyberGlove, but common to data gloves on the market due to the
similar sensor layout. We completed a thorough examination of
all the sensors using a similar method introduced in [Kahlesz et al.
2004]: keep the joint rotation unchanged and record reading varia-
tions from its measuring sensor (ideally variations should be 0 for
independent sensors) when freely moving other speculative affect-
ing sensors to the largest possible extent. In practice, reading varia-
tions from measuring sensors never remain exactly 0, so sensors are
regarded as cross-coupled with other affecting sensors if variation
std.dev≥ 5% or max.dev≥ 12% of the joint’s active range. Other-
wise, the variations are negligible and the sensor is defined as inde-
pendent. The results from our independence examination are listed
in Table 1. Note that the coupling problem is not bi-directional.

For sensor linearity and noise, the official CyberGlove specifica-
tion[Yazadi 2009] claims sensor resolution is approximately 1◦,
repeatability ±3◦ and maximum nonlinearity of 0.6%. Other re-
search by [Chao 2001] reports mean measurement errors of 1.7◦ ±
1.5◦, and [Kessler et al. 1995] reports mean sensor noise to be 1.1◦,
and a max noise of 3◦.

Independence and exact linearity assumptions with no concern for
coupling effects and noise cause inaccuracies in linear calibrations.

3.2 Kinematic Hand Model

We design the kinematic hand model to be consistent with the ac-
tual hand skeletal structure and also to match the glove sensor lay-
out. Each finger is modeled as a kinematic chain that roots at the
palm base. Most of the measuring sensor is conveniently located
at a joint and can directly measure the joint rotation. There are
some exceptions we need to pay attention to. The 18-sensor glove
does not place distal interphalangeal (DIP) sensors on the 4 fingers,
thus the finger DIP rotations are not measured. Also to account for
the thumb pronation, we adopt a common solution as described in
[Kahlesz et al. 2004; Griffin et al. 2000; Hu et al. 2004; Turner
2001]: a virtual joint is added to the thumb kinematic chain to en-
sure anatomical correctness, which does not have a direct measur-
ing sensor either. The palm-arc sensor measures palm movement
that can be formed by more than one joint rotation at the roots of

Table 1: Results from Independence Examination. To prove the individual relevance
to the coupling effect, for each affecting sensor, its own contribution is also listed, in
the format (% of std.dev, % of max.dev).

Measured Ro-
tation rm

Measuring
Sensor sm

Affecting
Sensors{sa1, . . . , saK}

%vari
std.dev

%vari
max.dev

rTI ABD sTI ABD sT TMC 9.6% 25.4%
rIM ABD sIM ABD

sI MCP (22.2%,33.8%)
sM MCP (13.2%,54.1%)

45.7% 114.2%

rMR ABD sMR ABD
sM MCP (34.4%,92.1%)
sR MCP (42.1%,115.5%)

42.5% 120.4%

rPM ABD sPM ABD
sR MCP (27.8%,69.2%)
sP MCP (36.0%,80.5%)

22.7% 93.8%

Palmar move-
ment1

sPALM ARC
sT TMC (11.5%,37.5%)
sTI ABD (27.4%,67.0%)
sI MCP (4.3%,15.5%)
sIM ABD (5.3%,14.2%)
sM MCP (8.6%,36.5%)
sR MCP (20.9%,49.7%)
sMR ABD (6.7%,24.3%)
sP MCP (33.9%,73.0%)
sRP ABD (4.2%,16.2%)

21.2% 76.1%

rW FLEX sW FLEX sW ABD 13.6% 37.5%
rW ABD sW ABD sW FLEX 6.5% 26.3%

all the finger kinematic chains.

3.3 Sensor-Rotation Correspondence

We generalize the mappings between sensor readings and joint ro-
tations in

r = r(s) (1)

where s denotes readings from all involved sensors, r is the actual
joint rotations, the mapping function r can be regarded as the cal-
ibration function. The purpose of glove calibration is to find the
appropriate form of r and finalize all parameters in it so that it can
produce accurate rotation angles. Under this definition, linear cali-
bration has prematurely fixed a linear form for r even before obser-
vations of the data.

In our research, r and s in (1) are defined differently according to
the type of Sensor-Rotation correspondence2 :

• 1 Sensor to 1 Joint Rotation(1S1R): Measuring sensor sm in-
dependently measures joint rotation rm. In this case, r = rm,
s = sm.

