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Abstract— Precise control with proportional-derivative (PD)
control generally requires stiffness. The proposed method deter-
mines critically damped PD control trajectories that precisely
obtain target position and velocity constraints for arbitrary
initial conditions. An analytic solution provides the PD control
parameters, thereby determining the required impedance. The
resulting controller precisely interpolates the target state by
solving the full boundary-value problem. Control parameters
are time-invariant, and need only be recomputed if the system
diverges from the computed trajectory due to unexpected
forces or noise. The resulting method provides control with
automatically determined compliance, yielding natural response
to perturbation.

NOMENCLATURE
(θ(t), ω(t)) Position and velocity at time t
m(t) Moment of inertia at time t
(θ0, ω0, t0) Initial state of the system at time t0
(θd, ωd, td) Desired state for the target time td
τ(t) Computed control torque for time t
k Computed stiffness of PD controller
γ Computed damping of PD controller

I. INTRODUCTION

Proportional-derivative (PD) control is one of the most
commonly used forms of feedback control. This popularity
stems from its simplicity, global stability, robustness and
broad-applicability[1]. Despite many years of wide-spread
use, practical implementations often resort to one of a variety
of tuning methods to determine the stiffness and damp-
ing constants. One popular example is the Ziegler-Nichols
method[2] for tuning proportional-integral-derivative (PID)
controllers. A wide variety of automatic tuning methods have
been proposed in the robotics and control literature[3].

Our approach considers the use of PD control for precisely
interpolating future state. Whereas traditional practice might
use a PD controller solely to track an interpolating spline,
we propose to eliminate the tracked spline. In it’s place, our
system solves for PD control parameters that will result in
a critically damped trajectory that will attain the target state
precisely.

With this method, both the target position and the target
velocity of the desired state can satisfied. The calculation of

B. F. Allen and P. Faloutsos are with the Department of
Computer Science, University of California, Los Angeles, USA.
vector@cs.ucla.edu and pfal@cs.ucla.edu

M. Neff is with the Department of Computer Science, University of
California, Davis, USA. neff@cs.ucdavis.edu

This research was funded in part by U.S. Army Medical Research &
Materiel Command’s Telemedicine and Advanced Technology Research
Center and the UCLA Center for Advanced Surgical and Interventional
Technology.

this critically damped trajectory is made possible by using
an analytic solution for the PD control parameters. Thus,
the proposed method finds the unique trajectory curve that
solves the full boundary-value problem (BVP) of controlling
the system from an initial state (θ0, ω0, t0) to a given future
state (θd, ωd, td). By chaining a sequence of BVPs, complex
trajectories interpolating a series of desired states are made
possible.

There are several advantages to formulating control as the
trajectory of a critically damped PD controller. First, since
the result of the proposed method is simply a set of constant
control parameters, the method’s stability and robustness are
well understood[3]. Second, PD trajectories may be more
similar to muscle-generated trajectories and therefore may
appear less “robotic” than trajectories based on, for example,
cubic splines[4]. Third, the stiffness of the system is implicit
in the trajectory. That is, the system has a stiffness that
is uniquely determined by the BVP being solved, and so
the system responds to perturbations and disturbances with
natural compliance. Thus the system will have many of the
properties observed in human muscle control, such as an
increase in stiffness with increased torque[5].

II. OVERVIEW

To begin, section III introduces a recent analytic so-
lution [6] of critically damped PD control parameters to
robotics. This solution provides a means to determine con-
stant PD control parameters that drive the system through a
trajectory starting at the system’s initial state (θ0, ω0, t0) and
precisely interpolating the target position at the target time
(θd, td).