• Multiple Sensors to 1 Joint Rotation(MS1R): Measuring sen-
sor sm is cross-coupled with a set of K affecting sensors
{sa1, sa2, . . . , saK} when measuring rotation rm. In this
case, r = rm, s = {sm, sa1, sa2, . . . , saK} and the latent
calibration function r we need to infer is in a higher dimen-
sional space. Typically for abduction between index and mid-
dle finger, rm = rIM ABD , sm = sIM ABD , K = 2 where
sa1 = sI MCP and sa2 = sM MCP , thus the mapping is in
the form rIM ABD = r(sIM ABD, sI MCP , sM MCP ). Our
experiments also prove that calibrating thumb joint rotations
in HD space {sT TMC , sTI ABD, sT MCP , sT IP } can gen-
erate more accurate results, due to the complexity of thumb
structure.

1Based on the exam, palm-arc sensor is affected by other 9 sensors. The
severe coupling effects suggest it is unlikely to provide accurate data. Thus
in this paper, we choose not to use this data for calibration. The palm is
treated as a rigid body.

2Under this categorization, the palm-arc sensor should belong to Multi-
ple Sensors to Multiple Joint Rotations(MSMR), if considered.



Figure 3: Overall process of our data-driven glove calibration.

• 0 Sensor to 1 Joint Rotation(0S1R): Joint rotation rm has no
measuring sensors. In this case, r = rm, s uses pseudo sen-
sor data ṡm simulated from existing sensor readings, based
on well recognized biomechanics and anatomical principles.
Then 0S1R can be treated as 1S1R. Typically for index DIP,
r = rI DIP , s = ṡI DIP = 2

3
∗ sI PIP according to findings

in [Chou et al. 2000; Kuch and Huang 1994; Lee and Kunii
1995; Pavlovic et al. 1997]. And for the added virtual joint on
thumb, r = rT V IR, s = ṡT V IR = a∗sT TMC+b∗sTI ABD
based on practices from [Kahlesz et al. 2004; Griffin et al.
2000; Hu et al. 2004], where a and b are constant coefficients.

4 Overview

The goal of glove calibration is to infer the latent mapping function
r in (1), given 2 accuracy requirements:

• FK accuracy defines joint rotation accuracy in the joint rota-
tion space(θ-space). The calibrated r should reflect accurate
joint rotations and sensible hand shapes.

• IK accuracy defines fingertip position accuracy in the end-
effector space(l-space), when the hand is configured as the
calibrated rotations r. This is important for finger-touching
motion and object manipulation.

Our calibration method is data-driven and initiated with a sampling
process (Figure 3). The goal of the sampling process is to collect
data for the calibration process to handle all sensor-rotation corre-
spondence types and achieve both accuracy requirements. The data
is collected in the format of tuple (s, o) where o = r + ε, is the
observed joint rotations with error ε from measurement or calcu-
lation. The sampling process makes no premature assumption of
a fixed form of r. Based on sensor-rotation correspondences and
accuracy requirements, the sampling process includes: FK Inde-
pendent Sampling, FK Cross-couple Sampling and IK Sampling.

During the calibration process, our LMC-GPR model is trained
based on the collected data tuples (s, o), and the unobserved cal-
ibration function r is inferred. For new incoming sensor reading s∗,
r can predict the real joint rotation r∗. The general GPR framework
can handle more flexible forms of r in higher dimensional space
with consideration of errors in the observation o to achieve the dual
accuracy goals. Sparse approximation SPGPs is used for real-time
calibration.

5 Data Sampling

5.1 FK Sampling

5.1.1 FK Independent Sampling

FK independent sampling collects data from the independent sen-
sors with 1S1R correspondence. Thus the (s, o) tuples it collects
are (sm, om), which makes the sampling very straightforward. We
predefine several key poses(Figure 4), record readings from the in-
dependent sensors when performing these poses as sm, and the cor-
responding measured joint rotation as om. The key poses we cur-
rently use are: “flat”, “spread”, “fist” and “overbend”, which en-
sure at least 2 different rotation angles for each independent sensor.
More key poses can be added for specific accuracy requirements.
Adding a sampled key pose tuple (sm, om) will cause the calibra-
tion function to yield joint rotation close to om for readings sm.

(a) (b) (c) (d)

Figure 4: Predefined Key Poses for FK Independent Sampling.(a)“flat”
(b)“spread” (c)“fist” (d)“overbend”

5.1.2 FK Cross-couple Sampling

FK cross-couple sampling is designed for cross-coupled sensors
with MS1R correspondence. Readings from both the measuring
sensor and the affecting sensors need to be recorded. Thus the
(s, o) tuples collected are (sm, sa1, . . . , saK , om). Joint rotation
om is controlled by using extra widgets. The general idea of the
cross-couple sampling is:

a. Fix om at rotation angle θ using facilitating widgets.

b. Keep om still while freely move the rest of the hand to change
sensors readings of {sm, sa1, . . . , saK}.

c. Record sensor readings during the free movement together
with joint rotation in tuples (sm, sa1, . . . , saK , om)

d. Change om to another rotation angle, goto step a and repeat.

This sampling method applies to all cross-coupled cases listed in
Table 1. Figure 5 illustrates the details of sampling sIM ABD ,
which is affected by sI MCP and sM MCP . A widget with a known
angle θ is put inbetween the index and middle finger to keep ab-
duction oIM ABD fixed; freely flexing the index and middle finger
produces different readings from sI MCP , sM MCP , and due to the
stretching effect, readings from sIM ABD will also change. Sam-
ples are recorded and the process is repeated for 0◦, 10◦, 20◦ and
30◦ as the fixed oIM ABD value.

5.2 IK Sampling

5.2.1 Sampling Process

The goal of IK sampling is to collect training data that allows the
calibration process to achieve fingertip accuracy. The process be-
gins with the user performing a hand motion sequence in which fin-
gertip accuracy is regarded as important, such as the finger touch-
ing motion (shown in Figure 6). For each frame in the motion,
the ideal fingertip touching positions d is automatically calculated



(a) Collecting sensor read-
ings from sIM ABD ,

sI MCP , sM MCP with
fixed oIM ABD .

(b) Plot of collected tuples (sIM ABD ,

sI MCP , sM MCP , oIM ABD ) in one mo-
tion clip with oIM ABD controlled by wid-
get θ = 0.

Figure 5: Cross-couple sampling for abduction between index and middle.

based on the probability distribution in l-space. Clamped Damped
Least Square(DLS) with hand shape constraints is used to solve for
joint rotations o that can reach d. Original sensor readings s and
solved joint rotations o are recorded in tuple (s, o). s includes read-
ings from the measuring sensor and affecting sensors for coupled
cases.

Figure 6: IK Sampling - finger touching motion sequence

5.2.2 IK Solver Clamped DLS with Constraints

The IK solver should ensure accurate fingertip positions, sensi-
ble hand shapes, and smooth solutions for the sampled motion se-
quence. Based on previous IK research [Buss 2004; Aristidou and
Lasenby 2009; Buss and Kim 2005; Nakamura and Hanafusa 1986;
Wampler 1986; Chan and Lawrence 1988], we use the Clamped
DLS to satisfy these requirements.

To provide a sensible initial configuration for the IK solver, sensor
readings s will be linearly rescaled to the joint’s active range as š.
Finger configurations θ are initialized from š, under which fingertip
positions are l. Then θ will be adjusted by (2) in an iterative process
until fingertips reach the ideal positions d.

∆θ = J+λe+ (I − J+J)z (2)

J+λ is defined as JT (JJT + λ2I)−1, based on Jacobian matrix
J . We set the damping factor λ proportional to ‖d − l‖2. e is the
distance from current fingertip positions l to the ideal d clamped
by Eq.(3) to suppress radical adjustment in one iteration step. For
each joint, we define hand shape constraints as z = ∇c(θ − θ̄)2,
where θ̄ is set to be the middle value of joint’s active range to pe-
nalize θ’s excessive deviation. c is the stiffness coefficient. We
assign relatively lower stiffness to the thumb than to other fingers.
J+ is the pseudo inverse of Jacobian. Thus z is projected to the
nullspace of J . For θ that is already out of range, we enforce a hard
constraints as introduced in [Meredith and Maddock 2005] through
∆θ = w∆θ, 0 ≤ w < 1 to effectively suppress further deviation
from its active range. Final θ solutions are recorded as the observed
rotations o in tuple (s, o).

clamp(d−l, emax) = {
d− l if‖d− l‖ < emax
emax ∗ d−l

‖d−l‖ otherwise. (3)

(a) (b) (c) (d)

Figure 7: Visualization of probability distribution in l-space for thumb-index touch-
ing pose.(a) The configuration from š. (b) The visualization of thumb tip probability
distribution in l-space with color map. (c) The visualization of index tip probability
distribution. (d) The visualization of the joint probability distribution in l-space for the
common thumb-index touching position.

5.2.3 Automatic Calculation of Fingertip Touching Position

We avoided the use of an expensive external vision system to track
fingertips in l-space, nor did we manually measure fingertip po-
sitions. Instead, we automatically calculate the fingertip touching
positions based on the probability distribution in l-space.

First, for each finger u, we define the probability distribution of
joint rotations in θ-space as pu in (4):

pu(θ) =

V∏
v=1

pv(θv) (4)

where θv is the rotation of joint v on the finger u. pv is modeled
as a Gaussian distribution N (mv, σv). mv is the initial configura-
tion from š, σqis set to 3◦ for independent sensors and 6◦ or higher
for coupled sensors and thumb sensors (based on the official tech-
nical specifications [Yazadi 2009] and the experimental results in
[Kessler et al. 1995]).