Following on, section IV provides a method for also
honoring a desired target velocity ωd at the target time td, i.e.,
ω(td) = ωd. This is shown to be possible, despite the analytic
solution of section III already being fully constrained, leaving
no (mathematical) degrees-of-freedom to allow control over
final velocity. Our approach is to introduce an invertible
transform, called the f -adjustment. As the magnitude of
the f -adjustment varies, so does the velocity at the target
time ω(td) change. Once the f -adjustment that satisfies
ω(td) = ωd is found, the system is transformed back to
the original coordinates. The resulting solution satisfies the
full boundary-value problem, i.e., the analytically calculated
trajectory satisfies both the initial conditions (θ(t0), ω(t0)) =
(θ0, ω0) and the target conditions (θ(td), ω(td)) = (θd, ωd).

Section V describes the implementation, section VI
presents the results of the simulation of the control of a single



actuator, and section VII concludes with a discussion of the
limitations and benefits of the method.

III. ANALYTIC SOLUTION TO CONTROL
PARAMETERS

PD control computes the control torque based on the
difference between the current state θ, ω and a desired state
θd, ωd as τ = k(θd−θ)+γ(ωd−ω). If the moment of inertia
m about the axis of the joint is known, then an equivalent
second-order differential equation can be written as

m
d2θ

dt2
+ γω + kθ = γωd + kθd. (1)

Considering only controllers with critically damped behavior
(i.e., γ2 = 4 km), the homogeneous solution to (1) is

θ(t) =

(
θ0 + t

(
ω0 +

γ θ0

2m

))
e−

γt
2m , (2)

setting θd to 0 and possibly inverting θ so that θ0 > 0 without
loss of generality.

In robotic systems, the initial conditions (θ0, ω0) are
generally fixed, as they often represent the current state of
the system. As we have restricted the controller to critically
damped motion, the system has but a single degree-of-
freedom γ. Ideally, we seek the parameter γ which, when
applied to control the system, causes the future position to
be reached θ(td) = θd.

A. Solving for PD Control Parameters

Although an algebraic closed-form expression for γ in (2)
does not exist, recent work[6] proposes an analytic solution
for the control parameter γ such that constraints on both
the initial position and velocity, and the desired position are
satisfied exactly. We briefly review this solution.

Expressions of the form y = xex can be manipulated
using the Ω map, also called the Lambert-W function [7],
defined by x = Ω(x)eΩ(x). Although Ω has no closed-form
expression, it can be represented analytically and is quite
fast to compute in practice [7]. Ω(·) is a multi-valued map,
but the principle branch, i.e., the branch passing through the
origin, can be expressed as Ω0(x) =

∑∞
n=1

(−n)n−1

n! xn. For
x ≥ −1/e, x ∈ <, Ω(x) has at least one real solution, and
for x > 0, Ω(x) is unique.

By using the Ω map, (2) can be solved for γ in terms of
the initial conditions (θ0, ω0), the desired position θd and the
moment of inertia m,

γ = − 2m

tdθ0

(
tdω0 + θ0

(
1 + Ω

(
−θd
θ0
e−1− tdω0

θ0

)))
. (3)

For simplicity, we assume t0 is zero without loss of gener-
ality.

This equation provides the PD control parameter γ (and
k by the critically damped assumption) that will yield a
trajectory that exactly satisfies the initial conditions and the
final position constraint θ(t) = θd. Figure 1 shows several
example trajectories generated by varying the initial velocity
under the constraint θ(10) = 1. Note that with each different
initial velocity, the target position is interpolated exactly.

ω0 = -1.5
ω0 = -0.5
ω0 = 0.0
ω0 = 0.5
ω0 = 2.5
ω0 = 5.0
ω0 = 10.0Po

sit
io

n,
 θ

(t
)

0

2

4

6

8

10

12

14

Time, t
0 1 2 3 4 5 6 7 8 9 10

Fig. 1. The analytically computed control parameter γ provides a critically
damped trajectory that exactly satisfies the target position. This graph shows
a variety of initial velocities resulting in different trajectories, but each
honoring the boundary conditions.