The probability distribution of u’s fingertip position in l-space p′u
can be calculated from its joint rotation distributions in θ-space in
(5). θlu is the output solution from our IK solver to make u’s fin-
gertip reach lu in the l-space.

p′u(lu) = pu(θlu) (5)

For the finger touching pose, all involved fingertips reach the com-
mon position d. We find d by maximizing the joint probability in
l-space for all the involved fingers (6). Typically U = 2. Figure 7
illustrates the thumb-index touching case.

arg min
d
{−

U∑
u=1

log p′u(lu = d)} (6)

6 Glove Calibration

We train the LMC-GPR calibration model using a training set
T = {(sn, on)}Nn=1 of N tuples, consisting of the three sample
types described above. Input sensor reading sn is in D dimensional
space. We reorganize T by aggregating the N sensor inputs as col-
umn vectors in an D × N matrix s. The corresponding N obser-
vations are in vector o = (o1, o2, . . . , oN ). GPR infers the latent
calibration function r, and provides calibrated rotation r∗ for new
sensor reading s∗. SPGPs proposed by [Snelson and Ghahramani
2006; Lawrence 2007] are further used to enhance the real-time
performance of our calibration.



6.1 Glove Calibration using LMC-GPR

The LMC-GPR model is specially designed for glove data based
on general Gaussian Process Regression (thoroughly discussed in
[Rasmussen and Williams 2006]). It utilizes the sensor linearity yet
does not restrict r to be of linear form, or any fixed form from a
limited number of basis functions.

6.1.1 GPR Model Selection

The Gaussian process r ∼ GP (m(s), k(s, s′))can be specified
by its mean function m(s) = E[r(s)] and covariance function
k(s, s′) = E[(r(s) −m(s))(r(s′) −m(s′))]. As closer s are more
likely to have similar r, k(s, s′) measures the similarity between s
and s′ in the input space and thus r from closer s are regarded as
more informative during prediction.

The general Gaussian process commonly uses zero mean m0

and Radial Basis Function kRBF as the covariance function for
lack of prior knowledge, which is not an appropriate model for
glove calibration for several reasons: 1. kRBF is translation-
invariant in input space and depends only on the distance between
s, which is inconsistent with sensor linearity. For coupled input
s = (sm, sa1, . . . , saK), the stretching effect also changes when s
translates in the input space. 2. kRBF is isotropic using one length-
scale hyperparameter to describe the relevance for all dimensions in
the input space, but the coupling problem is anisotropic. For joint
rotation r(e.g. rIM ABD), the relevance of readings from measur-
ing sensor sIM ABD and affecting sensors sI MCP , sM MCP are
different. 3. According to our experiments, kRBF takes longer to
train and to predict. Thus we use the LMC-GPR model for glove
calibration. Detailed GPR model comparisons for glove calibration
are listed in Table 2.

6.1.2 LMC-GPR Mean and Covariance

Based on the general idea of sensor linearity, we explicitly specify
the mean function of LMC-GPR as linear mean ml

mr = ml(s) =

D∑
d=1

αdsd (7)

where αd are constant hyperparameters.

A non-trivial composite covariance function kr is designed by us-
ing linear kernel klARD and squared exponential kernel kseARD as
building blocks:

kr = klARD + kseARD
=

∑D
d=1 βdsds

′
d + η exp(− 1

2

∑D
d=1 γd(sd − s

′
d)

2)
(8)

βd, η and γd are hyperparameters in kr. klARD corresponds to
the covariance function of linear regression and thus can be used to
model the basic sensor linearity. kseARD is more flexible to model
the nonlinear part in the training data, including the coupling ef-
fect and noise. The Automatic Relevance Determination (ARD)
technique uses different coefficient βd and length-scale γd for di-
mension d to determine the relevance of each input dimension.

6.1.3 LMC-GPR Training

Based on the (mr, kr) model, the Gaussian prior of LMC-GPR is
defined in (9), where Kr is the N × N Gram matrix with entry
Kr[i, j] = kr(si, sj) for all pairs of s in the training set T .

p(r|s) = N (r|mr,Kr) (9)

Table 2: Model selection experiments applied to 2000+ glove training data
(sIM ABD , sI MCP , sM MCP , oIM ABD) collected from FK cross-couple and
IK sampling. We record average training time t̄tr and prediction time t̄pred to
predict the rIM ABD for a 267-frame clip. To measure model fitness, the nega-
tive log marginal likelihood(NLML) and noise’s log standard deviation log σ are also
recorded, which for a well-fit model should be minimized. The general purpose model
(m0, kRBF ) takes longer to train and to predict, and achieves acceptable fitness.
Change m0 to ml, (ml, kRBF ) has smaller NLML and thus fits better. Using lin-
ear kernel klARD corresponds to linear regression. With either m0 or ml, klARD

has shorter t̄tr and t̄pred, but the large NLML and log σ indicate poor fitness and the
unfitted parts are interpreted as noise. (ml, klARD + kseARD) is the LMC-GPR
model we use for glove calibration. It appropriately integrates the prior knowledge of
sensor linearity into a flexible model, fits the glove data better, and has t̄tr and t̄pred
at relatively the magnitude of a simple model.

mr kr t̄tr t̄pred NLML log σ

m0 kRBF 752.3s 7.1s 5.795e+03 -1.79
m0 klARD 197.5s 0.55s 7.641e+03 2.39
m0 kseARD + kseARD 4569.2s 16.5s 4.962e+03 -1.79
m0 klARD + kseARD 333.8s 0.97s 4.545e+03 -1.81

ml kRBF 2615.5s 23.4s 4.973e+03 -1.80
ml klARD 219.2s 0.68s 7.635e+03 2.39
ml kseARD + kseARD 3760.3s 8.2s 4.600e+03 -1.80
ml klARD + kseARD 331.2s 0.81s 4.543e+03 -1.81

Noise ε in the observations has the Gaussian distribution
N (ε|0, σ2I) where σ is the hyperparameter indicating the variance
of the noise. Thus the likelihood of observing o given r is defined
as

p(o|r) = N (o|r, σ2I) (10)

The training process learns the values of all hyperparameters h =
{αd, βd, η, γd, σ}Dd=1 in the LMC-GPR model from the training set
T . Based on the definition of prior and likelihood, integrating out
the latent r, we can obtain the log marginal likelihood as:

p(o|s, h) = N (o|mr,Kr + σ2I) (11)

The marginal likelihood tells the probability of the observations
given the assumptions of the mean and covariance and thus it mea-
sures the fitness of the model. We find the value of h that can best
explain the observations in T by maximizing (11) i.e. minimizing
the negative log-marginal likelihood(NLML). Partial derivatives of
the NLML w.r.t h are calculated for the gradient-based optimiza-
tion.

∂ ln p(o|s, h)

∂hj
=

1

2
yTK−1

o
∂Ko

∂hj
K−1
o y − 1

2
tr(K−1

o
∂Ko

∂hj
) (12)

where y = o−mr, Ko = Kr +σ2I . The complexity of this train-
ing process is dominated by the inversion of Ko, which is O(N3).

6.1.4 LMC-GPR Prediction

After all hyperparameters have been determined, given new incom-
ing sensor readings s∗ as inputs, the trained LMC-GPR can predict
the calibrated joint rotation r∗ based on training set T . The predic-
tive distribution is

p(r∗|s∗, T ) = N (r∗|mr∗,Kr∗) (13)

where

mr∗ = Kr(s∗, s)[Kr(s, s) + σ2I]−1o (14)

Kr∗ = Kr(s∗, s∗)−Kr(s∗, s)[Kr(s, s) + σ2I]−1Kr(s, s∗)

(14) is the calibration function r we need for glove calibration. Be-
cause of the matrix inversion operation, this prediction process also
requires O(N3) computation. Cholesky decomposition is used for
matrix inversion.



6.2 Real-time Optimization

One difficulty of applying the LMC-GPR to real-time glove cali-
bration is its O(N3) complexity. This performance problem can be
overcome by a sparse approximation method using a pseudo train-
ing set T̂ of size M , M � N . Pseudo sensor inputs ŝ decide T̂ ’s
location in T and an optimization process will help find ŝ for T̂
to best represent the entire training set. As the values of hyperpa-
rameters h in mr and kr depend on pseudo-set’s location ŝ, sep-
arating hyperparameter learning from pseudo-set selection causes
fluctuations in the marginal likelihood and its gradients, and leads
to unsmooth convergence during the optimization process. Thus
we use sparse approximation method SPGPs proposed in [Snelson
and Ghahramani 2006], which finds ŝ and h together in one smooth
joint optimization.