B. Trajectory Independence of Moment

For systems where the moment of inertia may not be
constant, such as a multi-link robot, we desire that the
trajectory of a joint will not be affected as the moment m(t)
changes over time. This is made possible by substituting (3)
into (2) and defining

g ≡
1 + Ω

(
− θdθ0 e

−1− tdω0
θ0

)
td

+
ω0

θ0
, (4)

the expression for the trajectory independent of m(t) is then

θ(t) = etg (θ0 + t (ω0 − θ0g)) . (5)

However, if the system is altered due to collision, pertur-
bation or errors in the model used to calculate the moment
m(t), then the trajectory itself must be updated by recom-
puting a new g value that satisfies the target state given
the newly changed current state. Speaking roughly, we may
simply factor out the changing m(t) when computing the
trajectory, and then multiply it back in when computing
the torque, thus leaving the trajectory itself unaffected by
changes in the robot’s configuration or mass properties.

IV. HONORING A DESIRED FINAL VELOCITY

The analytic solution of the previous section is useful for
interpolation, but has limited application to the control of
real systems, due to the inability to specify the velocity at
the target time. Consider that the velocity of the system at
the target time ω(td) is fully constrained by γ from (3).
Equation 3 can have at most two solutions due to the Ω()
map having either zero, one or two solutions. Thus, the
method of the previous section may result in trajectories with
unacceptable velocities at the target time.

In this section, we extend the analysis to satisfy an
arbitrary given target velocity ωd at the target time td. To
accomplish this, an extra mathematical degree-of-freedom
is introduced using an invertible transform, called the f -
adjustment. Our approach is to solve the f -adjusted version
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Fig. 2. An extra degree-of-freedom is introduced by translating the system
by zero, one and two units. The transformed trajectories reach their desired
positions exactly, each decreasing θ by one over the allotted time, but each
arrives at the target position with a different velocity.

f = 0.01
f = 0.2
f = 0.5
f = 1.5
f = 5
f = 1000
f = 25

Po
sit

io
n,

 θ
(t

)

0

5

10

15

20

Time, t
0 1 2 3 4 5 6 7 8 9 10

Fig. 3. By translating by f and then solving for γ, then translating back,
a range of velocities at td are possible. Note however that there is not a
monotonic relationship between f and ω(td).

of (3), thereby transforming the problem. Once an appropri-
ate f -adjustment is found, the transform is inverted, leaving
constant PD control parameters that satisfy the full boundary-
value problem.

The intuition behind the f -adjustment is the observation
that changing the magnitude of θ0 and θd, while leaving
their relative difference the same, changes the shape of the
trajectory. Figure 2 shows three example trajectories, each
starting with the same initial velocity and changing position
by the same amount over the same time. However, two of the
trajectories are offset by a fixed amount before determining
γ with (3). Note that each of the velocities at the desired
time are different. Thus by choosing an appropriate offset,
the desired velocity can be met. Formally, the quantity f
offsets the initial and target positions as

θ̂0 = θ0 − θd + f, θ̂d = f. (6)

These f -adjusted values are denoted by ,̂ and replace
the corresponding terms in (3) to determine a γ with an
altered trajectory. This method provides a potential means
to determine a trajectory satisfying the full boundary-value
conditions (both initial and final position and velocity). To

f

Fig. 4. The relationship between f and ω(td), showing the critical velocity
ω∗ separating the two branches. The Ω0 branch is colored blue and the Ω−1

is red. Each point on either curve represents a distinct trajectory satisfying
the given constraints on initial state and desired position and time.

find such a trajectory, we need only find f such that the
desired velocity constraint is satisfied,

∂θ(td, f)

∂t
= ωd. (7)

By differentiating (2) the velocity is expressed as a function
of f and t,

∂θ(f, t)

∂t
= − 1

t2d

(
C + (θ̂0 +B) t ξ

)
exp

(
B t

tdθ̂0

)
(8)

ξ ≡ Ω

(
− f
θ̂0

exp(−1− tdω0

θ̂0

)

)
A ≡ 1 + ξ, B ≡ tdω0 + θ̂0A

C ≡ t(tdω0 + θ̂0)− t2dω0.