Given ŝ, the prior and likelihood are defined as (15) and (16)

p(r̂|ŝ) = N (r̂|mr(ŝ),Kr(ŝ, ŝ)) (15)

p(o|s, ŝ, r̂) = N (o|Kr(s, ŝ)Kr(ŝ, ŝ)
−1r̂,Λ + σ2I) (16)

where Λ isN×N diagonal matrix with entry λnn = Kr(sn, sn)−
Kr(sn, ŝ)Kr(ŝ, ŝ)

−1Kr(ŝ, sn). Marginalizing over r̂, we obtain
the marginal likelihood:

p(o|s, ŝ, h) = N (o|mr,Kr(s, ŝ)Kr(ŝ, ŝ)
−1Kr(ŝ, s) + Λ + σ2I)

(17)
Location ŝ together with the value of h can be obtained by maxi-
mizing the marginal likelihood (17) w.r.t {ŝ, h}.

The predictive distribution of this sparse model is:

p(r∗|s∗, T, ŝ) = N (r∗|m̂r∗, K̂r∗) (18)

where

m̂r∗ = Kr(s∗, ŝ)Q
−1Kr(ŝ, s)(Λ + σ2I)−1o (19)

K̂r∗ = Kr(s∗, s∗)−Kr(s∗, ŝ)(Kr(ŝ, ŝ)
−1 −Q−1)Kr(ŝ, s∗)

Q = Kr(ŝ, ŝ)+Kr(ŝ, s)(Λ+σ2I)−1Kr(s, ŝ). Thus (19) is the ap-
proximated calibration function using a size M pseudo-set. SPGPs
has O(M2N) training cost and O(M2) prediction cost. Our ex-
periments show that using T̂ of size M = 100 to approximate T
of size N = 2000+ can still produce excellent calibration results.
Details of these results are discussed in Section 7.

7 Results and Applications

7.1 Experimental Evaluation of Accuracy

We evaluate the effectiveness of our approach by using the LMC-
GPR calibration model trained on a data set consisting of 2000+
tuples. For sparse approximation, a pseudo-set of size M = 100 is
used for SPGPs. To demonstrate the advantage of LMC-GPR cali-
bration, we compare its results with the most commonly used linear
calibration (regressed among the key poses defined in Section 5).

7.1.1 Perceptual Evaluation

Perceptual evaluation focuses on checking the plausibility of hand
shapes. For key poses, all calibration methods can provide ideal
results as the key poses are part of the training set. In Figure 8, the
calibrated hand shapes for some commonly used hand poses (not in
the key pose set) are shown. In Figure 9, we illustrate thumb-finger
touching poses where both fingertip positions and hand shapes are
important.

Figure 8: FK hand shape accuracy evaluation using different calibration methods.
4 commonly used hand poses are shown. The cross-coupled stretching effects (e.g.
rIM ABD in “pointing” pose) are fixed by LMC-GPR and its SPGPs approximation.

Figure 9: IK fingertip accuracy evaluation using different calibration methods.

We put 12 hand motions calibrated in 4 different ways (totally 48
clips) on Mechanical Turk. 30 users watched the ground truth first
and then rated the calibrated motions, shown in random order(1
indicating the lowest resemblance, and 7 highest). The ratings
demonstrate that LMC-GPR best resembles the ground truth. The
result from a one-way ANOVA run between linear, LMC-GPR and
SPGPs on the ratings is significant (p < 0.001, F = 154.03, df =
2), as shown in Figure 10.

Figure 10: Resemblance ratings of calibrated hand motion clips.

7.1.2 Quantitive Evaluation

To quantify the FK accuracy of different calibration methods, we
compare the calibrated joint rotations against the measured rotation



angles for key hand poses and other error-prone poses(Table 3).
We also designed experiments to further evaluate the correction
for cross-coupling problem, where users are asked to perform free
finger movements with fixed index-middle abduction. Figure 11
shows the calibrated rIM ABD with the real θIM ABD fixed to 0◦

(in the training set), and 25◦ (not in the training set), respectively.
Raw sensor readings and linear calibration produces unstable ab-
duction values due to the sensor stretching, which is fixed by full
LMC-GPR and SPGPs. For θIM ABD = 25◦, the predicted values
are slightly smaller than real abduction.

Figure 11: Correction of cross-coupling effects.

Figure 12: Boxplot of involved fingertip distances in a continuous touching motion,
using different calibration methods.

To quantify IK fingertip accuracy, we record the distances between
the involved fingertips when they are performing continuous touch-
ing motions. The ideal distance should be 0. Figure 12 compares
the fingertip distances resulting from different calibration methods,
e.g. for the 176-frame thumb-index touching motion, the average
distance between thumb tip and index tip is about 7.53cm, 5.25cm,
0.08cm and 1.75cm using raw data, linear calibration, LMC-GPR
and SPGPs respectively. Similarly for thumb-mid, thumb-ring and
thumb-pinky touching motions, the full LMC-GPR provides signif-
icantly better results than linear calibration. Also both Figure 9 and
Figure 12 show that SPGPs can yield improved results compared to
linear calibration.

(a) Marker placement for the cap-
ture

(b) Glove captured hand motion v.s. optically
captured markers.

Figure 13: Comparison against optical motion capture.

We ran an experiment that compared the differences between glove
captured hand motion and optically captured marker positions. 8

Table 3: Rotation differences against measured values among all DOFs.

Pose Raw Linear LMC-GPR SPGPs 100

Flat 10.2◦ ± 11.8◦ 1.5◦ ± 2.0◦ 0.9◦ ± 1.1◦ 0.9◦ ± 1.2◦

Fist 16.1◦ ± 24.8◦ 3.2◦ ± 3.5◦ 1.5◦ ± 2.5◦ 1.6◦ ± 2.5◦

Spread 13.4◦ ± 17.6◦ 2.5◦ ± 4.7◦ 0.9◦ ± 1.6◦ 0.9◦ ± 1.6◦

Overbend 13.6◦ ± 19.3◦ 2.4◦ ± 3.7◦ 1.7◦ ± 2.6◦ 1.8◦ ± 2.4◦

ThumbUp 17.3◦ ± 21.8◦ 4.5◦ ± 8.3◦ 2.0◦ ± 3.3◦ 2.2◦ ± 3.3◦

Pointing 15.1◦ ± 19.1◦ 4.5◦ ± 6.0◦ 2.2◦ ± 3.7◦ 2.5◦ ± 3.8◦

PinkyUp 13.9◦ ± 15.6◦ 5.4◦ ± 8.0◦ 2.5◦ ± 3.8◦ 2.7◦ ± 3.9◦

Rest 12.0◦ ± 15.8◦ 4.5◦ ± 6.6◦ 2.4◦ ± 3.5◦ 2.6◦ ± 3.6◦

Ok 12.8◦ ± 14.5◦ 3.3◦ ± 6.1◦ 1.5◦ ± 2.1◦ 1.5◦ ± 2.2◦

markers are put over the glove on root, index MCP, pinky MCP,
thumb tip, and finger DIP joints (Figure 13(a)). The result shows
general consistency between the two capturing methods and the dif-
ferences are expected due to the following reasons: 1.The kinematic
hand model is different from the real hand. 2.Placement of mark-
ers is not exact on the joint location. Markers slide on the glove.
3.The palm-arc is not considered. 4.Minor cross-coupling effects
are ignored. Even though we use a small marker set, it still requires
significant effort to correct mis-labeling. It is insufficient to recon-
struct the entire hand motion from this marker set, and the markers
are frequently occluded during the capture. The whole clip is in-
cluded in the video.

7.2 Accuracy vs. Performance

Figure 14: FK/IK accuracy losses using SPGPs with different pseudo-set sizeM .

To make LMC-GPR available for real-time hand motion capture, its
sparse approximation is used. This subsection discusses the selec-
tion of an ideal M , and the trade-offs between accuracy and time
efficiency. Table 4 lists the training and prediction time of SPGPs
using different size M for glove calibration. It is obvious that the
smaller M is, the faster the t̄tr and t̄pred will be. However, cali-
bration accuracy could be compromised by discarding informative
data in the training set. Figure 14 shows the cost of FK and IK
accuracy when shrinking the size of pseudo-set for SPGPs.

Table 4: Average training Time t̄tr and prediction time t̄pred using SPGPs with
different pseudo-set size run on a 2.80 GHz Intel Core 2 Duo CPU.

SPGPs size t̄tr per glove t̄pred per frame
M = 1000 657.572s 0.745s
M = 500 67.439s 0.187s
M = 300 32.027s 0.078s
M = 100 9.721s 0.018s
M = 50 7.557s ≤ 0.016s
M = 20 6.224s ≤ 0.016s

Based on the performance and accuracy tests, we chose pseudo-set
size M = 100 for SPGPs to approximate LMC-GPR in real-time
motion capture. Its calibration time per frame is about 0.0180s,
which is sufficient for real-time use and it still maintains fairly good
results. Users can run SPGPs M = 100 onsite and re-calibrate



data with the full LMC-GPR offline, providing timely feedback and
greater accuracy if needed.

7.3 Applications

This LMC-GPR calibration method has been applied to body/hand
motion capture for gesture research. Body motion was captured
using the VICON system and hand motion was collected from the
CyberGloves. The overall quality of captured gestures is greatly
enhanced by our calibration method, e.g. with deictic gestures
(“pointing”) and emblematic gestures (“okay”). In addition to
gesture research, our glove calibration method can be applied to
robotics, sign language, human computer interaction and so forth.