Figure 3 demonstrates the effect of the f -offset on the shape
of a particular example trajectory. Equation 2 has regions of
both no solution and regions of two solutions, due to the use
of the Ω map. The two-solution case results in two separate
trajectories for a given f , complicating the search for an f
satisfying (7). However, the relationship between f and ω(td)
is surprisingly simple. Figure 4 illustrates the behavior of the
final velocities ω(td) as the f -offset changes. Note that the
two branches correspond to the two real branches of the Ω
map.

A root-finding search determines f that satisfies the final
velocity constraint. The search can be improved using the
first derivative of the velocity with respect to f :

∂2θ(t, f)

∂t ∂f
= −

(
ADf + EFξ

Afθ̂0

2
td

3

)
t exp

(
Bt

tdθ̂0

)
(9)

D ≡ Btd
2ω0 +A

(
Aθ̂0(Bt+ tdθ̂0)−B2t− td2ω0θ̂0)

)
E ≡ ftdω0 − fθ̂0 + θ̂0

2

F ≡ td(B − tdω0) +A(Bt+ tdθ̂0)

To determine the appropriate branch for a given desired
velocity, we define the critical velocity as

ω∗ ≡ lim
f→+∞

∂θ(td, f)

∂t
=

2(θd − θ0)

td
− ω0. (10)



Fig. 5. The two trajectories implied by the two dots in Figure 4. The
solid blue curve shows the trajectory corresponding to a small final velocity
ω(td), while the dashed red trajectory indicates the curve with the larger
magnitude final velocity.

The critical velocity is illustrated in Figure 4 with the two
distinct branches of ∂θ(td, f)/∂t converging at ω∗. These
branches of ∂θ(td, f)/∂t correspond to the two branches
of Ω(·) that provide real solutions. The search for f is
constrained to the principle branch Ω0 if ωd > ω∗ and to
the Ω−1 branch otherwise.

V. IMPLEMENTATION

Implementation of the feedback control loop is sum-
marized in algorithm 1. With each iteration, the system
determines whether or not the actual state has diverged from
the current trajectory. When divergence is detected, a new
trajectory is computed using the current system state for the
initial condition, and the original target. Online recomputing
of the trajectory allows proper response to collisions and
perturbations, while still reaching the target state.

The argmin operation of algorithm 1 is implemented using
the Newton-Raphson numerical root finder[8]. Because the
derivative of the objective is known analytically (9), and
because the objective function is known to be monotonic
when constrained to the correct branch as given by (10), the
minimization is very fast and generally converges in fewer
than ten iterations.

When solving for the f -offset, some trajectories can
require very large values of f to reach the target velocity.
In these cases, numerical stability can suffer, since the
transformation requires the subtraction of generally small
values, such as θd, by large f . To mitigate this issue, our
implementation uses 80-bit extended-precision floating-point
values.

VI. RESULTS

To evaluate the method, we consider the control of an
simple single-DOF 10 kg arm, illustrated in Figure 6. The
system is required to interpolate an arbitrary series of target
states, shown as the small circles in Figures 7 and 8, and
listed in table I. At the precise time and position of each
target state, a 2 kg projectile sphere passes the plane of arm;
if the position has been reached correctly, the ball will be

Algorithm 1 ControlLoop()

for all time t do
θ ← etγ

(
θ̂0 + t(ω0 − θ̂0γ)

)
if current state diverges from trajectory then

{Recompute trajectory}
f ← argmin

f

(
∂θ(td,f)

∂t − ωd
)

γ ← γ()
k← γ2/(4m)

end if
{Compute torque}
τ ← k(θd + f − θ)− γω

end for

Algorithm 2 γ()

θ̂0 ← θ0 − θd + f
Ω← Branch()

ξ ← Ω
(
− f

θ̂0
exp(−1− tdω0

θ̂0
)
)

return 1

θ̂0

(
ω0 + θ̂0

td
(1 + ξ)

)

deflected. To compare interpolation error quantitatively, the
actual state is recorded at each target. Using the proposed
method, mean error over the interpolation points is 0.0037
rad of position and 0.0195 rad/s of velocity. This compares
well to a PD controller, with parameters hand-tuned to
precisely satisfy the first target state, tracking a Hermite
spline that interpolates the same states. The Hermite-tracking
PD controller has a mean error of 0.0493 rad and 1.0448
rad/s over all of the interpolation points.