8 Generality and Flexibility

8.1 Generality

Unlike body motion capture, hand motion capture lacks unified
hardware and standards. The goal of this paper is to present a flexi-
ble glove calibration method that can be applied to other hand cap-
ture hardware (with or without prior knowledge of sensor linearity)
rather than being restricted to the CyberGlove.

Our calibration method mainly consists of two processes: sampling
and calibration, which can both be customized for new hardware.
To sample a sensor with uncertain properties, FK independent sam-
pling may require more key poses to get denser samplings. FK
cross-couple sampling and IK sampling in our method are already
dense. The form of tuple set (s, r) allows for flexible mappings
from s to r.

The LMC-GPR model can provide calibration for all hardware like
the CyberGlove with known sensor linearity. For hardware with
other properties (known or unknown), GPR is a flexible frame-
work that allows different mean and covariance functions, includ-
ing linear, polynomial, squared exponential, exponential and their
combinations. For example, given a glove with polynomial sen-
sors, we can replace the linear kernel term kl with a polyno-
mial kernel kp in the model to better fit the data. For sensors
with unknown properties, a more general and flexible GPR model
(m0, kseARD + kseARD) is needed, using the zero mean m0 and
the composite of two kseARD . The experimental results listed in
Table 2 show that treating linear glove data as a general signal,
(m0, kseARD + kseARD) yields relatively the same NLML and
log σ as the LMC-GRP model. The only disadvantage is that this
general-purpose model requires more time to train and predict.

8.2 Flexibility

Our approach has a sampling process that is independent from cali-
bration, which separates the data from the algorithm. This structure
has the following advantages:

Multiple Wearings:Sampling and the subsequent training, need to
be performed only once for the same subject. The trained GPR can
be used in different mocap sessions over multiple wearings of the
gloves, for the same subject. Evaluation experiments in Section 7
are performed from different sessions using the same trained model.

Data Reuse:According to [Kessler et al. 1995], for different sub-
jects, data from FK sampling can be reused. The calibration prob-
lem is thus treated as “calibrating sensors” rather than “calibrating
subjects”. Such calibration may be “rough”, but can still maintain
perceptually plausible hand shapes. IK sampling depends on hand
dimensions, and thus is subject specific.

Accuracy Adaptation:Our calibration method can achieve both
FK and IK accuracy, but some applications may not have dual ac-
curacy concerns. A single accuracy requirement can be achieved
by merely sampling the relevant data. For example, a robotic hand
may only need fingertip accuracy, in which case, only collecting
tuples from IK sampling to train the calibration model will suffice.

9 Conclusion and Future Work

We have presented a novel calibration approach for hand motion
capture. It uses the general GPR framework to accommodate sen-
sor linearity, coupling effects and noise. The flexible calibration
function is inferred by a special LMC-GPR model trained on data
collected from a separate sampling process. Results confirm that
our approach can ensure better calibrated FK and IK accuracy.

Despite the effectiveness of our method for calibrating data gloves,
it is worth noting that LMC-GPR is a statistical model. Its predic-
tive mean function provides calibrated values not by interpolating
through every sampled point in the input space. Thus we should
also care about its predictive variance as this indicates the uncer-
tainty of the prediction. Any chosen model whose variance is too
large should not be applied in calibration.

In addition, there are several limitations to our calibration method
that could benefit from future work:

• First, CyberGlove includes a palm arch sensor, but due to the
severe cross-coupling effects, we ignore this sensor and treat
the palm as a rigid body. Although GPR can handle high di-
mensional inputs, the real difficulty comes from the sampling
process. It would be very time-consuming to collect suffi-
cient samples to describe the calibration function in the high
dimensional space. On the other hand, the fact that the palm
arc is highly related to rotations of some hand joints can be
utilized for simulating palm shapes using a biomechanic rule
based approach.

• Second, although our approach can ensure fingertip accuracy
for an “ok” sign or a grabbing motion, as the IK sampling pro-
cess only samples finger-touching motions, we cannot guaran-
tee IK accuracy when the fingertip distances are larger. One
possible solution to ensure accuracy for a given fingertip dis-
tance is sampling motions when fingers are manipulating a rod
with the given length, but more general positioning remains a
challenge.

• Third, as a data driven calibration approach, the achieved ac-
curacy is related to the sampling quality. More training data
with accurate information is preferred, but the aforementioned
sampling difficulties restrict us from collecting too much data.
Therefore, in the future, a more efficient sampling process, or
a sampling method that collects most representative data, or a
non data-driven method are possible solutions to improve the
calibration approach.

We are hoping that our work can provide a new thread on glove cal-
ibration and further promote the use of hand motion capture tech-
niques.
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