To examine the response to perturbation, each controller’s
error is measured under five arbitrary impulses of 5000 Nm
applied during a single time step. The perturbed motions
are shown in the bottom graphs of Figures 7 and 8. The
Hermite spline tracker is tuned to be sufficiently stiff to
completely reject the test perturbations, giving the same
position and velocity error at the interpolation points in
both cases. However, when subjected to perturbations, the
proposed analytic trajectory controller yields mean position
error of 0.0029 rad and velocity error of 0.0335 rad/s. In
this case, the mean position error is actually lower when
perturbations are applied. This effect arises because, as
discussed in section V, if the system diverges from the
expected trajectory a new trajectory is calculated. The new
trajectory will be closer to the interpolation point, and thus
less subject to numerical drift and introduction of error due

Algorithm 3 Branch()

if ωd >
2(θd−θ0)

td
− ω0 then

return Ω0

else
return Ω−1

end if



Time (sec) Position θ(t) (rad) Velocity ω(t) (rad/s)
0.5 0 0

1.25 1.37 0.35
3.0 -1.18 -0.48
3.4 -1.04 1.48

4.35 1.31 0.15
5.0 0.46 -2.86
5.2 -0.37 -0.63
5.5 0.82 0.44

6.76 -1.37 -0.07
7.26 -0.34 5.39
8.5 -0.7 -1.91

TABLE I
TARGET STATES

Fig. 6. A single DOF system is used to evaluate the proposed method. In
this image, the actuator drives the arm with precise timing to block incoming
balls; motion is illustrated using a stroboscopic effect.

to inexact model estimate. Note however, that the velocity
error is nearly twice the unperturbed value. For each of these
evaluations, the forward dynamics are integrated with a time
step of 0.002 seconds.

VII. CONCLUSION

We have described a method to compute constant, linear
control parameters for critically damped PD control able
to precisely interpolate desired future states. The resulting
trajectories are defined by the stiffness of control, leading
to a natural method of determining impedance, and thus

behavior that is more similar to damped-spring-like muscle
motion. The method also provides an analytic expression for
both the trajectory and its derivatives, allowing interactive
manipulation of the future trajectories. Finally, we have
demonstrated the system is computationally efficient and able
to respond robustly to unexpected perturbations.

The proposed method has some inherent limitations. First
of all, the system model must be sufficiently accurate in
providing the correct moment of inertia. Second, there are
target states that simply cannot be reached from given
initial conditions using a critically damped PD trajectory. For
example, any case that would require two inflection points
of the trajectory is impossible, as the critically damped PD
trajectory has at most one inflection point. In these cases,
the system is still able to reach to target position, but only
by sacrificing accuracy in the target velocity. An example of
this can be seen in the evaluation problem at 4.35 seconds.
When the system is perturbed, the target velocity cannot be
satisfied, leading to the larger average error in velocity with
perturbations. Note that subsequent trajectories are likely to
recover, as the error in velocity at the target becomes the
new initial condition to reach the next target position.

Despite these limitations, we believe that the provided
analytical solution of a long-standing problem may be of
practical use both for the specific, proposed method of
control through interpolation, and also more generally, to
assist in the tuning of PD controllers.
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Fig. 7. Tracking an interpolating Hermite spline with a stiff PD controller. Vertical bars indicate unexpected perturbations. The perturbations are quickly
rejected by the stiff controller.
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Fig. 8. Analytical PD control trajectory interpolating target states. Vertical bars indicate unexpected perturbations. Note that perturbations are resolved
with a compliance that varies with the strength of the motion.


